Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.
A Hollywood movie depicts three astronauts who survive an accident in space, but their lives hang in the balance as the people in Mission Control at NASA work night and day to figure out a way to bring the spacefarers home safely.
You probably think I’m describing the 1995 movie, “Apollo 13” by producer Ron Howard, but actually this is a recap of a 1969 movie called “Marooned.“
“The correlation between ‘Marooned’ and actual events threatening Apollo 13 is really uncanny,” said NASA engineer Jerry Woodfill. “People may not agree, but in my mind this movie was actually a catalyst to the rescue of Apollo 13.”
Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.
It’s the handy man’s secret weapon, and has become a must-have item for astronauts, too. While duct tape alone didn’t save the Apollo 13 crew, it certainly would have been difficult for them to have survived without it. Even though the accident which crippled the ship took out the two main oxygen tanks in the Service Module, having enough oxygen really wasn’t an issue for the crew. A big problem was having too much carbon dioxide (CO2), which came from the astronauts’ own exhalations.
The Lunar Module had lithium hydroxide canisters to remove the CO2 for two men for two days, but on board were three men trying to survive in the LM lifeboat for four days. However, with a little ingenuity and duct tape, the Apollo Mission Operations Team was able to fit “a square peg in a round hole.”
“Any of us in the Mission Evaluation Room (MER) might be called upon to assist in an Apollo 13 ‘solution,’” said Jerry Woodfill, who helped design and monitor the Apollo caution and warning systems. The MER was where the spacecraft systems engineers were stationed during a mission, and should a problem arise on any Apollo mission, the “MER-men” were called on for expert advice.
“Should an inexplicable glitch in an alarm occur, I might be consulted,” Woodfill said, “and I was – when the carbon dioxide levels began to threaten the astronauts’ lives, ringing alarms. However, to this day, I am proud that the Command Module’s alarm system was the first warning alerting Mission Control and Lovell’s crew to the life-threatening problem.”
The MER engineering team was led by Don Arabian. “His loud, challenging voice could carry the entire length of the Mission Evaluation Room,” Woodfill said. “Despite his fierce personality, he was a brilliant engineer. No forensic engineer working with any attorney had a greater ability of assessing a spacecraft mission anomaly than Don Arabian.”
Additionally, Woodfill said, Arabian was wholly unorthodox in his management approach. “He feared no man above or below his pay grade. He was honest almost to the point of embarrassment. He would not ‘sugar coat’ any situation Apollo 13 was dealing with as far as the press was concerned.”
Woodfill recalled how Arabian commanded the MER team from the “throne-like” center seat of a long table perpendicular to tables of engineers. “He was, perhaps 20 feet from my station as the Caution and Warning Apollo 13 Engineer. Don never intimidated me, though I had felt nervous about many of my superiors. Don had that same quality of leadership Gene Kranz possessed. He was fair with lower level workers and respected their knowledge.”
For that reason, Woodfill said he felt privileged rather than frightened when summoned to Arabian’s private office to discuss the threat to the lives of the Apollo 13 crew, the build-up of CO2 in the spacecraft.
Woodfill had worked with the environmental system engineers to establish an alarm level based on the percentage of CO2 in the cabin atmosphere. The idea was to use the warning system as an alert for changing the filters.
With the CO2 alarms ringing on Apollo 13, Woodfill met with Arabian. “As I recall there were three calibration curves, one for three different cabin pressures,” Woodfill said. “Arabian began to throw questions at me across his desk: ‘Is the alarm accurate…is the transducer working correctly…what about the calibration?'”
Woodfill had the information on the calibration curves with him, and together, he and Arabian carefully studied it based on the known cabin pressure, the voltage output from the CO2 transducer and the voltage level at which my warning electronics initiated the alarm.
“Yes, the warning system was telling the right story,” Woodfill said.
But there was a problem with the CO2 “scrubbers,” the lithium hydroxide canisters. The cabin air was fed continuously through environmental control equipment, and the lithium hydroxide reacted with the carbon dioxide and trapped it.
“There were but two round lithium hydroxide canisters in the LM, able to provide filtering for two men for two days,” said Woodfill. “With the trip back to Earth at least four days in length, and three men on board, the carbon dioxide content of the cabin air would rise to poisonous levels, and the crew would expire without a solution.”
Each canister had a life of approximately 24 hours with two men on board. Since there were now three men, that life would be somewhat shortened. The round filters were housed in two separate barrels in the lander. One barrel was plumbed into the cabin’s environmental control system, and the other barrel simply stowed the second cartridge. When the first filter was consumed, the crew simply interchanged the filters in the barrels.
