Apollo 11 Splashdown 45 Years Ago on July 24, 1969 Concludes 1st Moon Landing Mission – Gallery

Apollo 11 Comes Home. The Apollo 11 crew await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. They splashed down at 12:49 a.m. EDT, July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. Credit: NASA

Apollo 11 Comes Home
The Apollo 11 crew await pickup by a helicopter from the USS Hornet, prime recovery ship for the historic lunar landing mission. The fourth man in the life raft is a United States Navy underwater demolition team swimmer. All four men are wearing biological isolation garments. They splashed down at 12:49 a.m. EDT, July 24, 1969, about 812 nautical miles southwest of Hawaii and only 12 nautical miles from the USS Hornet. Credit: NASA
Story and gallery expanded[/caption]

The three man crew of NASA’s Apollo 11 splashed down in the Pacific Ocean 45 years ago today on July 24, 1969 – successfully concluding Earth’s first journey to land humans on another world and return them safely to our Home Planet.

Apollo 11 Commander Neil Armstrong became the first human to set foot on the Moon on July 20, 1969 after he stepped off the footpad of the Lunar Module Eagle soon after the start of the moonwalk EVA at 10:39 p.m. EDT and onto the lunar surface with his left foot at the Sea of Tranquility at 10:56 p.m. EDT. Lunar Module (LM) pilot Buzz Aldrin followed soon thereafter. They came in peace for all mankind!

The magnificent Lunar landing feat accomplished by US Apollo 11 astronauts Neil Armstrong and Buzz Aldrin marks the pinnacle of Mankind’s most momentous achievement.

The Apollo 11 crew consisting of Neil Armstrong, Buzz Aldrin and Command module pilot Michael Collins splashed down safely at 12:50 p.m. EDT on July 24 about 900 miles southwest of Hawaii in the North Pacific Ocean while seated inside the Command Module Columbia dangling at the end of a trio of massive parachutes that slowed their descent through the Earth’s atmosphere.

President Nixon Greets the Returning Apollo 11 Astronauts. The Apollo 11 astronauts, left to right, Commander Neil A. Armstrong, Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. "Buzz" Aldrin Jr., inside the Mobile Quarantine Facility aboard the USS Hornet, listen to President Richard M. Nixon on July 24, 1969 as he welcomes them back to Earth and congratulates them on the successful mission. The astronauts had splashed down in the Pacific Ocean at 12:50 p.m. EDT about 900 miles southwest of Hawaii.  Credit: NASA
President Nixon Greets the Returning Apollo 11 Astronauts. The Apollo 11 astronauts, left to right, Commander Neil A. Armstrong, Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. “Buzz” Aldrin Jr., inside the Mobile Quarantine Facility aboard the USS Hornet, listen to President Richard M. Nixon on July 24, 1969 as he welcomes them back to Earth and congratulates them on the successful mission. The astronauts had splashed down in the Pacific Ocean at 12:50 p.m. EDT about 900 miles southwest of Hawaii. Credit: NASA

After a mission duration of 8 days, 3 hours, 18 minutes, 35 seconds from launch to landing the Apollo 11 crew were plucked from the ocean by helicopters from the USS Hornet recovery ship after splashdown only 12 nautical miles (24 km) away.

They had to don protective biological isolation garments (BIGs) in case they were infected by some unknown and potentially hazardous “moon germs.” Of course there were no pathogens, but this was not definitely known at the time.

After their return to Earth, the trio was scrubbed with a disinfect solution of sodium hypochlorite and had to remain in quarantine for 21 days inside a 30 feet (9.1 m) long quarantine facility known as the Lunar Receiving Laboratory (LRL).

They were welcomed back to Earth by President Nixon aboard the USS Hornet.

We’ve chronicled the journey of Apollo 11 and lunar touchdown on July 20, 1969 as well as this week’s renaming of a historic human spaceflight facility at the Kennedy Space Center in honor of Mission Commander Neil Armstrong.

Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Here we’ve collected a gallery of the mission and ocean splashdown that brought Apollo 11 to a close and fulfilled the lunar landing quest set by a young President John F. Kennedy early in the decade of the 1960s.

The trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969.

Apollo 11 Official Crew Portrait.    Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot.  Image Credit: NASA
Apollo 11 Official Crew Portrait. Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot. Image Credit: NASA

The three-stage Saturn V generated 7.5 million pounds of thrust and propelled the trio into space and immortality.

Read my story about the deep sea recovery of the Apollo 11 first stage F-1 engines in 2013 – here.

The crew arrived in lunar orbit three days later on July 19, 1969, inside the docked Apollo 11 Command/Service and Lunar Modules (CSM/LM).

Armstrong and Aldrin then moved into the Lunar Module, undocked and safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe.

Six hours later Armstrong climbed down the LM ladder and stepped onto the Moon and into immortality.

Armstrong’s first words:

“That’s one small step for [a] man, one giant leap for mankind.”

