On Friday, January 22nd, commercial space company Blue Origin successfully launched and landed its reusable rocket, New Shepard, at their launch facility in Texas. This is the second flight for New Shepard, showing that reusable rockets are on their way to becoming the launch system of choice. New Shepard launched, travelled to apogee at 101.7 kilometres, (63.19 miles) and then descended to land safely at their site in West Texas. This is the first successful reuse of a rocket in history.
Reusable rockets are an important development for space travel. Rockets are enormously expensive, and having to trash each rocket after a single use makes commercial space flight a real challenge. Blue Origin—and other companies like SpaceX—are blazing a trail to cheaper space flight with their reusable designs. This is great, not only for all the good sciencey reasons that we love so much, but because eventually civilian space enthusiasts may be able to travel past the Karman Line without having to sell all their possessions to do so. (Reserve your ticket here.) Continue reading “Blue Origin Reaches Another Milestone: Reusable Rocket Launches and Lands Safely”
There are several space stories we’re anticipating for 2016 but one story might appear — to some — to belong in the realm of science fiction: sometime in the coming year Elon Musk will likely reveal his plans for colonizing Mars.
Early in 2015, Musk hinted that he would be publicly disclosing his strategies for the Mars Colonial Transport system sometime in late 2015, but then later said the announcement would come in 2016.
“The Mars transport system will be a completely new architecture,” Musk said during a Reddit AMA in January 2015, replying to a question about the development of MCT. “[I] am hoping to present that towards the end of this year. Good thing we didn’t do it sooner, as we have learned a huge amount from Falcon and Dragon.”
Big Rockets
As far as any details, Musk only said that he wants to be able to send 100 colonists to Mars at a time, and the “goal is 100 metric tons of useful payload to the surface of Mars. This obviously requires a very big spaceship and booster system.”
He has supposedly dubbed the rocket the BFR (for Big F’n Rocket) and the spaceship similarly as BFS.
Most online discussions describe the MCT as an interplanetary ferry, with the spaceship built on the ground and launched into orbit in one piece and perhaps refueled in low Earth orbit. The transporter could be powered by Raptor engines, which are cryogenic methane-fueled rocket engines rumored to be under development by SpaceX.
The Challenge of Landing Large Payloads on Mars
While the big rocket and spaceship may seem to be a big hurdle, an even larger challenge is how to land a payload of 100 metric tons with 100 colonists, as Musk proposes, on Mars surface.
As we’ve discussed previously, there is a “Supersonic Transition Problem” at Mars. Mars’ thin atmosphere does not provide an enough aerodynamics to land a large vehicle like we can on Earth, but it is thick enough that thrusters such as what was used by the Apollo landers can’t be used without encountering aerodynamic problems such as sheering and incredible stress on the vehicle.
With current landing technology, a large, heavy human-sized vehicle streaking through Mars’ thin, volatile atmosphere only has about 90 seconds to slow from Mach 5 to under Mach 1, change and re-orient itself from a being a spacecraft to a lander, deploy parachutes to slow down further, then use thrusters to translate to the landing site and gently touch down.
90 seconds is not enough time, and the airbags used for rovers like Spirit and Opportunity and even the Skycrane system used for the Curiosity rover can’t be scaled up enough to land the size of payloads needed for humans on Mars.
NASA has been addressing this problem to a small degree, and has tested out inflatable aeroshells that can provide enough aerodynamic drag to decelerate and deliver larger payloads. Called Hypersonic Inflatable Aerodynamic Decelerator (HIAD), this is the best hope on the horizon for landing large payloads on Mars.
The Inflatable Reentry Vehicle Experiment (IRVE-3) was tested successfully in 2012. It was made of high tech fabric and inflated to create the shape and structure similar to a mushroom. When inflated, the IRVE-3 is about 10-ft (3 meter) in diameter, and is composed of a seven giant braided Kevlar rings stacked and lashed together – then covered by a thermal blanket made up of layers of heat resistant materials. These kinds of aeroshells can also generate lift, which would allow for additional slowing of the vehicle.