“While there were plenty of filters in the Command Module, these were square and wouldn’t fit in the LM barrel,” Woodfill said. “Without some kind of unusual miracle of making a square peg fit into a round hole the crew would not survive.”
The experts in the MER had 24 hours to deal with the challenge and solve the problem. “My recollection of the threat,” said Woodfill, “besides the earlier meeting with Don Arabian, was Don’s voice bellowing from his throne in the mission evaluation room that Tuesday, ‘I need those guys to come up with an answer on the CO2 thing and do it fast!’ He was referring to the ‘tiger team’ led by Ed Smylie, the crew systems manager working the problem.”
Using only the type of equipment and tools the crew had on board –including plastic bags, cardboard, suit hoses, and duct tape — Smylie and his team conceived a configuration that just might work.
“The concept seemed to evolve as all looked on,” Woodfill said. “It was to attach a suit hose into a port which blew air through the hose into an astronaut’s space suit. If the space suit was eliminated and, instead, the output of the hose somehow attached to the square filter, perhaps, the crew could be saved. This, in effect, would bypass the barrel. The air blown through the filter by the suit fan would have no carbon dioxide as it reentered the cabin atmosphere.”
The biggest challenge was attaching the hose into a funnel-like device having a small round inlet hole for the suit hose and a much larger square outlet attached and surrounding the square filter. But the funnel would most likely leak. Added to that difficulty was the hose and plastic bags tended to collapse restricting the air flow through the filter.
“Then the thought came, ‘Use cardboard log book covers to support the plastic,” said Woodfill. “It worked! But more importantly, they had to figure out how the funnel could be fashioned to prevent leaking. Of course…the solution to every conceivable knotty problem has got to be duct tape! And so it was.”
Woodfill said that duct tape had been stowed on board every mission since early in the Gemini days.
The contraption that Smylie and his team came up with was checked out in the simulators, which worked, and then the team quickly radioed instructions to the crew, carefully leading them through about an hour’s worth of steps.
At a mission debrief, Jack Swigert noted, “At this point in time I think the partial pressure of CO2 was reading about 15 millimeters. We constructed two of these things and I think within an hour was down to 2 tenths.”
Woodfill watched his systems from the MER. “I saw the alarm light go out and it stayed out the rest of the mission.”
As Jim Lovell wrote in his book “Lost Moon, “The contraption wasn’t very handsome, but it worked.”
And it saved Apollo 13.
Next: Part 11: A Hollywood Movie
Earlier articles from the “13 Things That Saved Apollo 13” series:
This is so cool – and impressive, most impressive! A 16mm camera located near the base of the Saturn V rocket captured incredible detail about the ignition and lift off of the Apollo 11 mission to the Moon. The high-quality video slows down 30 second of footage to about 8 minutes, but it’s worth every second to watch! The narrator explains it all in great detail. You’ll see the first moments of ignition where the flames light and expand, then get sucked back into the flame trench; and fire and ice all in one video. It really is awesome!
A switch-out of the magnet for a much anticipated particle physics experiment on the International Space Station will force NASA to delay the final flight of the space shuttle until at least November, and change which orbiter and crew will fly the final space shuttle mission. The $2 billion Alpha Magnetic Spectrometer was scheduled to head to the ISS in July of this year, but recent thermal vacuum tests showed the superconducting magnet that was originally planned to power the experiment would have only worked 2-3 years. An ordinary magnet, which doesn’t need to be super-cooled will last for a decade or more – and given the ISS has been given a longer life, it seems to be the best option. “I don’t think it’s correct to go there for three years where there is a chance to do physics for 18 years,” said Dr. Samuel Ting, AMS Principal Investor, in an article in the New York Times.
NASA officials said today they still are evaluating the exact day in November, as they must schedule the mission to fit around other resupply and crew flights to the ISS, with the Russian Progress and Soyuz vehicles.
The AMS is designed to search for various types of unusual matter by measuring cosmic rays, and will help researchers study the formation of the universe and search for evidence of dark matter and antimatter.
Changing the magnet means the AMS won’t arrive at Kennedy Space Center before August and shuttle workers need time to get the payload ready to fly inside the shuttle’s cargo bay.
