What a view! NASA’s Reid Wiseman and Butch Wilmore spacewalked successfully yesterday (Oct. 15) for more than 6.5 hours, replacing a faulty camera as well as a broken power regulator that was reducing the amount of power available on the International Space Station. The astronauts also shifted equipment to get ready for some bigger upgrades on station to prepare for commercial spacecraft arriving in 2017.
Check out the stunning pictures from the spacewalk below.
NASA invites you to send your name to Mars. And the adventure starts via the first Orion test flight dubbed Exploration Flight Test-1 (EFT-1) scheduled for blastoff on December 4, 2014, from Cape Canaveral in Florida.
Today NASA announced that the public can submit their names for inclusion on a dime-sized microchip that will travel on spacecraft voyaging to destinations beyond low-Earth orbit, including Mars.
Join over 170,000 others who have already signed up in just the first few hours!
Since the Orion EFT-1 mission is set to launch in less than two months, the deadline to submit your name is soon: Oct 31, 2014.
“NASA is pushing the boundaries of exploration and working hard to send people to Mars in the future,” said Mark Geyer, Orion Program manager, in a NASA statement.
“When we set foot on the Red Planet, we’ll be exploring for all of humanity. Flying these names will enable people to be part of our journey.”
How can you sign up to fly on Orion EFT-1? Is there a certificate?
NASA has made it easy to sign up and you can also print out an elegant looking ‘Boarding Pass’
Click on this weblink posted online by NASA today: http://go.usa.gov/vcpz
According to the websites counter, over 170,000 people have already signed up today!
And NASA says your journey doesn’t end with EFT-1!
“After returning to Earth, the names will fly on future NASA exploration flights and missions to Mars. With each flight, selected individuals will accrue more miles as members of a global space-faring society,” according to a NASA statement.
So, what are you waiting for?
Remember the deadline is Oct 31, 2014!
What are the goals of the Orion EFT-1 mission?
Orion will launch atop a Delta IV Heavy rocket from Space Launch Complex 37 on Cape Canaveral Air Force Station.
The two-orbit, four and a half hour EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years. It will test the avionics and electronic systems inside the Orion spacecraft.
Then the spacecraft will travel back through the atmosphere at speeds approaching 20,000 mph and temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.
Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.
Learn more about Orion, Space Taxis and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:
Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM
Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA
Virgin Galactic has finished yet another stepping-stone to its first commercial spaceflight. The New Mexico-based company sent SpaceShipTwo aloft on a test of the re-entry system Oct. 7, making a safe landing at the Mojave Air and Space Port.
The company is among a handful of firms competing to bring well-heeled tourists into suborbital space. There are more than 700 people signed up to take a flight on SpaceShipTwo, with tickets running at $250,000 per seat. The spacecraft is put into the air using a carrier aircraft called WhiteKnightTwo, then separates for a brief flight in space. Exact timing for the first flight has not been disclosed yet, but it is expected to be in the coming months.
“SpaceShipTwo is safely back on the ground after her 54th test flight, including her tenth test of the feather system,” wrote Virgin Galactic in a tweet yesterday (Oct. 7). “Coupled with several good, full duration ground tests of SS2’s rocket motor in recent weeks, today’s flight brings spaceflight closer.”
It’s been a long road to space for Virgin Galactic, which last week commemorated the 10th anniversary of the predecessor prototype spacecraft (SpaceShipOne) making a second flight into suborbital space Oct. 4, 2004, to win the Ansari X-Prize — the anniversary of Yuri Gagarin’s first human spaceflight in 1961.
The spacecraft was built by Scaled Composites and today is on display at the Smithsonian National Air and Space Museum in Washington, D.C. Scaled Composites founder Burt Rutan subsequently designed SpaceShipTwo, but has since retired.
Virgin Galactic founder Richard Branson has pushed back the first spaceflight of the new spacecraft several times over the years. In recent statements he has said he was hoping the spacecraft would be ready early next year, but in an NBC news report from last week he simply said SpaceShipTwo is “on the verge” of starting flights.
More pictures from yesterday’s test flight are below.