During their 2 ½ hour long moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;

“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”

The duo collected about 50 pounds (22 kg) of priceless moon rocks and set out the first science experiments placed by humans on another world. The moon rocks were invaluable in informing us about the origin of the Earth – Moon system.

Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:

Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.

Altogether Armstrong and Aldrin spent about 21 hours on the moon’s surface. Then they said goodbye to the greatest adventure and fired up the LM ascent engine to rejoin Michael Collins circling above in the Apollo 11 Command Module.

“The whole world was together at that particular moment,” says NASA Administrator Charles Bolden in a CNN interview. “In spite of all we are going through there is hope!”

Celebrating Apollo 11.  NASA and Manned Spacecraft Center (MSC) officials joined with flight controllers to celebrate the successful conclusion of the Apollo 11 lunar landing mission in the Mission Control Center. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ.  Credit: NASA
Celebrating Apollo 11. NASA and Manned Spacecraft Center (MSC) officials joined with flight controllers to celebrate the successful conclusion of the Apollo 11 lunar landing mission in the Mission Control Center. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ. Credit: NASA

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Apollo 11 Welcome. New York City welcomes the Apollo 11 crew in a ticker tape parade down Broadway and Park Avenue. Pictured in the lead car, from the right, are astronauts Neil A. Armstrong, Buzz Aldrin and Michael Collins. The three astronauts teamed for the first manned lunar landing, on July 20, 1969.  Credit: NASA
Apollo 11 Welcome. New York City welcomes the Apollo 11 crew in a ticker tape parade down Broadway and Park Avenue. Pictured in the lead car, from the right, are astronauts Neil A. Armstrong, Buzz Aldrin and Michael Collins. The three astronauts teamed for the first manned lunar landing, on July 20, 1969. Credit: NASA
Apollo 11 Launch.  The American flag heralded the launch of Apollo 11, the first Lunar landing mission, on July 16, 1969. The massive Saturn V rocket lifted off from NASA's Kennedy Space Center with astronauts Neil A. Armstrong, Michael Collins, and Edwin "Buzz" Aldrin at 9:32 a.m. EDT. Four days later, on July 20, Armstrong and Aldrin landed on the Moon's surface while Collins orbited overhead in the Command Module. Armstrong and Aldrin gathered samples of lunar material and deployed scientific experiments that transmitted data about the lunar environment.   Credit: NASA
Apollo 11 Launch. The American flag heralded the launch of Apollo 11, the first Lunar landing mission, on July 16, 1969. The massive Saturn V rocket lifted off from NASA’s Kennedy Space Center with astronauts Neil A. Armstrong, Michael Collins, and Edwin “Buzz” Aldrin at 9:32 a.m. EDT. Four days later, on July 20, Armstrong and Aldrin landed on the Moon’s surface while Collins orbited overhead in the Command Module. Armstrong and Aldrin gathered samples of lunar material and deployed scientific experiments that transmitted data about the lunar environment. Credit: NASA
Launch of Apollo 11.  On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.  Image credit: NASA
Launch of Apollo 11. On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States’ first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module “Eagle” to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules “Columbia” in lunar orbit. Image credit: NASA
The Eagle Prepares to Land.  The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine.  Image Credit: NASA
The Eagle Prepares to Land. The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module "Eagle." Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera.   Image credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module “Eagle.” Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera. Image credit: NASA
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O'Connell
At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA’s 45th anniversary celebration of the Apollo 11 moon landing. The building’s high bay is being used to support the agency’s new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O’Connell

Neck Of Rosetta’s ‘Rubby Duckie’ Comet Shows A Bright Ring

Rosetta imaged its target comet, Comet 67P/Churyumov-Gerasimenko, from about 3,417 miles (5,500 kilometers) away. The "neck" of the comet appears to be brighter than the rest of the nucleus. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta’s “rubber duckie” comet appears to be wearing a collar! New images of Comet 67P/Churyumov-Gerasimenko from the spacecraft, which is speeding towards an orbit of the comet next month, show that the “neck” region of the nucleus appears to be brighter than the rest.

Last week, images from the spacecraft revealed that the comet likely has a “contact binary” nucleus, meaning that there are two parts of the nucleus that are just barely joined together under low gravity. There are many theories for why this happened, but it will take a closer examination to begin to come up with answers. The shape of the nucleus reminds many of a rubber duckie.

As for why the “neck” region appears brighter, that’s not known right now. There could be different grains in that region of the nucleus, or it could be some feature of the surface. Or perhaps it is a different type of material there. The scientists plan to get more spectral information from this region in the coming weeks, which could reveal what elements are there.

“Even though the images taken from a distance of 5500 kilometers are still not highly resolved, the scientists feel remotely reminded of comet 103P/Hartley,” stated the Max Planck Institute for Solar System Research.

“This body was visited in a flyby by NASA’s EPOXI mission in 2010. While Hartley’s ends show a rather rough surface, its middle is much smoother. Scientists believe this waist to be a gravitational low: since it contains the body’s center of mass, emitted material that cannot leave the comet’s gravitational field is most likely to be re-deposited there.”