The upcoming flight of the shuttle Atlantis (STS-132) remains on schedule for launch no earlier than May 14. But Endeavour was scheduled for the AMS flight in July, which will now move to no earlier than November. Discovery’s STS-133 flight (bringing up the Leonardo MPLM as a permanent storage module) stays on the schedule for September 16. So while the schedule changes, numerical order is restored!
Another possible change to the shuttle schedule would be if the decision to fly what is called STS-335, the Launch On Need mission, a shuttle ready to go as a rescue ship for the last scheduled mission. Many shuttle supporters say since Atlantis would be ready to fly that it should fly. No decision has yet been made, however.
Even if the final flight or flights get delayed into 2011, funding is not a problem, as Congress anticipated possible delays and provided funds for shuttle operations into early next year.
Liquid helium would have been used cool the superconducting magnet’s temperature to near absolute zero. But tests showed the helium would dissipate withing 2-3 years, leaving the seven-ton experiment useless. The ISS has been extended to at least 2020, and possibly as long as 2028.
A secret Air Force space plane launched on an Atlas V Thursday night at 7:52 p.m. EDT (2352 GMT) on a classified mission. The vehicle, the umanned X-37B Orbital Test Vehicle, looks like a mini space shuttle and has the capability to remain in orbit for 270 days. The purpose of this vehicle – for this mission and for the future – is unknown, but the Air Force says this newest and most advanced re-entry spacecraft will demonstrate autonomous orbital flight, reentry and landing.
Although the mission is secret, the launch was open to the media and was webcast live by the United Launch Alliance, and included live Twitter updates from the Air Force Space Command. Shortly after main engine cutoff, however, the webcast ended and no more updates were provided about the rocket and the vehicle’s activities.
[/caption]
The mission duration has not been disclosed, but the Air Force said technologies to be tested during the flight include advanced guidance, navigation and control, thermal protection systems, avionics, high temperature structures and seals, reusable insulation and lightweight electromechanical flight systems.
Liftoff occurred on time; and the stages separated 4 minutes and 31 seconds into the flight, and engine cutoff came at about 17 minutes after launch.
The X-37B is 9 meters long and 4.5 meter wide (29 X 15 ft) and its payload bay is 2.1 by 1.2 meters (7 by 4 feet). The vehicle was built at Boeing Phantom Works, based on an orbital and re-entry demonstrator design initially developed by NASA, then handed over to the Pentagon.
Rumors of an X-37B launch have been circulating since 2008.
Originally the vehicle was scheduled for launch in from the payload bay of the Space Shuttle , but that plan was axed following the Columbia accident.
Comparing the X-37B to the space shuttle, the orbiters 56 meters (184 feet) long, has a wingspan of 23 meters (78 feet), and weighs 2 million kg (4.5 million pounds.)
The space shuttle can haul payloads up to 29,500 pounds, while the OTV can only handle up to 226 kg (500 pounds.)
The X37-B will land on a runway in California and will be controlled remotely from the ground. In the future, the Air Force said they hope to conduct experiments and rendezvous with other spacecraft.
Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.
The saga of the Apollo 13 accident actually began years prior to the launch of the mission. As Jim Lovell wrote in his book, “Lost Moon” the accident was “an accumulation of human errors and technical anomalies that doomed Apollo 13.” But had coincidences been just a little different Apollo 13 could have been an accident from which there was no rescue. NASA engineer Jerry Woodfill believes where Tank Two was positioned in the Service Module led to a successful rescue. “I contend that the crew would have died if the flawed O2 Tank Two had not been on the outer perimeter of the Service Module,” Woodfill said. “The position of that tank had much to do with the extent of the explosion’s damage. Had Tank One been damaged, no rescue would have been possible.”
The oxygen tanks were specially insulated spherical tanks which held a “slush” of liquid oxygen with a fill line and heater running down the center. Tank Two used for Apollo 13 had originally been installed in Apollo 10, but was removed for modification. In what was considered a minor mishap, O2 Tank Two was accidently dropped and damaged. The two tanks were on a “shelf” in the Service Module and held in place by two bolts. During removal, inadvertently, only one bolt on the shelf was removed, the side that contained Tank Two. When the lifting fixture picked up the shelf, Tank One stayed in place while Tank Two accelerated upward, striking the fuel cell shelf overhead. It only moved about 5 cm (2 inches) but the jolt displaced a loosely fitted fill tube in Tank Two. This tank was replaced with another for Apollo 10, and the exterior was inspected. Since the interior wasn’t inspected, no one knew about the fill tube damage, and the shelf with the damaged Tank Two was installed in the Apollo 13 Service Module (SM-109) November 22, 1968.