What happens when you send two prolific social media astronauts out on a spacewalk? The best photos ever. Reid Wiseman (NASA) and Alexander Gerst (European Space Agency) both participated in their first extra-vehicular activity yesterday, and sent back amazing pictures of what the view looked like outside their visors.
Their comments are also fun: “reasonably INSANE” and “learning to fly” are among the phrases they put on Twitter, which you can see in the photo gallery below. The spacewalkers accomplished the major task of yesterday’s spacewalk, placing a failed International Space Station pump module in a permanent location, and doing a couple of minor maintenance tasks.
And here’s a bonus for those who scrolled to the end of this post — the first Vine video posted real-time during a spacewalk! This comes courtesy of NASA’s account. Click on the video to access the audio, which is Reid Wiseman exclaiming on the view over southern South America.
The emergency launch abort system (LAS) has been installed on NASA’s pathfinding Orion crew capsule to prepare for its first launch – now just under two months away.
Technicians and engineers working inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center in Florida joined the LAS to the top of the Orion EFT-1 crew module on Friday, Oct. 3, 2014.
Attaching the LAS is one of the final component assembly steps leading up to the inaugural uncrewed liftoff of the state-of-the-art Orion EFT-1 spacecraft in December.
The maiden blastoff of Orion on the EFT-1 mission is slated for December 4, 2014 from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.
Indeed last week and this past month has been an extremely busy time for Orion’s launch preparations. And I’ve been present at KSC reporting first hand on many Orion processing events over the past few years.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was completed at KSC in September. I witnessed the rollout of the Orion crew module/service module (CM/SM) stack on Sept. 11, 2014 on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building and transport to the Payload Hazardous Servicing Facility (PHFS) for fueling. Read my Orion move story – here.
Running in parallel to processing of the Orion spacecraft is the processing of the triple barreled United Launch Alliance Delta IV Heavy. The Delta rocket assembly was completed by late September and detailed from my visit to the ULA Horizontal Integration Facility (HIF)- here.
The Delta rocket was moved to its Cape Canaveral launch pad overnight Sept 30 and hoisted at the pad on Oct. 1. Read my story – here.
“We’ve been working toward this launch for months, and we’re in the final stretch,” says former shuttle commander and Kennedy Space Center Director Bob Cabana.
The LAS stands at the very top of the Orion launch stack, bolted above the crew module, and it plays a critically important role to ensure crew safety.
In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.
For the EFT-1 mission, the LAS will be mostly inactive since no crew is aboard.
Thus the abort motors are inert and not filled with solid fuel propellant. However the jettison motors will be active in order to pull the LAS and Orion’s nose fairing away from the spacecraft just before Orion goes into orbit.
The LAS is one of the five primary components of the flight test vehicle for the EFT-1 mission and will be active on future Orion flights.
The Orion stack is scheduled to remain inside the LASF until mid-November. At that time when the Delta IV Heavy rocket is ready for integration with the spacecraft, Orion will be transported to pad 37 and hoisted atop the rocket.
The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first stage generates some 2 million pounds of liftoff thrust.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
“This mission is a stepping stone on NASA’s journey to Mars,” said NASA Associate Administrator Robert Lightfoot during the boosters unveiling earlier this year at the Cape. “The EFT-1 mission is so important to NASA. We will test the capsule with a reentry velocity of about 85% of what’s expected by [astronauts] returning from Mars.”
“We will test the heat shield, the separation of the fairing and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean.”
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.
Learn more about Orion, Space Taxis and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations
Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM
Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA
The march towards first launch of NASA’s next generation Orion crew vehicle is accelerating rapidly.
The world’s most powerful rocket – the United Launch Alliance Delta IV Heavy – was moved to its Cape Canaveral launch pad overnight and raised at the pad today, Oct. 1, thereby setting in motion the final steps to prepare for blastoff of NASA’s new Orion capsule on its first test flight in just over two months.
All the pieces are ready and now it’s just a matter of attaching all those components together for the inaugural uncrewed liftoff of the state-of-the-art Orion spacecraft on its maiden mission dubbed Exploration Flight Test-1 (EFT-1) in December.