Rosetta is expected to arrive at the comet on August 6, and to send out its spider-like lander (Philae) in November. The spacecraft will remain with the comet through its closest approach to the sun in 2015, between the orbits of Earth and Mars.

Source: Max Planck Institute for Solar System Research

Risk Reduction Milestone Tests Move Commercial Dream Chaser Closer to Critical Design Review and First Flight

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

The winged Dream Chaser mini-shuttle under development by Sierra Nevada Corp. (SNC) has successfully completed a series of risk reduction milestone tests on key flight hardware systems thereby moving the private reusable spacecraft closer to its critical design review (CDR) and first flight under NASA’s Commercial Crew Program aimed at restoring America’s indigenous human spaceflight access to low Earth orbit and the space station.

SNC announced that it passed NASA’s Milestones 9 and 9a involving numerous Risk Reduction and Technology Readiness Level (TRL) advancement tests of critical Dream Chaser® systems under its Commercial Crew Integrated Capability (CCiCap) agreement with the agency.

Seven specific hardware systems underwent extensive testing and passed a major comprehensive review with NASA including; the Main Propulsion System, Reaction Control System, Crew Systems, Environmental Control and Life Support Systems (ECLSS), Structures, Thermal Control (TCS) and Thermal Protection Systems (TPS).

SNC former astronaut Lee Archambault prepares for Dream Chaser® Crew Systems Test.  Credit: SNC
SNC former astronaut Lee Archambault prepares for Dream Chaser® Crew Systems Test. Credit: SNC

The tests are among the milestones SNC must complete to receive continued funding from the Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

Over 3,500 tests were involved in completing the Risk Reduction and TRL advancement tests on the seven hardware systems whose purpose is to significantly retire overall program risk enable a continued maturation of the Dream Chaser’s design.

Dream Chaser is a reusable lifting-body design spaceship that will carry a mix of cargo and up to a seven crewmembers to the ISS. It will also be able to land on commercial runways anywhere in the world, according to SNC.

“By thoroughly assessing and mitigating each of the previously identified design risks, SNC is continuing to prove that Dream Chaser is a safe, robust, and reliable spacecraft,” said Mark N. Sirangelo, corporate vice president of SNC’s Space Systems, in a statement.

“These crucial validations are vital steps in our Critical Design Review and in showing that we have a very advanced and capable spacecraft. This will allow us to quickly and confidently move forward in restoring cutting-edge transportation to low-Earth orbit from the U.S.”

Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 - in this screenshot.   Credit: Sierra Nevada Corp.
Following helicopter release the private Dream Chaser spaceplane starts glide to runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp.

The Dream Chaser is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

The SpaceX Dragon and Boeing CST-100 ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around August/September 2014.

“Our partners are making great progress as they refine their systems for safe, reliable and cost-effective spaceflight,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“It is extremely impressive to hear and see the interchange between the company and NASA engineering teams as they delve into the very details of the systems that help assure the safety of passengers.”

After completing milestones 9 and 9a, SNC has now received 92% of its total CCiCAP Phase 1 NASA award of $227.5 million.

“We are on schedule to launch our first orbital flight in November of 2016, which will mark the beginning of the restoration of U.S. crew capability to low-Earth orbit,” says Sirangelo.

Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.

It will launch atop a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Launch Complex 41 in Florida.

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

The Dream Chaser design builds on the experience gained from NASA Langley’s earlier exploratory engineering work with the HL-20 manned lifting-body vehicle.

Read my prior story detailing the wind tunnel testing milestone – here.

Stay tuned here for Ken’s continuing Sierra Nevada, Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

Video: A Dizzying, Whirly View Of The Earth From Space!

A screenshot of the Earth and a solar array of the International Space Station outside the Cupola. Credit: Reid Wiseman/Vine

We’ve got vertigo watching this video, but in a good way! This is a sped-up view of Earth from the International Space Station from the Cupola, a wraparound window that is usually used for cargo ship berthings and Earth observations.

In the video you can see a solar array from the space station gliding by the view on the left, and Canadarm2 (the robotic arm used for dockings) just barely visible on the right side, near the end.

Behind the camera is the prolific video poster Reid Wiseman, an Expedition 40/41 NASA astronaut who has been quite active on social media. He’s been posting pictures of the Earth on Twitter as well as numerous other Vine videos.

Historic Human Spaceflight Facility at Kennedy Renamed in Honor of Neil Armstrong – 1st Man on the Moon

At the Kennedy Space Center in Florida on July 21, 2014, NASA officials and Apollo astronauts have a group portrait taken in front of the refurbished Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. From left are NASA Administrator Charles Bolden, Apollo astronauts Mike Collins, Buzz Aldrin and Jim Lovell, and Center Director Robert Cabana. The visit of the former astronauts was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. The building's high bay is being used to support the agency's new Orion spacecraft, which will lift off atop the Space Launch System rocket. Photo credit: NASA/Kevin O'Connell

45 years ago on July 20, 1969, NASA astronaut and Apollo 11 Commander Neil Armstrong became the first human being to set foot on another celestial body when he stepped off the Apollo 11 Lunar Module Eagle and onto our Moon’s utterly alien surface.