Unfortunately there was another problem with the tank, that were it not for the fill tube damage, may not have been an issue. The oxygen tanks had originally been designed to run off the 28 volt DC power of the Command and Service modules. However, in 1965 the tanks were ordered to be refitted to also run off the 65 volt DC ground power at Kennedy Space Center. All components were upgraded to accept 65 volts except the heater thermostatic switches, which were overlooked. These switches were designed to open and turn off the heater when the tank temperature reached 26 degrees C (80 degrees F — Normal temperatures in the tank were -74 C to -174 C (-300 to -100 F.)
During pre-flight testing, Tank Two would not empty correctly, possibly due to the damaged fill line. The heaters in the tanks were normally used for very short periods to heat the interior slightly, increasing the pressure to keep the oxygen flowing. It was decided to use the heater to “boil off” the excess oxygen, requiring 8 hours of 65 volt DC power. This probably damaged the thermostatically controlled switches on the heater, designed for only 28 volts.
The Apollo 13 review board came to the conclusion that the switches welded shut, allowing the temperature within the tank to rise to over 538 degrees C (1000 degrees F). The gauges measuring the temperature inside the tank were designed to measure only to 80 F, so the extreme heating was not noticed. The high temperature emptied the tank, but also resulted in serious damage to the Teflon insulation on the electrical wires to the power fans within the tank.
When the tanks were put into the Apollo 13 spacecraft, the damaged Tank Two was placed in the exterior position.
“Because the spark which ignited the oxygen in Tank Two was located at the top of the tank,” said Woodfill, the tank acted like a cork on a Thermos bottle. Since it was on the outside perimeter, it simply blew out into space along with the 13 foot panel covering the side of the service module. The oxygen tank shelf served to isolate the explosion from the hydrogen tanks below. But had the inboard oxygen Tank One 1 exploded, likely, this would not have been the case.”
Should the flawed tank have been the inner tank, Woodfill said, its explosive force would have taken with it the sister O2 tank amplifying the force of the explosion, just as using two sticks of dynamite instead of one, the destruction would be a magnitude greater.
“The added explosive force would have fractured the O2 tank shelf involving the fragile hydrogen tanks below,” Woodfill explained. “The volatile hydrogen gas now having a wealth of oxygen from the overhead tanks would surely have destroyed the entire spacecraft assemblage. Of course, the crew would have immediately perished as well. There would have been no clues, no telemetry data trace to explain what had happened.”
“Oxygen Tank One was given the inboard location adjacent to the flawed tank,” Woodfill continued. “Consider the likelihood of that placement. It is one chance in two. The odds for Apollo 13’s survival were fifty percent, a flip of the coin.”
Next: Part 10: Duct Tape
Other articles from the “13 Things That Saved Apollo 13” series:
Space shuttle Discovery made a cross-country trek over the US Tuesday morning, heading towards an absolutely beautiful landing at Kennedy Space Center 9:08 am EDT. Watch the great video above. (The crew at NASA TV/KSC TV really outdid themselves on this one!) If you saw Discovery soar over your hometown we want to know what it looked like! Did you capture images or video? Or can you give us a description? Send them to me and we’ll post a gallery. See below for track the shuttle took across the continental US.
Note: To celebrate the 40th anniversary of the Apollo 13 mission, for 13 days, Universe Today will feature “13 Things That Saved Apollo 13,” discussing different turning points of the mission with NASA engineer Jerry Woodfill.
When the Apollo 13 crew jettisoned the crippled Service Module as they approached Earth, they saw the extent of the damage from the explosion of an oxygen tank. “There’s one whole side of that spacecraft missing!” Jim Lovell radioed to Mission Control, his voice reflecting his incredulousness at seeing the damage of a 13-ft panel blown off the spacecraft. However, the situation could have been more dire. The heat shield on the Command Module could have been damaged. What’s more, NASA engineer Jerry Woodfill said that instead of the panel blowing out, the explosion could have — and maybe should have –severed the Command Module from the Service Module.
Photos taken by the Apollo 13 crew after the service module was jettisoned in preparation for the command module’s reentry via the heat shield revealed that not only was the panel missing from the side of the spacecraft — blown into the vastness of space by the exploding pressure of the detonating oxygen – there was also damage to the Hi Gain Antenna, at the right of the vehicle drawing above, indicating the panel had catapulted into space, striking the antenna. What the images couldn’t show, and what the Apollo 13 crew couldn’t see was if there was any damage to the Command Module’s heat shield.
