Gallery: Spacesuits Are Amazing Human-Protection Machines

NASA astronaut Greg Chamitoff during a 2011 spacewalk on the International Space Station. Reflected in his visor is NASA crewmate Mike Fincke. Both astronauts were mission specialists aboard shuttle mission STS-134. Credit: NASA

Did you know it’s been nearly 50 years since the first spacewalk? On March 18, 1965, Russian Alexei Leonov ventured from the safety of his Russian spacecraft for the first attempt for a person to survive “outside” in a spacesuit. While Leonov had troubles returning to the spacecraft, his brave effort set off a new era of spaceflight. It showed us it was possible for people to work in small spacesuits in space.

Think about what spacewalks have helped us accomplish since then. We’ve walked on the Moon. Constructed the International Space Station. Retrieved satellites. Even flew away from the space shuttle in a jetpack, for a couple of flights in the 1980s.

In this gallery, we’ve highlighted some of the more memorable images from American spacewalks over the years to honor a new Smithsonian Air and Space exhibit opening today (Jan. 8).

Chris Cassidy with Earth as a backdrop during the EVA on May 11, 2013. Credit: NASA.
Chris Cassidy with Earth as a backdrop during the EVA on May 11, 2013. Credit: NASA.
Ed White did the first American spacewalk in 1965. Obviously, he wore a spacesuit. Credit: NASA
Ed White did the first American spacewalk in 1965. Obviously, he wore a spacesuit. Credit: NASA
"Knocking on the door to come back in from space after yesterday's spacewalk," said Ron Garan via Twitter. Credit: NASA
“Knocking on the door to come back in from space after yesterday’s spacewalk,” said Ron Garan via Twitter. Credit: NASA
Astronaut Eugene Cernan from Apollo 17, the last mission to the Moon (NASA)
Astronaut Eugene Cernan from Apollo 17, the last mission to the Moon (NASA)
Astronaut Drew Feustel reenters the space station after completing an 8-hour, 7-minute spacewalk at on  Sunday, May 22, 2011. He and fellow spacewalker Mike Fincke conducted the second of the four EVAs during the STS-134 mission. Credit: NASA
Astronaut Drew Feustel reenters the space station after completing an 8-hour, 7-minute spacewalk at on Sunday, May 22, 2011. He and fellow spacewalker Mike Fincke conducted the second of the four EVAs during the STS-134 mission. Credit: NASA
NASA astronaut Garrett Reisman takes a self-portrait visor while participating in the first of three spacewalks. Credit: NASA
NASA astronaut Garrett Reisman takes a self-portrait visor while participating in the first of three spacewalks. Credit: NASA
Manned Maneuvering Unit
NASA Astronaut Bruce McCandless flying in the Manned Maneuvering Unit in 1984. Image Credit: NASA
Astronaut Richard Arnold during the mission's first spacewalk.  Credit: NASA
Astronaut Richard Arnold during the mission’s first spacewalk. Credit: NASA
Dust flies from the tires of a moon buggy, driven by Apollo 17 astronaut Gene Cernan. These "rooster-tails" of dust caused problems. Credit: NASA
Dust flies from the tires of a moon buggy, driven by Apollo 17 astronaut Gene Cernan. These “rooster-tails” of dust caused problems. Credit: NASA

Last Minute Scrub for SpaceX Dragon Launch; Try Again Friday for Historic 1st Stage Landing

Falcon 9 and Dragon on the launchpad Cape Canaveral Air Force Station in Florida. SpaceX will try again on January 9 to launch and attempt an historic first stage landing on a floating ocean platform. Credit: SpaceX.

An actuator that was “behaving strangely” on the SpaceX Falcon 9’s upper stage caused a last minute scrub for Tuesday’s attempt to launch a Dragon capsule to the International Space Station, as well as the first try at an historic first stage landing on a floating platform in the Atlantic Ocean.


SpaceX will try again on Friday, January 9, 2014 at 5:09 a.m. EST. Like today’s attempt, there will be only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force further delays.

This is the commercial space company’s fifth resupply mission to the ISS and the unmanned cargo freighter is loaded with more than 5,108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The “experiment” that has attracted the most attention, however, is the attempt to land the first stage of the two-stage rocket on a floating platform in the Atlantic Ocean, approximately 320 km (200 miles) off the coast of Florida.

This is the first attempt at such a landing. SpaceX has conducted numerous successful soft landing tests on land, and done several touchdowns on the ocean’s surface.

Elon Musk has estimated the odds of success at the landing attempt at about 50% at best.

“It’s an experiment,” said Hans Koenigsmann, VP of Mission Assurance at SpaceX, speaking at a media briefing on Jan. 5 at the Kennedy Space Center. “There’s a certain likelihood that this will not work out right, that something will go wrong.” He also added that the landing on the off shore barge is just a secondary objective of SpaceX, not NASA.