Today, July 21, 2014, NASA officially renamed a historic facility at the Kennedy Space Center vital to human spaceflight in honor of Neil Armstrong during a a 45th anniversary ceremony at what until today was known as the ‘Operations and Checkout Building’ or O & C.

On that first moonwalk, Armstrong was accompanied by fellow NASA astronaut Buzz Aldrin on a two and a half hour excursion that lasted into the early morning hours of July 21. They came in peace representing all mankind.

Today’s ceremony was broadcast on NASA TV and brought together numerous dignitaries including Armstrong’s surviving crewmates Buzz Aldrin and Command Module pilot Mike Collins, Apollo 13 Commander Jim Lovell who was also Apollo 11’s backup commander, NASA Administrator Charlie Bolden, Kennedy Space Center Director Bob Cabana, and Armstrong’s family members including his sons Rick and Mark Armstrong who all spoke movingly at the dedication.

Dignitaries at the July 21, 2014 renaming ceremony included Kennedy Space Center Director Bob Cabana, NASA Administrator Charlie Bolden, sons Rick Armstrong and Mark Armstrong, Apollo 13 Commander James Lovell, and Apollo 11 crewmates Buzz Aldrin and Michael Collins. Photo Credit: Alan Walters/AmericaSpace
Dignitaries at the July 21, 2014 renaming ceremony included Kennedy Space Center Director Bob Cabana, NASA Administrator Charlie Bolden, sons Rick Armstrong and Mark Armstrong, Apollo 13 Commander James Lovell, and Apollo 11 crewmates Buzz Aldrin and Michael Collins. Photo Credit: Alan Walters/AmericaSpace

They were joined via a live feed from space by two NASA astronauts currently serving aboard the International Space Station (ISS) – Expedition 40 crew member Rick Wiseman and Commander Steve Swanson.

The backdrop for the ceremony was the Orion crew capsule, NASA’s next generation human rated spaceflight vehicle which is currently being assembled in the facility and is set to launch on its maiden unmanned test flight in December 2014. Orion will eventually carry US astronauts on journey’s to deep space destinations to the Moon, Asteroids and Mars.

Many of Armstrong’s colleagues and other officials working on Orion and NASA’s human spaceflight missions also attended.

Apollo 11 Commander Neil Armstrong
Apollo 11 Commander Neil Armstrong inside the Lunar Module

The high bay of what is now officially the ‘Neil Armstrong Operations and Checkout Building’ was built in 1964 and previously was known as the Manned Spacecraft Operations Building.

It has a storied history in human spaceflight. It was used to process the Gemini spacecraft including Armstrong’s Gemini 8 capsule. Later it was used during the Apollo program to process and test the command, service and lunar modules including the Apollo 11 crew vehicles that were launched atop the Saturn V moon rocket. During the shuttle era it housed the crew quarters for astronauts KSC training and for preparations in the final days leading to launch.

“45 years ago, NASA’s journey to land the first human on the Moon began right here,” NASA Administrator Charlie Bolden said at the ceremony. “It is altogether fitting that today we rename this facility the Neil Armstrong Operations and Checkout Building. Throughout his life he served his country as an astronaut, an aerospace engineer, a naval aviator, a test pilot and a university professor, and he constantly challenged all of us to expand the boundaries of the possible.”

“He along with his crewmates, Buzz Aldrin and Michael Collins, are a bridge from NASA’s historic journey to the moon 45 years ago to our path to Mars today.”

At the Kennedy Space Center in Florida, NASA officials and Apollo astronauts view the Orion crew module inside the Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Viewing Orion from left, are Kennedy Center Director Bob Cabana, Apollo 11 astronaut Michael Collins, Apollo astronaut Jim Lovell, Apollo 11 astronaut Buzz Aldrin, and NASA Administrator Charlie Bolden. Photo credit: NASA/Kim Shiflett
At the Kennedy Space Center in Florida, NASA officials and Apollo astronauts view the Orion crew module inside the Operations and Checkout Building, newly named for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. Viewing Orion from left, are Kennedy Center Director Bob Cabana, Apollo 11 astronaut Michael Collins, Apollo astronaut Jim Lovell, Apollo 11 astronaut Buzz Aldrin, and NASA Administrator Charlie Bolden. Photo credit: NASA/Kim Shiflett

The Apollo 11 trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969 to fulfill the lunar landing quest set by President John F. Kennedy early in the decade.

Armstrong and Aldrin safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe.

“Houston, Tranquility Base here. The Eagle has landed !,” Armstrong called out and emotional applause erupted at Mission Control – “You got a bunch of guys about to turn blue.”

Armstrong’s immortal first words:

“That’s one small step for [a] man, one giant leap for mankind.”