“The structural design of the interior of the Service Module is that it has a long open tunnel-like volume in the center of the module, about 30 inches by 13 feet,” said Woodfill. “The tunnel is much like a chimney such that gases, liquids, or particles could readily move through it toward the main engine bell at the right and the heat shield at the left. The tunnel is not sealed so that the explosive force of the burning oxygen from the exploded O2 tank 2 could escape into and around the tunnel in the direction of both the heat shield and main engine.”
Woodfill said concern was voiced in Mission Control that shrapnel from the exploding tank had entered the tunnel, and perhaps ultimately caused damage to both the heat shield and main engine. The main engine wasn’t the biggest issue, as the crew was able to use the lunar lander’s descent engine. (see our previous article , “Using the LM for Propulsion.”) But there was only one heat shield, and it had to work to enable the capsule and the crew to survive the fiery reentry through Earth’s atmosphere.
Thankfully, as it turned out ,the heat shield wasn’t damaged.
But almost miraculously, Woodfill said, the command module and service module remained connected following the explosion, while the internal pressure of the explosion rocketed the exterior panel into space.
“The attachment strength of the Service Module panel to the structure required a considerable internal pressure of 24 pounds per square inch for severing it from the service module,” Woodfill said. “A much lower pressure was required to separate the Command Module with its heat shield from the Service Module, only 10 pound per square inch. One can only speculate on why the panel blew and the crew capsule/service module attachment remained intact.”
Since there is no air pressure in space, Woodfill explained, the force which held the vehicles together was the strength of their mechanical attachments.
“Two pressures were at work,” he said. “Each attempted to overcome respective attachment forces: the force which attached the Service Module to the Command capsule and the force which attached the Service Module panel to the Service Module. Because the explosive pressure force of the oxygen was immediately applied in great strength to the panel, this overwhelming force would be expected to blast that panel apart from the vehicle, exceeding the 24 pound per square inch attachment strength. However, venting of residual explosive oxygen into the framework of the Service Module could well be expected to overcome the attachment strength between the two vehicles, separating them.”
Yet, it did not. Why?
“Apparently, the presence of ‘tankage’ and other structure acted to mitigate and dissipate the sudden pressure spike before it reached the interface between the vehicles,” Woodfill said. “However, if a shard from the exploded O2 tank 2 had punctured any of the adjacent tanks, likely a secondary explosion of any of them would have propagated both the explosion and build up of pressure. In that event, certainly, the vehicles would have experienced either a fatal separation or fatal damage to the heat shield.
A piece of shrapnel did fracture the plumbing between the oxygen tanks that allowed the oxygen to leak out of Tank 1, causing the complete loss of power in the Command Module, for without oxygen the fuel cells couldn’t work.
Some may say that having the Service Module attached to the Command Module wasn’t important – it was just dead weight anyway. However, other problems could have developed without the Service Module attached, according the Apollo 13 Failure Report. Having the heat shield exposed to low temperatures for a long period could have damaged it, and internal Command Module thermal problems could arise if the Service Module was jettisoned too early.
Additionally, flight control problems were anticipated if the Command Module wasn’t attached.
The immediate loss of the Service Module would have meant immediate loss of the residual power from the fuel cells while the crew and mission control wrestled to understand the problem. This would have required a much greater power drain on those emergency batteries to the extent that one wonders if the later “trickle-charge” from the lander’s batteries would have been sufficient for reentry.
Of course, since the Service Module was jettisoned before the crew re-entered (and the SM itself later burned up in the Earth’s atmosphere) no one could do any “forensic analysis” or an engineering “autopsy” on that part of the spacecraft.
“To me, it is amazing that, one, the heat shield wasn’t damaged from the explosion, and two, the connection that could withstand higher pressure ended up blowing, while the weaker connection stayed together,” said Woodfill.
But those were among the many things that saved Apollo 13.
Next: Part 9: Which tank was damaged
Earlier articles from the “13 Things That Saved Apollo 13” series:
Space shuttle Discovery’s landing was delayed a day because of uncooperative weather at Kennedy Space Center and the crew of STS-131 will try again on Tuesday to land. But in the meantime the delay provides a great opportunity to look back at the very successful mission with a set of amazing pictures from space. This beautiful image, top, shows the station’s robotic Canadarm2 grappling the Leonardo Multi-purpose Logistics Module (MPLM) from the payload bay of the docked Discovery for relocation to a port on the Harmony node of the International Space Station. The bright sun and Earth’s horizon provide the backdrop for the scene, while the Canadian-built Dextre robot looks on. Enjoy a gallery of images, below.