Many analysts say a successful landing maneuver would mark a significant step toward making rockets more reusable, which would help cut costs. But others caution that even if this first attempt is successful, we shouldn’t expect to see regular airline-like reuse and large cost drops anytime soon.

Amazing Imagery Captures Plummeting Chinese Rocket Seen by Villagers

The debris of Long March 3A rocket carrier is falling above southwest China's Guizhou province on December 31, 2014. Photo: Chinanews.com

Amazing images of falling rocket debris from a spent Chinese booster were captured in the final moments of its plummet back to Earth outside a remote village located in southwest China.

The images were taken by a photo journalist during the final seconds of the descent of the first stage of the Long March 3A rocket carrier as it was crashing to the ground by the village of Gaopingsi in southwest China’s Guizhou province on December 31, 2014.

Local villagers soon gathered around the rocket crash debris.

The rocket incident and images were featured online by the state-run China New Service (CNS) website. Checkout the photo gallery herein.

First stage debris of Long March 3A rocket carrier crashes outside Gaopingsi village of southwest China's Guizhou province on December 31, 2014. Photo: Chinanews.com
First stage debris of Long March 3A rocket carrier crashes outside Gaopingsi village of southwest China’s Guizhou province on December 31, 2014. Photo: Chinanews.com

“A journalist captured the moment the debris was falling across the sky,” according to CNS.

No injuries or damage to the local village was reported.

“The landing did not influence the local villagers or bring any damages.”

The Long March 3A rocket debris stems from the successful launch of a Chinese meteorological satellite, some minutes earlier at 9:02 am local time on Wednesday, December 31, 2014.

Villagers gather around the debris of Long March 3A rocket carrier on December 31, 2014. Photo: Chinanews.com
Villagers gather around the debris of Long March 3A rocket carrier on December 31, 2014. Photo: Chinanews.com

The photographer and local villagers made their way to the crash site and captured spectacular up close photos of the first stage rocket, engine and related debris that had fallen in a heavily forested area.

Chinese security officials eventually arrived, evacuated the villagers and cordoned off the area.

Soldiers and police arrive at Gaopingsi village of southwest China's Guizhou province on December 31, 2014, to carry the debris of Long March 3A rocket carrier away. Photo: Chinanews.com
Soldiers and police arrive at Gaopingsi village of southwest China’s Guizhou province on December 31, 2014, to carry the debris of Long March 3A rocket carrier away. Photo: Chinanews.com

The rocket and Fengyun-II 08 satellite lifted off from the Xichang Satellite Launch Center in southwest China’s Sichuan province.

Photo: Chinanews.com
Photo: Chinanews.com

Fengyun-II 08 successfully achieved orbit. It will collect meteorological, maritime and hydrological data and transmit information that will be used for weather forecasting and environmental monitoring according to a CCTV report.

Since the Long March rockets blast off from China’s interior in Sichuan province, they flies over long swathes of land area and near some populated areas and occasional fall nearby and can occasionally cause damage.

Photo: Chinanews.com
Photo: Chinanews.com

The situation is similar with Russian rockets launching from Baikonur in Kazahzstan.

By contrast, US and European rockets take off from coastal areas towards oceans. They avoid most populated areas, but not all. The flight termination system is required to protect nearby coastal towns in case of wayward rockets like the Oct. 28 failure of the Orbital Sciences Antares rocket which exploded seconds after blastoff.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Good Morning, Space Station … A Dragon Soars Soon!

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Good Morning, Space Station!

It’s sunrise from space – one of 16 that occur daily as the massive lab complex orbits the Earth about every 90 minutes while traveling swiftly at about 17,500 mph and an altitude of about 250 miles (400 kilometers).

Just stare in amazement at this gorgeous sunrise view of “Our Beautiful Earth” taken earlier today, Jan. 3, 2015, aboard the International Space Station (ISS) by crewmate and NASA astronaut Barry “Butch” Wilmore.

And smack dab in the middle is the Canadian-built robotic arm that will soon snatch a soaring Dragon!

Wilmore is the commander of the ISS Expedition 42 crew of six astronauts and cosmonauts hailing from three nations: America, Russia and Italy.

He is accompanied by astronauts Terry Virts from NASA and Samantha Cristoforetti from the European Space Agency (ESA) as well as by cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

All told the crew of four men and two women see 16 sunrises and 16 sunsets each day. During the daylight periods, temperatures reach 200 ºC, while temperatures plunge drastically during the night periods to -200 ºC.

Here’s another beautiful ISS sunset view captured on Christmas by Terry Virts:

Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying "Sunrise on Christmas morning - better than any present I could ask for!!!!"  Credit: NASA/Terry Virts
Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying “Sunrise on Christmas morning – better than any present I could ask for!!!!” Credit: NASA/Terry Virts

Virts tweeted the picture and wrote: “Sunrise on Christmas morning – better than any present I could ask for!!!!”