During their 2 ½ hours moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;

“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”

Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:

Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.

Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Michael Collins concluded the ceremony with this tribute:

“He would not have sought this honor, that was not his style. But I think he would be proud to have his name so closely associated with the heart and the soul of the space business.”

“On Neil’s behalf, thank you for what you do every day.”

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center - now renamed in honor of Neil Armstrong.   Credit: Ken Kremer/kenkremer.com
Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center – now renamed in honor of Neil Armstrong. Credit: Ken Kremer/kenkremer.com

Apollo 11 Moon Landing 45 Years Ago on July 20, 1969: Relive the Moment! – With an Image Gallery and Watch the Restored EVA Here

The Eagle Prepares to Land. The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA

The Eagle Prepares to Land
The Apollo 11 Lunar Module Eagle, in a landing configuration was photographed in lunar orbit from the Command and Service Module Columbia. Inside the module were Commander Neil A. Armstrong and Lunar Module Pilot Buzz Aldrin. The long rod-like protrusions under the landing pods are lunar surface sensing probes. Upon contact with the lunar surface, the probes sent a signal to the crew to shut down the descent engine. Image Credit: NASA
Watch the restored EVA video below and on NASA TV on July 20 starting at 10:39 p.m. EDT[/caption]

Man first walked on the Moon 45 years ago today on July 20, 1969 when American astronauts Neil Armstrong and Buzz Aldrin opened the hatch to the Apollo 11 Lunar Module Eagle, climbed down the ladder and set foot on the surface – marking mankind’s greatest achievement. They came in peace for all mankind!

You can relive the historic moment with the gallery of Apollo 11 NASA images collected here and by watching NASA’s restored video of the moonwalk, or extravehicular activity (EVA) by Armstrong and Aldrin – watch video below. The Apollo 11 EVA began at 10:39:33 p.m. EDT.

NASA TV is also broadcasting a replay of the historic moonwalk tonight (July 20) to commemorate the anniversary starting at 10:39 p.m. EDT, with the restored footage of Armstrong and Aldrin’s historic steps on the lunar surface.

You can view the NASA TV Apollo 11 EVA webcast – here.

The Eagle had landed on the Moon’s desolate surface on the Sea of Tranquility (see map below) barely 6 hours earlier at 4:18 p.m EDT. And only 30 seconds of fuel remained as Armstrong searched for a safe landing spot.

Neil Armstrong was the commander of the three man crew of Apollo 11, which included fellow moonwalker Buzz Aldrin and Command module pilot Michael Collins.

Here is NASA’s restored video of the Apollo 11 EVA on July 20, 1969:

Video Caption: Original Mission Video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during extravehicular activity (EVA) operations on the surface of the moon. The EVA lasted approximately 2.5 hours with all scientific activities being completed satisfactorily. The Apollo 11 EVA began at 10:39:33 p.m. EDT on July 20, 1969 when Astronaut Neil Armstrong emerged from the spacecraft first. While descending, he released the Modularized Equipment Stowage Assembly on the Lunar Module’s descent stage.

The trio blasted off atop a 363 foot-tall Saturn V rocket from Launch Complex 39A on their bold, quarter of a million mile moon mission from the Kennedy Space Center , Florida on July 16, 1969 to fulfill the lunar landing quest set by President John F. Kennedy early in the decade.

The three-stage Saturn V generated 7.5 million pounds of thrust and propelled the trio into space and immortality.

Apollo 11 Official Crew Portrait.    Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot.  Image Credit: NASA
Apollo 11 Official Crew Portrait. Official crew photo of the Apollo 11 Prime Crew. From left to right are astronauts Neil A. Armstrong, Commander; Michael Collins, Command Module Pilot; and Edwin E. Aldrin Jr., Lunar Module Pilot. Image Credit: NASA

The Apollo 11 mission was truly a global event.

Armstrong and Aldrin safely touched down at the Sea of Tranquility on the lunar surface on July 20, 1969 at 4:18 p.m EDT as hundreds of millions across the globe watched in awe and united in purpose.

“Houston, Tranquility Base here. The Eagle has landed !,” Armstrong called out and emotional applause erupted at Mission Control – “You got a bunch of guys about to turn blue.”

Apollo 11 commander Neil Armstrong stands on the moon's surface on July 20, 1969, the first human to do so. Credit: NASA/CBS/YouTube (screenshot)
Apollo 11 commander Neil Armstrong stands on the moon’s surface on July 20, 1969, the first human to do so. Credit: NASA/CBS/YouTube (screenshot)

Armstrong carried all of humanity with him when he stepped off the footpad of NASA’s Apollo 11 Lunar Module and became the first representative of the human species to walk on the surface of another celestial body.

Armstrong’s first immortal words:

“That’s one small step for [a] man, one giant leap for mankind.”

During their 2 ½ hours moonwalk Armstrong and Aldrin unveiled a plaque on the side of the lunar module. Armstrong read the words;

“Here men from the planet Earth first set foot upon the moon. July 1969 A.D. We came in peace for all mankind.”