“NASA is currently developing and flight testing HIADs — a new class of relatively lightweight deployable aeroshells that could safely deliver more than 22 tons to the surface of Mars,” said Steve Gaddis, GCD manager at NASA’s Langley Research Center in a press release from NASA in September 2015.
NASA is expecting that a crewed spacecraft landing on Mars would weigh between 15 and 30 tons, and the space agency is looking for ideas through its Big Idea Challenge for how to create aeroshells big enough to do the job.
With current technology, landing the 100 metric tons that Musk envisions might be out of reach. But if there’s someone who could figure it out and get it done, Elon Musk just might be that person.
The Falcon 9 ‘Return to Flight’ launch attempt from Cape Canaveral, Florida was confirmed by SpaceX CEO and chief designer Elon Musk via twitter this morning.
The commercial Cygnus cargo spaceship, loaded with over three tons of critically needed supplies and research experiments, successfully rendezvoused and docked with the International Space Station (ISS) this morning (Dec. 9) after blazing to orbit on Sunday, Dec. 6, and thereby successfully resumed the American resupply chain to orbit – just in time for Christmas in Space!
The Orbital ATK Cygnus CRS-4 resupply vessel arrived in the vicinity of the massive orbiting outpost around 530 a.m. EST today with pinpoint accuracy after precisely firing its maneuvering thrusters to home in on the complex during a two day orbital chase.
KENNEDY SPACE CENTER, FL – Today’s spectacular blastoff of a United Launch Alliance Atlas V rocket carrying an Orbital ATK Cygnus commercial resupply spacecraft ignited the restart of critically needed American cargo mission to the International Space Station (ISS) following a pair of launch failures over the past year.
KENNEDY SPACE CENTER, FL – The unplanned ‘Happy Marriage’ of United Launch Alliance (ULA) and Orbital ATK is set to give birth Sunday, Dec. 6, to a Cygnus cargo freighter bound for the International Space Station (ISS).
Following two scrubs and a three day due to intense and wide spread rain squalls and excessive blustery winds, the third time is hopefully the charm for the Orbital ATK Cygnus resupply ship set for blastoff atop the venerable ULA Atlas V booster.
A space-faring friend pays our fair planet a visit this week on the morning of December 3rd, as the Japanese Space Agency’s Hayabusa 2 spacecraft passes the Earth.
The Flyby
Rick Baldridge on the SeeSat-L message board notes that Hayabusa-2 will pass 9,520 kilometers from the Earth’s center or 3,142 kilometers/1,885 miles from the Earth’s surface at 10:08 UT/5:08 AM EST on Thursday, December 3rd, passing from north-to-south above latitude 18.7 north, longitude 189.8 east just southwest of the Hawaiian Islands.
Unfortunately, the sighting opportunities for Hayabusa-2 aren’t stellar: even at its closest, the 1.5 meter-sized spacecraft is about nine times more distant than the International Space Station and satellites in low Earth orbit. To compound the challenge, Hayabusa-2 passes into the Earth’s shadow from 9:58 UT to 10:19 UT.
Still, skilled observers with large telescopes and sophisticated tracking rigs based along the Pacific Rim of North America might just catch sight of Hayabusa-2 as it speeds by. The JPL Horizons ephemeris generator is a great resource to create a customized positional chart in right ascension and declination for spacecraft for your given location, including Hayabusa-2.
Hayabusa-2 won’t crack 20 degrees elevation for observers along the U.S. West Coast, putting it down in the atmospheric murk of additional air mass low to the horizon. This also tends to knock the brightness of objects down a magnitude or so… estimates place Hayabusa-2 at around magnitude +13 shortly before entering the Earth’s shadow. That’s pretty faint, but still, there are some dedicated observers with amazing rigs out there, and it’s quite possible someone could nab it. Hawaii-based observers should have the best shot at it, though again, it’ll be in the Earth’s shadow at its very closest…
Amateur radio satellite trackers are also on the hunt for the carrier-wave signal of the inbound Hayabusa-2 mission. You can also virtually fly along with the spacecraft until December 5th: (H/T @ImAstroNix):
Probably the best eye-candy images will come from the spacecraft itself: already, Hayabusa-2 has already snapped some great images of the Earth-Moon pair using its ONC-T optical navigation camera during its inbound leg.