Another treasure from Virts shows the many splendid glorious colors of Earth seen from space but not from the ground:

“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry
Sunset Over the Gulf of Mexico
“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry

“In space you see intense colors, shades of blue that I’d never seen before,” says Virts from his social media accounts (http://instagram.com/astro_terry/) (http://instagram.com/iss).

“It’s been said a thousand times but it’s true: There are no borders that you can see from space, just one beautiful planet,” he says. “If everyone saw the Earth through that lens I think it would be a much better place.”

And many of the crews best images are taken from or of the 7 windowed Cupola.

Here’s an ultra cool shot of Butch waving Hi!

“Hi from the cupola!” #AstroButch.  Credit: NASA/ISS
“Hi from the cupola!” #AstroButch. Credit: NASA/ISS

And they all eagerly await the launch and arrival of a Dragon! Indeed it’s the SpaceX cargo Dragon currently slated for liftoff in three days on Tuesday, Jan. 6.

Weather odds are currently 60% favorable for launch of the unmanned space station resupply ship on the SpaceX CRS-5 mission.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

CRS-5 is slated to blast off at 6:20 a.m. EST Tuesday, Jan. 6, 2015, atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

NASA Television live launch coverage begins at 5 a.m. EST.

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the astronauts maneuvering the 57 foot-long (22 m) Canadian built robotic arm.

Remember that you can always try and catch of glimpse of the ISS flying overhead by checking NASA’s Spot the Station website with a complete list of locations.

It’s easy to plug in and determine visibilities in your area worldwide.

And don’t forget to catch up on the Christmas holiday and New Year’s 2015 imagery and festivities from the station crews in my recent stories – here, here and here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Happy New Year! Celebrating from space with @AstroTerry.  Credit: NASA/Terry Virts
Happy New Year! Celebrating from space with @AstroTerry. Credit: NASA/Terry Virts
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

Our Beautiful Earth – Happy New Year Photos and Greetings from the ISS Crew

Spectacular View of the Alps From Space! Expedition 42 Flight Engineer Samantha Cristoforetti of the European Space Agency (ESA) took this photograph of the Alps from the International Space Station. She wrote, "I'm biased, but aren't the Alps from space spectacular? What a foggy day on the Po plane, though! #Italy" Credit: NASA/ESA/Samantha Cristoforetti

Spectacular View of the Alps From Space!
Expedition 42 Flight Engineer Samantha Cristoforetti of the European Space Agency (ESA) took this photograph of the Alps from the International Space Station. She wrote, “I’m biased, but aren’t the Alps from space spectacular? What a foggy day on the Po plane, though! #Italy” Credit: NASA/ESA/Samantha Cristoforetti
Updated with more images[/caption]

As we say goodbye to 2014 and ring in New Year 2015, the Expedition 42 crew living and working aboard the International Space Station enjoys the new gallery of images they’ve sent back of “Our Beautiful Earth.”

The current six person crew includes astronauts and cosmonauts from three nations – America, Russia, and Italy – and the four men and two women are celebrating New Year’s 2015 aboard the massive orbiting lab complex.

Happy New Year! Celebrating from space with @AstroTerry.  Credit: NASA/Terry Virts
Happy New Year! Celebrating from space with @AstroTerry. Credit: NASA/Terry Virts

They comprise Expedition 42 Commander Barry “Butch” Wilmore and Terry Virts from NASA, Samantha Cristoforetti from the European Space Agency (ESA), and cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

Beauty everywhere! Flying from the Mediterranean to the Caspian Sea, this appeared through the clouds.#HelloEarth.  Credit: NASA/ESA/Samantha Cristoforetti
Beauty everywhere! Flying from the Mediterranean to the Caspian Sea, this appeared through the clouds.#HelloEarth. Credit: NASA/ESA/Samantha Cristoforetti

The ISS has been continuously occupied by humans for 15 years. And they are joined by Robonaut 2 who recently got legs.

This area saw some serious action about 350 million years ago! Gweni-Fada meteorite crater in #Chad. Credit: NASA/ESA/Samantha Cristoforetti
This area saw some serious action about 350 million years ago! Gweni-Fada meteorite crater in #Chad. Credit: NASA/ESA/Samantha Cristoforetti

Terry Virts and Samantha Cristoforetti have been especially prolific in picture taking and posting to social media for us all to enjoy the view while speeding merrily along at 17,500 mph from an altitude of about 250 miles (400 kilometers) above Earth.

Here’s a special New Year video greeting from Wilmore and Virts:

Video Caption: Happy New Year from the International Space Station from NASA astronauts Barry “Butch” Wilmore and Terry Virts. Credit: NASA

“Happy New Year from the International Space Station!” said Wilmore.