On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA

The duo collected about 50 pounds (22 kg) of priceless moon rocks and set out the first science experiments placed by humans on another world. The moon rocks were invaluable in informing us about the origin of the Earth – Moon system.

Aldrin on the Moon. Astronaut Buzz Aldrin walks on the surface of the moon near the leg of the lunar module Eagle during the Apollo 11 mission. Mission commander Neil Armstrong took this photograph with a 70mm lunar surface camera. While astronauts Armstrong and Aldrin explored the Sea of Tranquility region of the moon, astronaut Michael Collins remained with the command and service modules in lunar orbit.  Image Credit: NASA
Aldrin on the Moon. Astronaut Buzz Aldrin walks on the surface of the moon near the leg of the lunar module Eagle during the Apollo 11 mission. Mission commander Neil Armstrong took this photograph with a 70mm lunar surface camera. While astronauts Armstrong and Aldrin explored the Sea of Tranquility region of the moon, astronaut Michael Collins remained with the command and service modules in lunar orbit. Image Credit: NASA

Altogether Armstrong and Aldrin spent about 21 hours on the moon’s surface. Then they said goodbye to the greatest adventure and fired up the LM ascent engine to rejoin Michael Collins circling above in the Apollo 11 Command Module.

Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA
Neil Armstrong and Buzz Aldrin plant the US flag on the Lunar Surface during 1st human moonwalk in history 45 years ago on July 20, 1969 during Apollo 1l mission. Credit: NASA

Following the triumphant moonwalk and docking, the crew set their sights for the journey back to the Home Planet.

apollo 11 logo
Apollo 11 logo

The Apollo 11 mission ended with a successful splash down off Hawaii on July 24.

The crew, NASA and America achieved President Kennedy’s challenge of men walking on the Moon before the decade was out and returning safely to Earth.

Armstrong passed away at age 82 on August 25, 2012 due to complications from heart bypass surgery. Read my prior tribute articles: here and here

Surviving crew members Aldrin and Collins will join NASA Administrator Charles Bolden at a ceremony on Monday at the Kennedy Space Center.

Bootprint.  A close-up view of astronaut Buzz Aldrin's bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11's sojourn on the moon.  Image Credit: NASA
Bootprint. A close-up view of astronaut Buzz Aldrin’s bootprint in the lunar soil, photographed with the 70mm lunar surface camera during Apollo 11’s sojourn on the moon. Image Credit: NASA

Altogether a dozen Americans have walked on the Moon during NASA’s five additional Apollo lunar landing missions. No human has returned since the final crew of Apollo 17 departed the Moon’s surface in December 1972.

One legacy of Apollo is the International Space Station (ISS) where six astronauts and cosmonauts work together on science research to benefit mankind.

Notably, the Cygnus commercial cargo ship berthed at the ISS on the 45th anniversary of the Apollo 11 liftoff bringing over 3600 pounds of science experiments and supplies to the station.

NASA’s next big human spaceflight goals are building commercial ‘space taxis’ to low Earth orbit in this decade, an asteroid retrieval mission in the 2020s and voyages to Mars in the 2030s using the new SLS rocket and Orion deep space crew capsule currently under development.

Stay tuned here for Ken’s Earth & Planetary science and human spaceflight news.

Ken Kremer

Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module "Eagle." Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera.   Image credit: NASA
Aldrin Gazes at Tranquility Base. Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). In the left background is the black and white lunar surface television camera and in the far right background is the Lunar Module “Eagle.” Mission commander Neil Armstrong took this photograph with the 70mm lunar surface camera. Image credit: NASA
Beginning the Mission. The Apollo 11 crew leaves Kennedy Space Center's Manned Spacecraft Operations Building during the pre-launch countdown. Mission commander Neil Armstrong, command module pilot Michael Collins, and lunar module pilot Buzz Aldrin prepare to ride the special transport van to Launch Complex 39A where their spacecraft awaited them. Liftoff occurred 38 years ago today at 9:32 a.m. EDT, July 16, 1969.  Image credit: NASA
Beginning the Mission. The Apollo 11 crew leaves Kennedy Space Center’s Manned Spacecraft Operations Building during the pre-launch countdown. Mission commander Neil Armstrong, command module pilot Michael Collins, and lunar module pilot Buzz Aldrin prepare to ride the special transport van to Launch Complex 39A where their spacecraft awaited them. Liftoff occurred 38 years ago today at 9:32 a.m. EDT, July 16, 1969. Image credit: NASA
Launch of Apollo 11.  On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit.  Image credit: NASA
Launch of Apollo 11. On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States’ first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module “Eagle” to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules “Columbia” in lunar orbit. Image credit: NASA
Apollo 11 liftoff from Pad 39 at the Kennedy Space Center on July 16, 1969. Credit: NASA
Apollo 11 liftoff from Pad 39 at the Kennedy Space Center on July 16, 1969. Credit: NASA
Apollo 11 landing site on the Moon at the Sea of Tranquility on July 20, 1969
Apollo 11 landing site on the Moon at the Sea of Tranquility on July 20, 1969