Other notable missions used Earth flybys en route to their final destinations, including Cassini in 1999, and Juno in 2013. Cassini’s return caused a bit of a stir as it has a plutonium-powered RTG aboard, though Earth and its inhabitants were never in danger. A nuclear RTG actually reentered during the return of Apollo 13, with no release of radioactive material. Meant for the ALSEP science package on the surface of the Moon, it was deposited on the reentry of the Lunar Module over the Marinas Trench in the South Pacific. And no, Hayabusa-2 carries no radioactive material, and in any event, it’s missing the Earth by about a quarter of its girth.
The successor to the Hayabusa (‘Peregrine Falcon’ in Japanese) mission which carried out a historic asteroid sample return from 25143 Itokawa in 2010, Hayabusa-2 launched atop an H-IIA rocket from Tanegashima, Japan exactly a year ago tomorrow on a six year mission to asteroid 162173 Ryugu. This week’s Earth flyby will boost the spacecraft an additional 1.6 kilometers per second to an outbound velocity towards its target of 31.9 kilometers per second post-flyby.
Like its predecessor, Hayabusa-2 is a sample return mission. Unlike the original Hayabusa, however, Hayabusa-2 is more ambitious, also carrying the MASCOT (Mobile Asteroid Surface Scout) lander and an explosive seven kilogram impactor. Hayabusa-2 will deploy a secondary camera in orbit to watch the detonation and will briefly touch down at the impact site to collect material.
If all goes as planned, Hayabusa-2 will return to Earth in late 2020.
NASA has its own future asteroid sample return mission planned, named OSIRIS-REx. This mission will launch in September of next year to rendezvous with asteroid 101955 Bennu in September 2019 and return to Earth in September 2023.
We’re entering the golden age of asteroid exploration, for sure. And this all comes about as the U.S. authorized asteroid mining just last week (or at least, as stated, ‘asteroid utilization’) under the controversial U.S. Commercial Space Launch Competitiveness Act. But the original Hayabusa mission brought back mere micro-meter-sized dust grains, highlighting just how difficult asteroid mining is using present technology…
Perhaps, for now, its more cost effective to simply wait for the asteroids to come to us as meteorites and just scoop ’em up. We’ll be keeping an eye out over the next few days for images of Hayabusa-2 as it speeds by, and more postcards of the Earth-Moon system from the spacecraft as it heads towards its 2018 rendezvous with destiny.
In the wake of NASA’s supremely successful inaugural test flight of the Oriondeep space capsule on the EFT-1 mission in Dec. 2014, NASA is beefing up the critical thermal protection system (TPS) that will protect astronauts from the searing heats experienced during reentry as the human rated vehicle plunges through the Earth’s atmosphere after returning from ambitious expeditions to the Moon and beyond.
Based in part on lessons learned from EFT-1, engineers are refining Orion’s heat shield to enhance the design, ease manufacturing procedures and significantly strengthen is heat resistant capabilities for the far more challenging space environments and missions that lie ahead later this decade and planned further out in the future as part of NASA’s agency-wide ‘Journey to Mars’ initiative to send humans to the Red Planet in the 2030s.
After years of construction, the first of 18 primary flight mirrors has been installed onto NASA’s James Webb Space Telescope (JWST) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, signifying the start of the final assembly phase for the mammoth observatory that will eventually become the most powerful telescope ever sent to space.
The milestone first mirror installation was achieved this week just ahead of the Thanksgiving holiday as the engineering team, working inside the massive clean room at NASA Goddard, used a robotic arm to precisely lift and lower the gold coated mirror into place on the observatory’s critical mirror holding backplane assembly.
NASA took another big step on the path to propel our astronauts back to deep space and ultimately on to Mars with the long awaited decision to formally restart production of the venerable RS-25 engine that will power the first stage of the agency’s mammoth Space Launch System (SLS) heavy lift rocket, currently under development.