“We’ve been working toward this launch for months, and we’re in the final stretch,” said Kennedy Director Bob Cabana, in a NASA statement.
“Orion is almost complete and the rocket that will send it into space is on the launch pad. We’re 64 days away from taking the next step in deep space exploration.”
The triple barreled Delta IV Heavy topped by the Orion EFT-1 capsule is slated to blastoff on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
After a nearly two day delay due to drenching rain storms, the Delta IV Heavy integrated first and second stages were transported horizontally overnight Wednesday starting around 10 p.m. from the processing hanger inside ULA’s Horizontal Integration Facility (HIF) to the nearby launch complex and servicing gantry at Pad 37.
Early this morning, the rocket was hoisted up into its launch configuration. Several of my space photo-journalist colleagues were on hand. See their photos herein.
From now until launch technicians will conduct the final processing, testing and checkout of the Delta IV Heavy booster. They will also carry out “a high fidelity rehearsal to include fully powering up the booster and loading the tanks with fuel and oxidizer,” according to ULA.
“This is a tremendous milestone and gets us one step closer to our launch later this year,” said Tony Taliancich, ULA’s director of East Coast Launch Operations, in a ULA statement.
“The team has worked extremely hard to ensure this vehicle is processed with the utmost attention to detail and focus on mission success.”
“The Delta IV Heavy is the world’s most powerful launch vehicle flying today, and we are excited to be supporting our customer for this critical flight test to collect data and reduce overall mission risks and costs for the program,” said Taliancich.
NASA’s Orion Program manager Mark Geyer told me in a recent interview that the Orion spacecraft, built by prime contractor Lockheed Martin, will be transported to the pad around November 10 or 11. Then the Orion will be hoisted and attached to the top of the Delta IV Heavy rocket at the base of its service module.
The Delta IV Heavy first stage is comprised of a trio of three Common Booster Cores (CBCs).
Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.
The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only vehicle that is sufficiently powerful to launch the Orion EFT-1 spacecraft.
The first CBC booster was attached to the center booster in June. The second one was attached in early August.
I recently visited the HIF during a media tour after the three CBCs had been joined together as well as earlier this year after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville. See my photos herein.
I was also on hand at KSC when the Orion crew module/service module (CM/SM) stack was rolled out on Sept. 11, 2014, on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building.
It was moved about 1 mile to the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story – here.
Fueling of Orion was completed over the weekend and it has now been moved to the Launch Abort System Facility (LASF) for the installation of its last component – the Launch Abort System (LAS).
Orion’s next stop is SLC-37.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
NASA is simultaneously developing a monster heavy lift rocket known as the Space Launch System or SLS, that will eventually launch Orion on its deep space missions.
The maiden SLS/Orion launch on the Exploration Mission-1 (EM-1) unmanned test flight is now scheduled for no later than November 2018 – read my story here.
SLS will be the world’s most powerful rocket ever built and the assembly of its core stage has begun at NASA’s Michoud Assembly Facility in New Orleans. Read my story – here.
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.
TORONTO, CANADA – There’s a big difference in thinking between governments and the private companies that participate in space. While entities such as NASA can work on understanding basic human health or exploring the universe for the sake of a greater understanding, companies have a limitation: they need to eventually make a profit.
This was brought up in a human spaceflight discussion at the International Astronautical Congress today (Oct. 1), which included participants from agencies and companies alike. Below are some concepts for how private companies in the space world today are making their money.
“We have in space a movement towards more privatization … and also for more use of space activities in general and human space activity in the future by individual private persons,” said Johann Dietrich Worner, chairman of the executive board of DLR (Germany’s space agency), in the panel.
“You can imagine that even for the upcoming 10 to 20 to 30 years, the public funding is the basic funding for [space] activities while in other areas, we are already seeing that private money is doing its work if you look to communication and if you look to other activities, like for instance, research in space.”
But commercial spaceflight is already taking place, as some of these examples show.
Commercial crew
The two successful companies in NASA’s latest round of commercial contracts — SpaceX (Dragon) and Boeing (CST-100) — are each receiving government money to develop their private space taxis. The companies are responsible for meeting certain milestones to receive funds. There is quite the element of risk involved because the commercial contracts are only given out in stages; you could be partway through developing the spacecraft and then discover you will not be awarded one for the next round. This is what happened to Sierra Nevada Corp., whose Dream Chaser concept did not receive more money in the announcement last month. The company has filed a legal challenge in response.