Cargo Ship’s Fiery Demise Could Help Predict What Happens When The Space Station Burns Up

Artist's conception of the final Automated Transfer Vehicle (ATV), Georges Lemaître, breaking up during re-entry following a cargo run to the International Space Station. Credit: ESA–D. Ducros

It’s sad to think about, but there will be a day sometime when the International Space Station makes its final journey — a destructive re-entry into Earth’s atmosphere. Historically, it’s been hard to break up large pieces of space hardware safely. Pieces of the Skylab space station famously rained down in Australia, while Mir’s demise triggered warnings across its re-entry path.

The European Space Agency sees an opportunity to gather more information for this future use: closely watching what happens when the final Automated Transfer Vehicle (ATV), Georges Lemaître, goes to the International Space Station and has its planned breakup in the atmosphere following the shipment.

They plan to record its last moments using a heat-seeking camera on the inside of the spacecraft. This sort of thing has been done before with NASA and the Japanese Aerospace Exploration Agency, but this will be a first for ESA.

“The data should also hold broader value,” stated Neil Murray, who is leading the project at the European Space Agency (ESA).

“The project is proceeding under our ‘Design for Demise’ effort to design space hardware in such a way that it is less likely to survive reentry and potentially endanger the public. Design for Demise in turn is part of the agency’s clean space initiative, seeking to render the space industry more environmentally friendly in space as well as on Earth.”

The Automated Transfer Vehicle Albert Einstein burning up on Nov. 2, 2013 at 12:04 GMT over an uninhabitated part of the Pacific Ocean. This picture was snapped from the International Space Station. Credit: ESA/NASA
The Automated Transfer Vehicle Albert Einstein burning up on Nov. 2, 2013 at 12:04 GMT over an uninhabitated part of the Pacific Ocean. This picture was snapped from the International Space Station. Credit: ESA/NASA

The camera will ride inside, bolted to a rack, and transmit the last 20 seconds of its lifetime to a special Reentry Satcom capsule that is designed to survive the breakup. The data will in turn be sent to Earth using an Iridium satellite.

While the SatCom will be protected by a heatshield, the challenge will be transmitting the information through the plasma generated as it falls at 6 to 7 kilometers (3.7 to 4.3 miles) a second. The breakup will happen at 80 kilometers (50 miles) and the plasma will be there until below an altitude of about 40 kilometers (25 miles), ESA stated.

“The fall will generate high-temperature plasma around it, but signals from its omnidirectional antenna should be able to make it through any gap in the plasma to the rear,” the agency added.

Georges Lemaître is expected to launch later this month and last six months in space before re-entry.

Source: European Space Agency

‘Moonwalk One’ Makes Us Excited About Apollo 11 All Over Again

A sign wishing the Apollo 11 crew good luck prior to the launch on July 16, 1969. Screenshot from the 1970 documentary "Moonwalk One." Credit: NASA/Theo Kamecke/YouTube

Long lineups at Cape Kennedy. Every television channel playing the same breathless coverage. Shots of rockets, of men in spacesuits, and of course the ghostly image of people stepping on to the moon for the first time.

If you’re old enough to remember Apollo 11, this documentary above should bring back a lot of warm memories. And even if you’re not (which includes the writer of this article), it gives you a small taste of just how awesome the atmosphere must have been.

“Moonwalk One” is a 1970 documentary directed by Theo Kamecke, and now we’re lucky enough to watch it for free on NASA’s YouTube channel. As soon as you can spare a couple of hours, do watch it.

The first few minutes alone are fun, with dramatic shots of Stonehenge and the Saturn V contrasted with frantic shots of traffic and dancing and signs all over the Cape.

Apollo 11's Saturn V rocket prior to the launch July 16, 1969. Screenshot from the 1970 documentary "Moonwalk One." Credit: NASA/Theo Kamecke/YouTube
Apollo 11’s Saturn V rocket prior to the launch July 16, 1969. Screenshot from the 1970 documentary “Moonwalk One.” Credit: NASA/Theo Kamecke/YouTube
Apollo 11 lunar module pilot Buzz Aldrin in a screenshot from the 1970 documentary "Moonwalk One." Credit: NASA/Theo Kamecke/YouTube
Apollo 11 lunar module pilot Buzz Aldrin in a screenshot from the 1970 documentary “Moonwalk One.” Credit: NASA/Theo Kamecke/YouTube

Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

The International Space Station's robotic arm, Canadarm2, grapples the Orbital Sciences' Cygnus cargo craft named "Janice Voss" on July 16, 2014. Image Credit: NASA TV

Following a nearly three day journey, an Orbital Sciences Corp. Cygnus commercial cargo freighter carrying a ton and a half of science experiments and supplies for the six person crew was successfully installed onto the International Space Station at 8:53 a.m. EDT this morning, July 16, after a flawless arrival and being firmly grasped by station astronauts deftly maneuvering the Canadarm2 robotic arm some two hours earlier.

