Has it been three years already? The last mission of the space shuttle program launched on this day in 2011. We’ve included some of the most beautiful NASA images from the final flight of Atlantis.
But we’re also interested in publishing photos from Universe Today readers! If you attended STS-135 or any other launch of the space shuttle program, we’d like to hear from you. More details below the jump.
The mission’s major goal was to heft a multipurpose logistics module into space, as well as a bunch of spare parts that would be difficult to ship after the space shuttle retired. But it also served as a point of remembrance for the thousands of workers who constructed and maintained the shuttle, and the millions of people who watched its flights.
Where were you during that flight? What pictures did you take? Let us know in the comments and if you’d like to see your images published in a future Universe Today story, share your photos in our Flickr group. The photos must belong to you and be free to share. While this story focuses on STS-135, pictures from any shuttle launch or event are welcome. Let us know which one it was!
To kick off the memories, I’ll talk about where I was during the launch: I was on my way to a wedding in Toronto, Canada — five hours away from my hometown of Ottawa. I managed to pull into a parking lot just a few minutes before the launch sequence started.
I tried and tried to get a steady signal for video, but my phone was having none of it, so I instead “watched” the launch on Twitter. Luckily for me, friends were tweeting and sending text updates from watching television or in person, so I didn’t miss a thing. Then a couple of days later, my best friend and I both watched the NASA launch video together for the first time.
NASA WALLOPS FLIGHT FACILITY, VA – The long delayed liftoff of an Orbital Sciences Corp. commercial Antares rocket on a cargo mission bound for the International Space Station (ISS) has been cleared for blastoff this Friday, July 11, from the Eastern shore of Virginia, following a thorough re-inspection of the two Russian built and US modified AJ26 engines that power the rocket’s first stage after the test failure of a different engine in May.
The critically important Aerojet Rocketdyne AJ26 engine re-inspection was mandated following the significant failure of another AJ26 engine during acceptance testing on May 22 at NASA’s Stennis Space Center in Mississippi to investigate any concerns and insure against an in flight failure.
NASA and Orbital Sciences are now targeting the Antares launch carrying the privately developed Cygnus resupply freighter on the Orb-2 mission from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility, Virginia, on July 11 at 1:40 p.m. (EDT).
Universe Today was granted a visit to the Orbital Sciences Antares rocket integration facility at NASA Wallops recently as the engine re-inspection work was winding down. See my Antares/Cygnus Orb-2 rocket photos herein.
Aerojet engineers re-inspected the engines while they were still mated to the bottom of the Antares rocket and found them to be satisfactory for fight. No swap out was required.
The Cygnus cargo logistics spacecraft was then mated to the rocket on July 3 and will be rolled out to the Wallops launch pad on Wednesday morning at 8:30 a.m., July 9.
Late stow items including time sensitive science experiments will be packed aboard on Tuesday, July 8.
The launch window on July 11 opens at 1:40 p.m. for a duration of 5 minutes.
In the event of a delay for any reason the next available launch opportunity is July 12 at 1:14 p.m.
Until the first stage engine failure, this Antares rocket had been slated to blastoff on June 10 with the Cygnus cargo freighter on the Orb-2 mission which is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.
The AJ26 rocket engine that failed in May was extensively damaged about halfway through the planned test aimed at qualifying the engine for an Antares flight scheduled for early next year.
“There was a test failure at Stennis on May 22,” Orbital Sciences spokesman Barry Beneski told Universe Today at that time. “Engineers are examining data to determine the cause of the failure.”
The failure occurred approximately 30 seconds into the planned 54-second test.
“It terminated prematurely, resulting in extensive damage to the engine,” Orbital said in a statement in May.
The pressurized Cygnus spacecraft will deliver 1,657 kg of cargo to the ISS including science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.
Cygnus will remain berthed at the station for 40 days.
For the return to Earth it will be loaded with approximately 1,346 kg of material for disposal upon atmospheric reentry.
The two stage Antares rocket stands 133 feet tall.
It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.
Flight time to the ISS is approximately 3 days. An on time launch will result in Cygnus arrival at the ISS on July 15.