Aerojet Rocketdyne was awarded a NASA contract to reopen the production lines for the RS-25 powerplant and develop and manufacture a certified engine for use in NASA’s SLS rocket. The contract spans from November 2015 through Sept. 30, 2024.
The SLS is the most powerful rocket the world has ever seen and will loft astronauts in the Orion capsule on missions back to the Moon by around 2021, to an asteroid around 2025 and then beyond on a ‘Journey to Mars’ in the 2030s – NASA’s overriding and agency wide goal. The first unmanned SLS test flight is slated for late 2018.
The core stage (first stage) of the SLS will initially be powered by four existing RS-25 engines, recycled and upgraded from the shuttle era, and a pair of five-segment solid rocket boosters that will generate a combined 8.4 million pounds of liftoff thrust, making it the world’s most powerful rocket ever.
The newly awarded RS-25 engine contract to Sacramento, California based Aerojet Rocketdyne is valued at 1.16 Billion and aims to “modernize the space shuttle heritage engine to make it more affordable and expendable for SLS,” NASA announced on Nov. 23. NASA can also procure up to six new flight worthy engines for later launches.
“SLS is America’s next generation heavy lift system,” said Julie Van Kleeck, vice president of Advanced Space & Launch Programs at Aerojet Rocketdyne, in a statement.
“This is the rocket that will enable humans to leave low Earth orbit and travel deeper into the solar system, eventually taking humans to Mars.”
The lead time is approximately 5 or 6 years to build and certify the first new RS-25 engine, Van Kleek told Universe Today in an interview. Therefore NASA needed to award the contract to Aerojet Rocketdyne now so that its ready when needed.
The RS-25 is actually an upgraded version of former space shuttle main engines (SSMEs) originally built by Aerojet Rocketdyne.
The reusable engines were used with a 100% success rate during NASA’s three decade-long Space Shuttle program to propel the now retired shuttle orbiters to low Earth orbit.
Those same engines are now being modified for use by the SLS on missions to deep space starting in 2018.
But NASA only has an inventory of 16 of the RS-25 engines, which is sufficient for a maximum of the first four SLS launches only. Although they were reused numerous times during the shuttle era, they will be discarded after each SLS launch.
And since the engines cannot be recovered and reused as during the shuttle era, a brand new set of RS-25s will have to be manufactured from scratch.
Therefore, the engine manufacturing process can and will be modernized and significantly streamlined – using fewer part and welds – to cut costs and improve performance.
“The RS-25 engines designed under this new contract will be expendable with significant affordability improvements over previous versions,” added Jim Paulsen, vice president, Program Execution, Advanced Space & Launch Programs at Aerojet Rocketdyne. “This is due to the incorporation of new technologies, such as the introduction of simplified designs; 3-D printing technology called additive manufacturing; and streamlined manufacturing in a modern, state-of-the-art fabrication facility.”
“The new engines will incorporate simplified, yet highly reliable, designs to reduce manufacturing time and cost. For example, the overall engine is expected to simplify key components with dramatically reduced part count and number of welds. At the same time, the engine is being certified to a higher operational thrust level,” says Aerojet Rocketdyne.
The existing stock of 16 RS-25s are being upgraded for use in SLS and also being run through a grueling series of full duration hot fire test firings to certify them for flight, as I reported previously here at Universe Today.
Among the RS-25 upgrades is a new engine controller specific to SLS. The engine controller functions as the “brain” of the engine, which checks engine status, maintains communication between the vehicle and the engine and relays commands back and forth.
Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen and liquid oxygen. For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.
They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.
The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.
NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.
The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about SLS, Orion, SpaceX, Orbital ATK Cygnus, ISS, ULA Atlas rocket, Boeing, Space Taxis, Mars rovers, Antares, NASA missions and more at Ken’s upcoming outreach events:
Dec 1 to 3: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Dec 8: “America’s Human Path Back to Space and Mars with Orion, Starliner and Dragon.” Amateur Astronomers Assoc of Princeton, AAAP, Princeton University, Ivy Lane, Astrophysics Dept, Princeton, NJ; 7:30 PM.