Cygnus was captured in open space at 6:36 a.m. EDT by Commander Steve Swanson as he maneuvered the 57-foot (17-meter) Canadarm2 from a robotics workstation inside the station’s seven windowed domed Cupola, after it was delicately flown on an approach vector using GPS and LIDAR lasers to within about 32 feet (10 meters) of the massive orbiting complex.

Swanson was assisted by ESA astronaut and fellow Expedition 40 crew member Alexander Gerst working at a hardware control panel.

“Grapple confirmed” radioed Houston Mission Control as the complex soared in low orbit above Earth at 17500 MPH.

“Cygnus is captured as the ISS flew 260 miles (400 km) over northern Libya.”

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

Cygnus by the book arrival at the million pound orbiting laboratory coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission.

This mission dubbed Orbital-2, or Orb-2, marks the second of eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The supplies are critical to keep the station flying and humming with research investigations.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The supply ship thrusters all worked perfectly normal during rendezvous and docking to station with streaming gorgeous views provided by the stations new high definition HDEV cameras.

“We now have a seventh crew member. Janice Voss is now part of Expedition 40,” radioed Swanson.

“Janice devoted her life to space and accomplished many wonderful things at NASA and Orbital Sciences, including five shuttle missions. And today, Janice’s legacy in space continues. Welcome aboard the ISS, Janice.”

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

A robotics officer at Mission Control in Houston then remotely commanded the arm to move Cygnus into place for its berthing at the Earth-facing port on the Harmony module.

Once Cygnus was in place at the ready to latch (RTF) position, NASA astronaut and Flight Engineer Reid Wiseman monitored the Common Berthing Mechanism operations and initiated the first and second stage capture of the cargo ship to insure the craft was firmly joined.

The hard mate was completed at 8:53 a.m. EDT as the complex was flying about 260 miles over the east coast of Australia. 16 bolts were driven to firmly hold Cygnus in place to the station.

“Cygnus is now bolted to the ISS while flying 260 miles about the continent of Australia,” confirmed Houston Mission Control.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

The crew will begin work today to remove the Centerline Berthing Camera System that provided the teams with a view of berthing operations through the hatch window.

Swanson will then pressurize and outfit the vestibule area between Harmony and Cygnus. After conducting leak checks they will open the hatch to Cygnus either later today or tomorrow and begin the unloading process, including retrieving a stash of highly desired fresh food.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

“Every flight is critical,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culbertson was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“We carry a variety of types of cargo on-board, which includes food and basic supplies for the crew, and also the research.”

The cargo mission was crucial since the crew supply margin would have turned uncomfortably narrow by the Fall of 2014.

Cygnus will remain attached to the station approximately 30 days until August 15.

For the destructive and fiery return to Earth, the crew will load Cygnus with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later after undocking.

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

The July 13 liftoff marked the fourth successful launch of the 132 foot tall Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

DARPA’s Experimental Space Plane XS-1 Starts Development

Concept images for DARPA’s Experimental Spaceplane (XS-1) program. Credit: DARPA.

The Defense Advanced Research Projects Agency (DARPA) is looking to develop a fully-reusable unmanned spaceplane, and they are now ready to start working their proposed Experimental Spaceplane (XS-1). The agency has put together a “special forces” of sorts in the space industry, awarding prime contracts for the first phase of development to a combination of six companies. These six are a combination of “old” and “new” space companies and are:

The Boeing Company (working with Blue Origin, LLC)
Masten Space Systems (working with XCOR Aerospace)
Northrop Grumman Corporation (working with Virgin Galactic)

“We chose performers who could prudently integrate existing and up-and-coming technologies and operations, while making XS-1 as reliable, easy-to-use and cost-effective as possible,” Jess Sponable, DARPA program manager. “We’re eager to see how their initial designs envision making spaceflight commonplace—with all the potential military, civilian and commercial benefits that capability would provide.”

Each commercial entity will be able to outline their vision of the XS-1, but DARPA wants the the spaceplane to provide aircraft-like access to space for deploying small satellites to orbit and it its development, they’d like to create technology for next-generation hypersonic vehicles, — and do it more affordably.

They envision that a reusable first stage would fly to hypersonic speeds at a suborbital altitude. Then, one or more expendable upper stages would separate and deploy a satellite into low Earth orbit (LEO). The reusable first stage would then return to earth, land and be prepared for the next flight.

Key to the development, DARPA says, are modular components, durable thermal protection systems and automatic launch, flight and recovery systems that should significantly reduce logistical needs, enabling rapid turnaround between flights.

DARPA’s key technical goals for the XS-1 include flying 10 times in 10 days, flying to Mach 10+ at least once and launching a representative small payload to orbit. The program also seeks to reduce the cost of access to space for 3,000- to 5,000-pound payloads to less than $5 million per flight.

Source: DARPA