“We figure that we will be over midnight somewhere on the Earth on New Year’s for 16 times throughout this day. So we plan to celebrate New Year’s 16 times with our comrades and our people down on Earth.”

No sunsets until Jan 4th- we are in a "high beta" orbit now, so this is as dark as it gets.  Credit: NASA/Terry Virts
No sunsets until Jan 4th- we are in a “high beta” orbit now, so this is as dark as it gets. Credit: NASA/Terry Virts

“We wish everybody a happy, healthy, and prosperous 2015 as we get the awesome privilege of celebrating New Year’s here on the space station with our six station crewmates,” added Virts!

“We’ll enjoy our 16 New Year’s celebrations here.”

Part of the #Aral sea peaking through the clouds as we flew into #Kazakhstan! #HelloEarth.  Credit: NASA/ESA/Samantha Cristoforetti
Part of the #Aral sea peaking through the clouds as we flew into #Kazakhstan! #HelloEarth. Credit: NASA/ESA/Samantha Cristoforetti

They plan to celebrate the dawn of 2015 with fruit juice toasts, NASA reports.

The year 2015 starts officially for the station crew at midnight by the Universal Time Clock (UTC), also known as Greenwich Mean Time (GMT), in London, or at 7 p.m. EST Dec. 31.

If I couldn't be in space right now I'd want to be here- #Hawaii.  Credit: NASA/Terry Virts
If I couldn’t be in space right now I’d want to be here- #Hawaii. Credit: NASA/Terry Virts

New Year’s Day 2015 is a day off for the crew.

And I’m certain they’ll be gazing out the windows capturing more views of “Our Beautiful Earth!”

42 è la risposta! // 42 is the answer! #Expedition42 Guide to the galaxy. Credit: @NASA_Astronauts #AstroButch
42 è la risposta! // 42 is the answer! #Expedition42 Guide to the galaxy. Credit: @NASA_Astronauts #AstroButch

And don’t forget to catch up on the Christmas holiday imagery and festivities from the station crews in my recent stories – here and here.

#NewYork NewYork! Can almost see the Statue of Liberty. Which is, by the way, #UNESCO#WorldHeritage! Credit: NASA/ESA/Samantha Cristoforetti
#NewYork NewYork! Can almost see the Statue of Liberty. Which is, by the way, #UNESCO#WorldHeritage! Credit: NASA/ESA/Samantha Cristoforetti

Be sure to remember that you can always try and catch of glimpse of the ISS flying overhead by checking NASA’s Spot the Station website with a complete list of locations.

It’s easy to plug in and determine visibilities in your area worldwide. And try to shoot a time-lapse view like mine below.

ISS streaks over Princeton, NJ - time lapse image.  Credit: Ken Kremer
ISS streaks over Princeton, NJ – time lapse image. Credit: Ken Kremer

Meanwhile the crew continues science operations and preparations for next week’s arrival of the next unmanned space station resupply ship on the SpaceX CRS-5 mission.

CRS-5 is slated to blast off atop a SpaceX Falcon 9 rocket on Jan. 6 from Cape Canaveral Air Force Station in Florida.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to the ISS after completing a successful static fire test on Dec. 19 ahead of the planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth.  Credit: NASA/ESA
ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA, and Terry Virts, NASA, send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

Best Space Photos Of 2014 Bring You Across The Solar System

A raw shot from the front hazcam of NASA's Opportunity rover taken on Sol 3757, on Aug. 19, 2014. Credit: NASA/JPL-Caltech

Feel like visiting a dwarf planet today? How about a comet or the planet Mars? Luckily for us, there are sentinels across the Solar System bringing us incredible images, allowing us to browse the photos and follow in the footsteps of these machines. And yes, there are even a few lucky humans taking pictures above Earth as well.

Below — not necessarily in any order — are some of the best space photos of 2014. You’ll catch glimpses of Pluto and Ceres (big destinations of 2015) and of course Comet 67P/Churyumov–Gerasimenko (for a mission that began close-up operations in 2014 and will continue next year.) Enjoy!