Private space travel
Virgin Galactic and its founder, Richard Branson, are perhaps the most visible of the companies that are looking to bring private citizens into space — as long as they can pay $250,000 for a ride. The first flight of Virgin into space is expected in the next year. Customers must pay a deposit upfront upon registering and then the balance before they head into suborbit. In the case of Virgin, Branson has a portfolio of companies that can take on the financial risk during the startup phase, but eventually the company will look to turn a profit through the customer payments.
Asteroid mining
The business case for Planetary Resources and Deep Space Industries, the two self-proclaimed asteroid mining companies, hasn’t fully been released yet. We assume that the companies would look to make a profit through selling whatever resources they manage to dig up on asteroids, but bear in mind it would cost quite a bit of money to get a spacecraft there and back. Meanwhile, Planetary Resources is diversifying its income somewhat by initiatives such as the Arkyd-100 telescope, which will look for asteroids from Earth orbit. They raised money for the project through crowdsourcing.
Space station research
NanoRacks is a company that has research slots available on the International Space Station that it sells to entities looking to do research in microgravity. The company has places inside the station and can also deploy small satellites through a Japanese system. While the company’s website makes it clear that they are focused on ISS utilization, officials also express an interest in doing research in geocentric orbit, the moon or even Mars.
The MOM orbiter was designed and developed by the Indian Space Research Organization (ISRO), India’s space agency, which released the image on Sept. 29.
Even more impressive is that MOM’s Martian portrait shows a dramatic view of a huge dust storm swirling over a large patch of the planet’s Northern Hemisphere against the blackness of space. Luckily, NASA’s Opportunity and Curiosity surface rovers are nowhere nearby.
“Something’s brewing here!” ISRO tweeted.
The southern polar ice cap is also clearly visible.
It was taken by the probe’s on-board Mars Color Camera from a very high altitude of 74,500 kilometers.
When MOM met Mars, the thrusters placed the probe into a highly elliptical orbit whose nearest point to Mars (periapsis) is at 421.7 km and farthest point (apoapsis) at 76,993.6 km. The inclination of the orbit with respect to the equatorial plane of Mars is 150 degrees, as intended, ISRO reported.
So the Red Planet portrait was captured nearly at apoapsis.
This is the third MOM image released by ISRO thus far, and my personal favorite. And its very reminiscent of whole globe Mars shots taken by Hubble.
MOM’s goal is to study Mars’ atmosphere, surface environments, morphology, and mineralogy with a 15 kg (33 lb) suite of five indigenously built science instruments. It will also sniff for methane, a potential marker for biological activity.
The $73 million mission is expected to last at least six months.
MOM’s success follows closely on the heels of NASA’s MAVEN orbiter which also successfully achieved orbit barely two days earlier on Sept. 21 and could last 10 years or more.
With MOM’s arrival, India became the newest member of an elite club of only four entities who have launched probes that successfully investigated Mars – following the Soviet Union, the United States and the European Space Agency (ESA).
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
TORONTO, CANADA – NASA isn’t “reading too much” into a report that the Russians will spend $8 billion on the International Space Station through 2025, the head of the agency says. That date is five years past the international agreements to operate the space station.
The Russian announcement comes at a pivotal time for NASA, which is looking to extend operations on the station to at least 2024. Other space agency heads have not yet signed on. Russia is the major partner for NASA on the station, given it operates several modules and sends astronauts to and from Earth on Soyuz spacecraft.
When deputy prime minister Dmitry Rogozin made the funding announcement, said NASA administrator Charles Bolden, Rogozin was speaking of a budget request that is before the State Duma. The Duma is Russia’s lower house of government.
“I am told that’s why he said that,” Bolden said at a press conference yesterday (Sept. 29) for the International Astronomical Congress, citing a conversation he had with Bill Gerstenmaier, NASA’s human exploration associate administrator. “You shouldn’t read too much into that.”