Station commander Steven Swanson of NASA and Flight Engineer Alexander Gerst of the European Space Agency (ESA) will grapple and berth Cygnus using the stations 57 foot-long robotic arm onto the Earth-facing port of the station’s Harmony module.
The Antares first stage is powered by a pair of liquid oxygen and kerosene fueled AJ26-62 engines that deliver a combined 734,000 pounds (3265 kilonewtons) of sea level thrust.
To date the AJ26 engines have performed flawlessly through a total of three Antares launches from NASA’s Wallops Flight Facility in Virginia starting in April 2013.
They measure 3.3 meters (10.9 feet) in height and weigh 1590 kg (3,500 lb.).
The AJ26 engines were originally known as the NK-33 and built during the 1960s and 1970s in the Soviet Union for their manned moon landing program.
Aerojet extensively modified, checked and tested the NK-33 engines now designated as the AJ26-62 to qualify them for use in the first stage Antares core, which is manufactured in Dnipropetrovsk, Ukraine by the Yuznoye Design Bureau and based on the Zenit launch vehicle.
Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.
The July mission marks the second operational Antares/Cygnus flight.
SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.
Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.
Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
Learn more about Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA, and more about SpaceX, Boeing, commercial space, NASA’s Mars missions and more at Ken’s upcoming presentations.
July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening
Would you like to send your great idea for a research experiment to Mars and are searching for a method of transport?
The Mars One non-profit foundation that’s seeking settlers for a one-way trip to establish a permanent human colony on the Red Planet starting in the mid-2020’s, is now soliciting science and marketing proposals in a worldwide competition for their unmanned forerunner mission – the 2018 Mars One technology demonstration lander.
The Dutch-based Mars One team announced this week that they are seeking requests for proposals for seven payloads that would launch in August 2018 on humanities first ever privately financed robotic Red Planet lander.
Mars One hopes that the 2018 lander experiments will set the stage for liftoff of the first human colonists in 2024. Crews of four will depart every two years.
The 2018 lander structure would be based on NASA’s highly successful 2007 Phoenix Mars lander – built by Lockheed Martin – which discovered and dug into water ice buried just inches beneath the topsoil in the northern polar regions of the Red Planet.
Mars One has contracted with Lockheed Martin to build the new 2018 lander.
Lockheed is also currently assembling another Phoenix-like lander for NASA named InSight which is scheduled to blast off for Mars in 2016.
The payloads being offered fall under three categories; four science demonstration payloads, a single university science experiment, and two payload spaces up for sale to the highest bidder for science or marketing or “anything in between.”
The science payload competition is open to anyone including universities, research bodies, and companies from around the world.
“Previously, the only payloads that have landed on Mars are those which NASA has selected,” said Bas Lansdorp, Co-founder & CEO of Mars One, in a statement. “We want to open up the opportunity to the entire world to participate in our mission to Mars by sending a certain payload to the surface of Mars.”
The four science demonstration payloads will test some of the technologies critical for establishing the future human settlement. They include soil acquisition experiments to extract water from the Martian soil into a useable form to test technologies for future human colonists; a thin film solar panel to demonstrate power production; and a camera system working in combination with a Mars-synchronous communications satellite to take a ‘real time’ look on Mars.
The single University competition payload is open to universities worldwide and “can include scientific experiments, technology demonstrations or any other exciting idea.” Click here for – submission information.
Furthermore two of the payloads are for sale “to the highest bidder” says Mars One in a statement and request for proposals document.
The payloads for sale “can take the form of scientific experiments, technology demonstrations, marketing and publicity campaigns, or any other suggested payload,” says Mars One.
“We are opening our doors to the scientific community in order to source the best ideas from around the world,” said Arno Wielders, co-founder and chief technical officer of Mars One.
“The ideas that are adopted will not only be used on the lander in 2018, but will quite possibly provide the foundation for the first human colony on Mars. For anyone motivated by human exploration, there can be no greater honor than contributing to a manned mission to Mars.”