The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Philae that could! The lander photographed during its descent by Rosetta. Credit: ESA/Rosetta/MPS for Rosetta Team/
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
The Aurora Borealis seen from the International Space Station on June 28, 2014, taken by astronaut Reid Wiseman. Credit: Reid Wiseman/NASA.
NASA's Mars Curiosity Rover captures a selfie to mark a full Martian year -- 687 Earth days -- spent exploring the Red Planet.  Curiosity Self-Portrait was taken at the  'Windjana' Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm.  Credit: NASA/JPL-Caltech/MSSS
NASA’s Mars Curiosity Rover captures a selfie to mark a full Martian year — 687 Earth days — spent exploring the Red Planet. Curiosity Self-Portrait was taken at the ‘Windjana’ Drilling Site in April and May 2014 using the Mars Hand Lens Imager (MAHLI) camera at the end of the roboic arm. Credit: NASA/JPL-Caltech/MSSS
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn's intense magnetic environment. Credit: NASA/JPL/Space Science Institute
This global map of Dione, a moon of Saturn, shows dark red in the trailing hemisphere, which is due to radiation and charged particles from Saturn’s intense magnetic environment. Credit: NASA/JPL/Space Science Institute
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
Comet Siding Spring shines in ultraviolet in this image obtained by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Credit: Laboratory for Atmospheric and Space Physics/University of Colorado; NASA
This "movie" of Pluto and its largest moon, Charon b yNASA's New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies - resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto's surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
This “movie” of Pluto and its largest moon, Charon b yNASA’s New Horizons spacecraft taken in July 2014 clearly shows that the barycenter -center of mass of the two bodies – resides outside (between) both bodies. The 12 images that make up the movie were taken by the spacecraft’s best telescopic camera – the Long Range Reconnaissance Imager (LORRI) – at distances ranging from about 267 million to 262 million miles (429 million to 422 million kilometers). Charon is orbiting approximately 11,200 miles (about 18,000 kilometers) above Pluto’s surface. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
The Mars Reconnaissance Orbiter took this image of a "circular feature" estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
The Mars Reconnaissance Orbiter took this image of a “circular feature” estimated to be 1.2 miles (2 kilometers) in diameter. Picture released in December 2014. Credit: NASA/JPL-Caltech/University of Arizona
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Jets of gas and dust are seen escaping comet 67P/C-G on September 26 in this four-image mosaic. Click to enlarge. Credit: ESA/Rosetta/NAVCAM
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

Station Astronauts Send Christmas Greetings from the International Space Station

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA
Story/pics expanded. Send holiday tweet to crew below![/caption]

There is a long tradition of Christmas greetings from spacefarers soaring around the High Frontier and this year is no exception!

The Expedition 42 crew currently serving aboard the International Space Station has decorated the station for the Christmas 2014 holiday season and send their greetings to all the people of Earth from about 240 miles (400 km) above!

“Merry Christmas from the International Space Station!” said astronauts Barry Wilmore and Terry Virts of NASA and Samantha Cristoforetti of ESA, who posed for the group shot above.

Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree.  Credit: NASA/ESA
Italian astronaut Samantha Cristoforetti is in the holiday spirit as the station is decorated with stockings for each crew member and a tree. Credit: NASA/ESA

“It’s beginning to look like Christmas on the International Space Station,” said NASA in holiday blog update.

“The stockings are out, the tree is up and the station residents continue advanced space research to benefit life on Earth and in space.”

And the six person crew including a trio of Russian cosmonauts, Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov who celebrate Russian Orthodox Christmas, are certainly hoping for and encouraging a visit from Santa. Terry Virts even tweeted a picture of the special space style milk and cookies awaiting Santa and his Reindeer for the imminent arrival!

“No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed,” tweeted Virts.

No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed.  Credit: NASA/Terry Virts
No chimney up here- so I left powdered milk and freeze dried cookies in the airlock. Fingers crossed. Credit: NASA/Terry Virts

And here’s a special Christmas video greeting from Wilmore and Virts:

Video Caption: Aboard the International Space Station, Expedition 42 Commander Barry Wilmore and Flight Engineer Terry Virts of NASA offered their thoughts and best wishes to the world for the Christmas holiday during downlink messages from the orbital complex on Dec. 17. Wilmore has been aboard the research lab since late September and will remain in orbit until mid-March 2015. Virts arrived at the station in late November and will stay until mid-May 2015. Credit: NASA

“We wish you all a Merry Christmas and Happy New Year. Christmas for us is a time of worship. It’s a time that we think back to the birth of what we consider our Lord. And we do that in our homes and we plan to do the same thing up here and take just a little bit of time just to reflect on those topics and, also, just as the Wise Men gave gifts, we have a couple of gifts,” Wilmore says in the video.

“It’s such an honor and so much fun to be able to celebrate Christmas up here. This is definitely a Christmas that we’ll remember, getting a chance to see the beautiful Earth,” added Virts. “Have fun with your family. Merry Christmas!”

And you can send a holiday tweet to the crew – here:
holiday-tweet-banner-02

Meanwhile the crew is still hard at work doing science and preparing for the next space station resupply mission launch by SpaceX from Cape Canaveral, Florida.

A SpaceX Falcon 9 rocket is now set to blastoff on Jan. 6, 2015 carrying the Dragon cargo freighter on the CRS-5 mission bound for the ISS.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

A second static fire test of the SpaceX Falcon 9 went the full duration and cleared the path for the Jan. 6 liftoff attempt.