Other member agencies of the space station gave noncommittal responses when asked if they would sign on to an extension.
“The [European] member states will be invited to give their views on what [to do] after 2020,” said Jean-Jacques Dordain, who heads the European Space Agency. He added that any extension would require a financial commitment, as an agreement without money is “only principles.”
Similarly, Canadian Space Agency chief Walter Natynczyk said the money allocated to his agency will bring them through to 2020, but “we will have a look at the entire value proposition when we put a case before the government of Canada.”
The Russian agreement with NASA came under scrutiny earlier this year as tensions erupted in Ukraine while Russian soldiers were in the country. This year, Ukrainian Crimea was annexed to Russia to the condemnation of several countries, including the United States.
While Bolden has said relations with the Russians for the space station are still healthy, NASA suspended most science ties with the country in April. In response, Rogozin wrote a frustrated tweet saying NASA should try to send its astronauts into space using a trampoline.
CAPE CANAVERAL AIR FORCE STATION, FL – Assembly of the powerful Delta IV rocket boosting the pathfinder version of NASA’s Orion crew capsule on its maiden test flight in December has been completed.
Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System.
The state-of-the-art Orion spacecraft is scheduled to launch on its inaugural uncrewed mission, dubbed Exploration Flight Test-1 (EFT-1), in December 2014 atop the Delta IV Heavy rocket. It replaces NASA’s now retired space shuttle orbiters.
The triple barreled Delta IV Heavy is currently the most powerful rocket in America’s fleet following the retirement of the NASA’s Space Shuttle program.
Engineers from the rocket’s manufacturer – United Launch Alliance (ULA) – took a major step forward towards Orion’s first flight when they completed the integration of the three primary core elements of the rockets first stage with the single engine upper stage.
All of the rocket integration work and preflight processing took place inside ULA’s Horizontal Integration Facility (HIF), at Cape Canaveral Air Force Station in Florida.
Universe Today recently visited the Delta IV booster during an up close tour inside the HIF facility last week where the rocket was unveiled to the media in a horizontally stacked configuration. See my Delta IV photos herein.
The HIF building is located at Space Launch Complex 37 (SLC-37), on Cape Canaveral, a short distance away from the launch pad where the Orion EFT-1 mission will lift off on Dec. 4.
“The day-to-day processing is performed by ULA,” said Merri Anne Stowe of NASA’s Fleet Systems Integration Branch of the Launch Services Program (LSP), in a NASA statement.
“NASA’s role is to keep a watchful eye on everything and be there to help if any issues come up.”
The first stage is comprised of a trio of three Delta IV Common Booster Cores (CBCs).
Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.
This past spring I visited the HIF after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville.
The first CBC booster was attached to the center booster in June. The second one was attached in early August, according to ULA.
“After the three core stages went through their initial inspections and processing, the struts were attached, connecting the booster stages with the center core,” Stowe said. “All of this takes place horizontally.”
The Delta IV cryogenic second stage testing and attachment was completed in August and September. It measures 45 feet in length and 17 feet in diameter. It is equipped with a single RL10-B-2 engine, that also burns liquid hydrogen and liquid oxygen propellant and generates 25,000 pounds of thrust.
“The hardware for Exploration Flight Test-1 is coming together well,” Stowe noted in a NASA statement.
“We haven’t had to deal with any serious problems. All of the advance planning appears to be paying off.”
This same Delta IV upper stage will be used in the Block 1 version of NASA’s new heavy lift rocket, the Space Launch System (SLS).
Be sure to read my recent article detailing the ribbon cutting ceremony opening the manufacture of the SLS core stage at NASA’s Michoud Assembly Facility in New Orleans, LA. The SLS will be the most powerful rocket ever built by humans, exceeding that of the iconic Saturn V rocket that sent humans to walk on the surface of the Moon.
The Delta IV rocket will be rolled out to the SLC-37 Cape Canaveral launch pad this week.
Assembly of the Orion EFT-1 capsule and stacking atop the service module was also completed in September at the Kennedy Space Center (KSC).
It was moved about 1 mile to its next stop on the way to SLC-37 – the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story here.
The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.