Over 200,000 Earthlings applied to Mars One to become future human colonists. That list has recently been narrowed to 705.
Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, commercial space, MAVEN, MOM, Mars and more planetary and human spaceflight news.
Learn more about NASA’s Mars missions and Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA in July and more about SpaceX, Boeing and commercial space and more at Ken’s upcoming presentations.
July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening
The Orbiting Carbon Observatory-2, NASA’s first mission dedicated to studying carbon dioxide in Earth’s atmosphere, lifts off from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014 on a Delta II rocket. The two-year mission will help scientists unravel key mysteries about carbon dioxide. Credit: NASA/Bill Ingalls
Story updated[/caption]
Following a nearly three-year long hiatus, the workhorse Delta II rocket successfully launched NASA’s first spacecraft dedicated to watching Earth breathe by studying Earth’s atmospheric carbon dioxide (CO2) – the leading human-produced greenhouse gas and the principal human-produced driver of climate change.
The Orbiting Carbon Observatory-2 (OCO-2) raced to orbit earlier this morning, during a spectacular nighttime blastoff at 2:56 a.m. PDT (5:56 a.m. EDT), Tuesday, July 2, 2014, from Vandenberg Air Force Base, California, atop a United Launch Alliance Delta II rocket.
The flawless launch marked the ‘return to flight’ of the venerable Delta II and was broadcast live on NASA TV.
A camera mounted on the Delta II’s second stage captured a breathtaking live view of the OCO-2 spacecraft during separation from the upper stage, which propelled it into an initial 429-mile (690-kilometer) orbit.
The life giving solar arrays were unfurled soon thereafter and NASA reports that the observatory is in excellent health.
“Climate change is the challenge of our generation,” said NASA Administrator Charles Bolden in a statement.
“With OCO-2 and our existing fleet of satellites, NASA is uniquely qualified to take on the challenge of documenting and understanding these changes, predicting the ramifications, and sharing information about these changes for the benefit of society.”
Over the next three weeks the OCO-2 probe will undergo a thorough checkout and calibration process. It will also be maneuvered into a 438-mile (705-kilometer) altitude, near-polar orbit where it will become the lead science probe at the head of the international Afternoon Constellation, or “A-Train,” of Earth-observing satellites.
“The A-Train, the first multi-satellite, formation flying “super observatory” to record the health of Earth’s atmosphere and surface environment, collects an unprecedented quantity of nearly simultaneous climate and weather measurements,” says NASA.
Science operations begin in about 45 days.
The 999 pound (454 kilogram) observatory is the size of a phone booth.
OCO-2 is equipped with a single science instrument consisting of three high-resolution, near-infrared spec¬trometers fed by a common telescope. It will collect global measurements of atmospheric CO2 to provide scientists with a better idea of how CO2 impacts climate change and is responsible for Earth’s warming.
During a minimum two-year mission the $467.7 million OCO-2 will take near global measurements to locate the sources and storage places, or ‘sinks’, for atmospheric carbon dioxide, which is a critical component of the planet’s carbon cycle.
OCO-2 was built by Orbital Sciences as a replacement for the original OCO which was destroyed during the failed launch of a Taurus XL rocket from Vandenberg back in February 2009 when the payload fairing failed to open properly and the spacecraft plunged into the ocean.
The OCO-2 mission will provide a global picture of the human and natural sources of carbon dioxide, as well as their “sinks,” the natural ocean and land processes by which carbon dioxide is pulled out of Earth’s atmosphere and stored, according to NASA.
“This challenging mission is both timely and important,” said Michael Freilich, director of the Earth Science Division of NASA’s Science Mission Directorate in Washington.
“OCO-2 will produce exquisitely precise measurements of atmospheric carbon dioxide concentrations near Earth’s surface, laying the foundation for informed policy decisions on how to adapt to and reduce future climate change.”
It will record around 100,000 precise individual CO2 measurements around the worlds entire sunlit hemisphere every day and help determine its source and fate in an effort to understand how human activities impact climate change and how we can mitigate its effects.