Among the science studies ongoing according to NASA are:

“Behavioral testing for the Neuromapping study to assess changes in a crew member’s perception, motor control, memory and attention during a six-month space mission. Results will help physicians understand brain structure and function changes in space, how a crew member adapts to returning to Earth and develop effective countermeasures.”

“Another study is observing why human skin ages at a quicker rate in space than on Earth. The Skin B experiment will provide scientists a model to study the aging of other human organs and help future crew members prepare for long-term missions beyond low-Earth orbit.”

Merry Christmas to All!

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Exploring Venus By Airship: Cool Concept, But Certainly Not New

An artist concept of the view from an airship orbiting Venus. Credit: NASA Langley HAVOC team.

Venus presents a special challenge to space explorers. Yes, there is a surface, but hellish temperatures and atmospheric pressure on the surface of Venus has a tendency to crush spacecraft fairly quickly. Short of building a submarine-rated surface explorer, maybe there’s a better way to look at the hothouse planet? A newly proposed NASA concept suggests using airships. Yes, airships with people in them.

But as you will see below, balloons and airships have been discussed extensively in the past decade by NASA and the Europeans as the best way of exploring Venus without needing to touch its hellish surface.

Venus may seem nothing but a distraction to an agency that is talking about exploring Mars in the 2030s (with Orion’s recent uncrewed test being the first advertised step of that, although critics say it won’t get us to the Red Planet). Leaving that aside, however, exploring Venus by balloon is not a new idea at all, even within NASA. The backers of the High Altitude Venus Operational Concept (HAVOC) even argue we should head to Venus before Mars, as one of the co-leads recently told Universe Today.

“A human mission to Venus is not on a lot of people’s radar, but we’ve really enjoyed working on the concepts for this mission,” said Langley’s Chris Jones, project co-lead, in an interview with Universe Today’s Nancy Atkinson. “This was an internal study: what does the future of humankind in space look like? Frankly, we see Venus as potentially no later than the second planetary destination that humans might go to, after Mars or even before Mars.”

Artist's conception of the High Altitude Venus Operational Concept (HAVOC) mission, a far-out concept being developed by NASA, approaching the planet. Credit: NASA Langley Research Center/YouTube (screenshot)
Artist’s conception of the High Altitude Venus Operational Concept (HAVOC) mission, a far-out concept being developed by NASA, approaching the planet. Credit: NASA Langley Research Center/YouTube (screenshot)

Why? Jones explained that because it takes a shorter time to get to Venus, that makes it a “stepping stone or practice run” to get humans to Mars. “The best would be a long lived surface lander, but technology issues for surface robotic missions are pretty significant, and a human mission to surface is nearly insurmountable. What’s left is a good platform for a science mission at mid-level altitudes, and it paints a good picture for a human mission in the atmosphere at 50 kilometers.”

The proposed flight profile of the HAVOC airship at Venus.  Credit: Space Mission Analysis Branch, NASA Langley Research Center.
The proposed flight profile of the HAVOC airship at Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

The clouds of Venus, Jones said, present an ideal spot for humans to roam from a spacecraft. The conditions at 50 kilometers (31 miles) above the surface are about the same pressure and atmosphere as Earth.

“Air itself is a lifting gas at those altitudes,” he added, “so you don’t have to bring some ridiculous supply of helium for this to work. And the rest of the environmental parameters at 50 kilometers are actually quite nice: the gravity is about the same as on Earth’s surface, the atmospheric pressure is about the same as Earth, and we can potentially manufacture a significant amount of that air by processing carbon dioxide. These are some of the facts we saw early on that inspired us to do this.”

There also would be more solar power and protection from radiation than Mars, and the temperature — although fairly hot — would be possible to account for fairly easily in spacecraft designs.

Jones provided some details on how the crew would spend about 30 days exploring the planet after a journey there and back (440 days total). Bear in mind that the mission is just in the early stages of even thinking about development. Cost, timeline, approvals and many other hurdles would need to be overcome before it could even become a reality.

Details of the proposed HAVOC airship mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.
Details of the proposed HAVOC airship mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

“The big parameters of Venus’ atmosphere is the big longitudinal winds,” Jones said. “If you just rode them, it would take you about 110 hours to circle the planet. The other component of winds would push you towards the poles. In order to stay near the equator where there is less turbulence, the airship would ride the longitudinal winds while using a propulsion system to counter those winds pushing you towards the poles.”

The concept arose from science objectives for the planet out of NASA’s Venus Exploration Analysis Group, Jones said, whose aims include understanding the atmosphere and its interaction with the surface. NASA’s Langley Research Center also has human objectives they considered, such as showing how people can work in deep space and develop advanced technologies to accomplish that.