Clay works outside the ISS during STS-131’s first EVA. During the six-hour, 27-minute spacewalk, Anderson and Rick Mastracchio (visible in the reflection of Anderson’s helmet visor), mission specialist, helped move a new 1,700-pound ammonia tank from space shuttle Discovery’s cargo bay to a temporary parking place on the station, retrieved an experiment from the Japanese Kibo Laboratory exposed facility and replaced a Rate Gyro Assembly on one of the truss segments.
Discovery and the International Space Station are in the midst of their rendezvous and docking activities in this image photographed by an Expedition 23 crew member aboard the ISS. Part of a docked Russian spacecraft can be seen in the foreground.
Astronaut Soichi Noguchi has taken some of the most incredible images while on the ISS. Here’s one more awesome shot of Discovery while docked to the ISS during the STS-131 mission.
Compare this image, above, of Commander Alan Poindexter and Pilot Jim Dutton in the “real” shuttle cockpit, to below, the shuttle simulator.
This mission brought together two Japanese astronauts Soichi Noguchi, Expedition 23 flight engineer; and Naoko Yamazaki (right), STS-131 mission specialist; along NASA astronaut Stephanie Wilson,
A unique view of a part of the ISS, backdropped by the blackness of space and Earth’s horizon. Visible are the Japanese Kibo complex of and a set of solar arrays. This image was photographed by an STS-131 crew member while space shuttle Discovery was docked with the station.
The microgravity environment of space provides a great place to play — experimenting with a water is always fun and it likely happens every mission!
For the first time, four women were in space together during the STS-131 mission, with three from the shuttle crew and one from the ISS. Pictured clockwise (from the lower right) are NASA astronauts Dorothy Metcalf-Lindenburger, Stephanie Wilson, both STS-131 mission specialists; and Tracy Caldwell Dyson, Expedition 23 flight engineer; along with Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist.
Love this image of the STS-131 crew in the Cupola. Pictured counter-clockwise (from top left) are NASA astronauts Alan Poindexter, commander; James P. Dutton Jr., pilot; Dorothy Metcalf-Lindenburger, Rick Mastracchio, Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, NASA astronauts Clayton Anderson and Stephanie Wilson.
If the weather cooperates, space shuttle Discovery will attempt to land in Florida Monday morning using a so-called “descending node” where the trajectory will take it across the heart of the continental US. “The neat thing about the descending opportunities is it’s going to come across the country and folks will get a good opportunity, hopefully, to see the orbiter as it goes overhead,” said NASA entry flight director Bryan Lunney. This flight trajectoray hasn’t been used since before the Columbia disaster in 2003, to avoid flying over densely populated areas of the US. This descending node trajectory is favorable for adding extra crew time to the mission. The plan is for Discovery’s braking rockets to fire for three minutes and 11 seconds starting at 7:43:20 a.m. EDT Monday. This will slow the shuttle by about 217 mph for a landing at the Shuttle Landing Facility at Kennedy Space Center at 8:48:36 a.m. The second opportunity would be at 10:23:30 a.m.
But rain is in the forecast for Florida in Monday morning, so time will tell if the view will be available. As the shuttle crosses the Canadian border it would be only 43 miles high, providing a good view for viewers below.
According to Bill Harwood at CBS news, here is the flight path and expected speeds over each location, as marked on the map, above.
1. South of the Queen Charlotte Islands (western Canada)
2. Over British Columbia, northeast of Vancouver
3. Over southern Alberta province
4. Over Montana, flying over Fort Peck Lake (Mach 22)
5. Across the western border of North Dakota, then over northern South Dakota tracking northwest to southeast, directly over the capital of Pierre
6. Across Iowa directly over Sioux City and southwest of Des Moines and Council Bluffs, Iowa (Mach 18)
7. Over the heart of Missouri, between Kansas City and St. Louis (Mach 16)
8. Over the eastern border of Arkansas and Tennessee, east of Memphis (Mach 14)
9. Over NE Mississippi, northeast of Tupelo (Mach 12)
10. Over Alabama tracking northwest to southeast from Birmingham to Columbus, Georgia (Mach 10)
11. Over southwest Georgia south of Americus
12. Over Florida, almost directly over Jacksonville (Mach 4)
13. West of St. Augustine and Daytona Beach, onto KSC