[/caption]
On the 75th anniversary of astronomer Carl Sagan’s birth, the Planetary Society announced their plans to sail a spacecraft on sunlight alone by the end of 2010. Called LightSail, the project will launch three separate spacecraft over the course of several years, beginning with LightSail-1, which will demonstrate that sunlight alone can propel a spacecraft in Earth orbit. LightSails 2 and 3, will travel farther into space.
Sagan, co-founder of the Planetary Society was a long-time advocate of solar sailing.
Lightsail-1 will fit into a volume of just three liters before the sails unfurl to fly on sunlight.
On today’s 365 Days of Astronomy podcast, Sagan’s widow and collaborator, Ann Druyan said this project is a “Wright Brothers Kitty Hawk-type” enterprise of inventing and proving a new way of moving through the cosmos.
“On one episode of Cosmos, we wrote ‘We have lingered too long on the shores of the cosmic ocean. It’s time to set sail for the stars,'” she said. “And that’s what I was thinking when it became clear that we had the resources to mount this expedition, that we are serious at The Planetary Society. And at Cosmos Studios, my company which provided the principal support for the first 10 years of this project, we’re really serious about giving our kids a future in which science and technology is used in its most wise and benign and forward-looking possible way. That’s why I’m so thrilled and I just think if Carl were alive he would have been absolutely overcome at the notion that The Planetary Society is mounting its own space program, let alone its own launch.”
The solar sail project was boosted by a one-million-dollar anonymous donation.
Taking advantage of the technological advances in micro- and nano-spacecraft over the past five years, The Planetary Society will build LightSail-1 with three Cubesat spacecraft. One Cubesat will form the central electronics and control module, and two additional Cubesats will house the solar sail module. Cameras, additional sensors, and a control system will be added to the basic Cubesat electronics bus.
Reflected light pressure, not the solar wind, propels solar sails. The push of photons against a mirror-bright surface can continuously change orbital energy and spacecraft velocity. LightSail-1 will have four triangular sails, arranged in a diamond shape resembling a giant kite. Constructed of 32 square meters of mylar, LightSail-1 will be placed in an orbit over 800 kilometers above Earth, high enough to escape the drag of Earth’s uppermost atmosphere. At that altitude the spacecraft will be subject only to the force of gravity keeping it in orbit and the pressure of sunlight on its sails increasing the orbital energy.
Lightsail-2 will demonstrate a longer duration flight to higher Earth orbits. LightSail-3 will go to the Sun-Earth Libration Point, L1, where solar sails could be permanently placed as solar weather stations, monitoring the geomagnetic storms from the Sun that potentially endanger electrical grids and satellite systems around Earth.
The Planetary Society’s attempt in 2005 to launch the world’s first solar sail, Cosmos 1, was scuttled when its launch vehicle, a Russian Volna rocket, failed to reach Earth orbit.
For more information, see the Planetary Society’s LightSail Page.