The proposed Venus exploration plan for HAVOC. Credit: Space Mission Analysis Branch, NASA Langley Research Center.
The proposed Venus exploration plan for HAVOC. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

The HAVOC mission would start with a series of phased exploration sorties. The first phase would be examining the Venusian atmosphere with a robotic mission, and the second would be crewed ride to orbit that would include deploying an uncrewed robotic airship in the atmosphere.

The third phase is the 30-day mission described above, while the fourth phase could potentially be as long as a year. If it gets to a Phase 5, that would be a “permanent presence in Venus’ atmosphere”, Jones said.

A size comparison of ships for the proposed HAVOC mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.
A size comparison of ships for the proposed HAVOC mission to Venus. Credit: Space Mission Analysis Branch, NASA Langley Research Center.

Of note: balloons have been discussed before within NASA, particularly by Venus exploration advocate Geoffrey Landis of NASA Glenn, and Jones told Universe Today that this new team found much inspiration from Landis’ previous work.

Universe Today interviewed Landis in 2008 about missions he proposed about human-colony airships and uncrewed solar-powered airplanes. And in this 2010 study, he suggested three ideas for exploring the surface using uncrewed low-altitude balloons. One would skim the clouds around 25 kilometers (15.6 miles) and two other concepts (more rigid, naturally), would fly about 5 kilometers (3 miles) high. This was presented at an American Institute of Aeronautics and Astronautics meeting that year.

The remaining core of the High Altitude Venus Operational Concept (HAVOC), a far-out mission being developed by NASA, in this artist's concept. Credit: NASA Langley Research Center/YouTube (screenshot)
The remaining core of the High Altitude Venus Operational Concept (HAVOC), a far-out mission being developed by NASA, in this artist’s concept. Credit: NASA Langley Research Center/YouTube (screenshot)

“A notable advantage of the carbon dioxide atmosphere of Venus is that this allows a much wider range of lifting gasses for a balloon; not merely the hydrogen or helium usually used for terrestrial balloons,” Landis wrote in the paper. “Oxygen and nitrogen, in fact, are lifting gasses in the Venus atmosphere (although not good ones). At the altitudes considered, two other lifting gasses are water (which is a gas at the temperatures considered) and ammonia.”

Landis was also not deterred by harsh surface conditions. While Venus’ surface is difficult — its  480 Celsius (900 Fahrenheit) thick atmosphere destroyed the Soviet Venera probes in minutes — he’s secured early-stage NASA funding for a robotic landsailing rover concept nicknamed “Zephyr”. “Sailing on Venus! How cool is that? The project will have an exceptional public engagement factor,” the description page for the Venus Landsailing Rover reads.

In a nutshell, Glenn has created electronics that can continue to function in temperatures similar to what are found on the surface. Simulations also show that solar cells would work, albeit at reduced efficiency. Hence the idea to use a heavily-reinforced landsail to take advantage of Venus’ 100-times-more-pressure-than-Earth atmosphere at the surface. Wind speeds are less than a meter of second, but have terrific force behind them. And at least some of Venus appears to be flat, with rocks only a centimeter thick in pictures from Venera.

Artist's concept for a landsail rover on Mars, based on an idea by NASA's Geoffrey Landis. Credit: NASA
Artist’s concept for a landsail rover on Mars, based on an idea by NASA’s Geoffrey Landis. Credit: NASA

Balloons have also been considered by the European Space Agency, particularly in the form of an uncrewed Venus Entry Probe discussed in detail in this presentation by Surrey Satellite Technology Ltd. It would include a Low Venus Orbiter that would map the planet to complement closer-to-ground measurements, a Venus Relay Satellite that would send information from the balloon, and the “aerobot” itself.

“The aerobot consists of a long-duration balloon and gondola … that will analyze the Venusian middle cloud layer at an altitude of ~55 km, where the environment is relatively benign. The balloon will deploy a swarm of active ‘ballast’ micro-sondes, which, once deployed, will determine vertical profiles of the lower atmosphere,” the presentation reads. More detailed information is available from this 2004 ESA workshop presentation by Surrey and this ESA webpage, which says the study was completed in 2005.

Students have even explored Venusian balloon ideas, such as in the 2014 Summer School Alpbach cosponsored by the European Space Agency. An uncrewed idea called EvolVe suggests a joint orbiter and balloon mission to see how tectonic activity and volcanoes affected the surface of Venus, among other scientific goals. The balloon would hover in the same general region, about 50 to 60 km (31 miles to 37 miles),  and probe the surface using radar and other tools. It’s one of two concepts selected for further investigation that could lead to a science conference presentation and/or science journal publication.

Star Trekking: We Humans Can Beam Tools Into Space Without A Transporter

Expedition 42 astronaut Butch Wilmore holds up a 3-D-printed rachet, the first such tool made in space. Credit: NASA

In the 1960s, we thought the best way of sending stuff between Earth and space was through a transporter. These days, turns out all it takes is an e-mail and a special 3-D printer. The first tool created in space, a rachet, was made last week on the International Space Station using plans beamed from Earth. Now, we get to see if it actually works.

The printer has been active for a few weeks, making test items that had already been done on Earth. But for this particular item, manufacturer Made In Space chose to take an additional risk: creating a tool from plans that were done almost at the last minute, similar to how a real mission would work when astronauts have a sudden need for a part.

“Made In Space uplinked a design which did not exist when the printer was launched. In fact the ratchet was designed, qualified, tested, and printed in space in less than a week,” the company wrote on its blog.

NASA astronaut Butch Wilmore (Expedition 42 commander on the International Space Station) holds the first 3-D printed part made in space, which was created on Nov. 25, 2014. Credit: NASA
NASA astronaut Butch Wilmore (Expedition 42 commander on the International Space Station) holds the first 3-D printed part made in space, which was created on Nov. 25, 2014. Credit: NASA

And it wasn’t as simple as just sending up the plans and hoping for the best. NASA had to give the safety thumbs-up before it went up there. Also, the plans (once sent to the space station) were verified as okay to go by Made In Space engineers before the crew got the okay to print last week.

The rachet took about four hours to print in space, which is a heck of a lot faster than sitting around waiting for a cargo ship — especially when said ship is delayed, as what happened recently to the SpaceX Dragon that was supposed to launch on Friday (Dec. 19) and has now been pushed back to at least Jan. 6.

While the rachet could be of use for simple repairs in space, it won’t be staying up there long. Just as with all the other parts printed so far, it’s going to be sent back to Earth for analysis to make sure it can stand up to the rigors of a space mission. Made In Space will soon have a more robust printer going up to station, and wants to make sure all the kinks are worked out before then.

Source: Made In Space

NASA’s First Orion Crew Module Arrives Safely Back at Kennedy Space Center

Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – After a history making journey of more than 66,000 miles through space, ocean splash down and over 2700 mile cross country journey through the back woods of America, NASA’s pathfinding Orion crew capsule has returned to its home base at the Kennedy Space Center in Florida.

“The Orion mission was a spectacular success,” said Jules Schneider, Lockheed Martin Program manager for Orion at KSC, during a homecoming event attended by space journalists including Universe Today on Friday, Dec. 19, 2014.

“We achieved 85 of 87 test objectives,” noted Schneider. “Only an up righting air bag did not deploy fully after splashdown. And we are looking into that. Otherwise the mission went extremely well.”

Orion’s early homecoming was unexpected and a pleasant surprise since it hadn’t been expected until next week just prior to Christmas.

Orion flew on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that started NASA’s long road to send astronauts beyond Earth and eventually to Mars in the 2030s.

The media were able to see the entire Orion capsule from top to bottom, including the exposed, blackened and heat scorched heat shield which had to protect the vehicle from fiery reentry temperatures exceeding 4000 F (2200 C).

 Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com

Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Orion is being stored for now inside the Launch Abort System Facility (LASF)

“The heat shield worked extremely well and did its job,” Schneider told Universe Today.

Engineers took three samples from the 16.5 foot diameter heat shield and they are in for analysis.

“I don’t know if you can tell, we’ve actually taken a few core samples off the heat shield already and we’re looking at those,” said Schneider. “We will be removing the heat shield from this vehicle later in February so we will get an ever better look at it.”

One of the main objectives was to test the heat shield during the high speed atmospheric plummet of about 20000 mph (32000 kph) that reached approximately 85% of what astronauts will experience during a return from future voyages to Mars and Asteroids in the next decade and beyond.

“All of Orion’s system performed very well,” Schneider told me in an interview beside Orion.

“And the capsule used only about 90 pounds of its about 300 pounds of hydrazine propellant stored on board.”

“All of the separation events went beautifully and basically required virtually no maneuvering fuel to control the attitude of the capsule. The expected usage was perhaps about 150 pounds.”

“Therefore there is a lot more hydrazine fuel on board than we expected. And we had to be cautious in transporting Orion across the country.”

Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Lockheed Martin is the Orion prime contractor.

The Orion arrived module arrived back at KSC, Thursday afternoon after being hauled across our country mostly on back country roads, and with no publicity or fanfare, on an unmarked flat bed truck to minimize interaction with the public.

“It was like a black ops operation,” said one of the team members responsible to safely transporting Orion from Naval Base San Diego to KSC.

NASA obtained special permits to move Orion from all the states travelled between California and Florida.

“We didn’t want any publicity because the capsule was still loaded with residual toxic chemicals like ammonia and hydrazine.” These were used to power and fuel the capsule.”

Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

Watch for more details and photos later.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com