At the dawn of the Industrial Revolution, there were about 280 parts per million (ppm) of carbon dioxide in Earth’s atmosphere. As of today the CO2 level has risen to about 400 parts per million.
“Scientists currently don’t know exactly where and how Earth’s oceans and plants have absorbed more than half the carbon dioxide that human activities have emitted into our atmosphere since the beginning of the industrial era,” said David Crisp, OCO-2 science team leader at NASA’s Jet Propulsion Laboratory in Pasadena, California, in a statement.
“Because of this, we cannot predict precisely how these processes will operate in the future as climate changes. For society to better manage carbon dioxide levels in our atmosphere, we need to be able to measure the natural source and sink processes.”
OCO-2 is the second of NASA’s five new Earth science missions planned to launch in 2014 and is designed to operate for at least two years during its primary mission. It follows the successful blastoff of the joint NASA/JAXA Global Precipitation Measurement (GPM) Core Observatory satellite on Feb 27.
The two stage Delta II 7320-10 launch vehicle is 8 ft in diameter and approximately 128 ft tall and was equipped with a trio of first stage strap on solid rocket motors. This marked the 152nd Delta II launch overall and the 51st for NASA since 1989.
The last time a Delta II rocket flew was nearly three years ago in October 2011 from Vandenberg for the Suomi National Polar-Orbiting Partnership (NPP) weather satellite.
The next Delta II launch later this year from Vandenberg involves NASA’s Soil Moisture Active Passive (SMAP) mission and counts as another of NASA’s five Earth science missions launching in 2014.
Stay tuned here for Ken’s continuing OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.
Lose a soccer game and lose your hair. That’s apparently the deal that American astronauts made on the International Space Station last week, as commander Steve Swanson and Reid Wiseman both were shaved bald after the U.S. lost to Germany 1-0 June 26 in the FIFA World Cup. Gleefully wielding the shaver was Alexander Gerst, who happens to be from Germany.
Despite their busy science schedule, the astronauts have been enthusiastically following (and tweeting about!) the games. Not to mention they did a couple of improvised soccer matches in zero gravity, complete with awesome celebratory dances. You can check out all the video action below.
Well, technically not space*, but suborbital, and that’d still be way cool! And what’s even cooler is that you can enter to win a trip on an XCOR Lynx Mark II suborbital flight while helping to support a good cause of your choice, courtesy of The Urgency Network’s “Ticket to Rise” campaign. Check out the dramatic spaceflight-packed promotional video and find out how to enter below:
The Urgency Network is an online platform whereby participants can win experience-based prizes by participating in campaigns that are designed to aid and support good causes, many of which assist specific communities in need, awareness groups, and conservation efforts. You earn “entries” for prize drawings by purchasing gift packages from the participating foundations or by donating time, social media presence, or money directly. It’s a way for organizations that might not have (or be able to afford) a large PR department to get funded and gain widespread exposure. Learn more about The Urgency Network here.
In the Ticket to Rise campaign, the grand prize is beyond stratospheric — literally! One lucky winner will experience a ride aboard an XCOR Lynx Mark II suborbital craft, a single-stage space vehicle that takes off from a runway to ultimately coast briefly at a maximum altitude of 328,000 feet (about 100 km), experiencing 4 minutes of microgravity before re-entry and a runway landing. It’s a supersonic 30-minute flight to the very edge of space!
(*Actually, 100 km is right at the von Karman line, so riding the Lynx Mark II past that could qualify you as an astronaut. Just sayin’.)
Add to that you’d be helping any one of dozens of good causes (you can choose from different ones by clicking the “Select a Different NonProfit” text link on the donation page) and it’s a win-win for everyone. And even if you don’t get a seat aboard a spaceship (many will enter, few will win) you can still get some pretty awesome promo offers from the organizations as bulk-entry packages.
The deadline to enter the campaign is 11:59:59 p.m. EDT August 11, 2014. Drawing will be held on August 12. The Lynx flight is dependent on meeting all requirements and passing physical exams and tests by XCOR Aerospace, and although the date is expected to be in the fall of 2015, this is rocket science and things change. Read the official contest rules for all details, fine print, etc.
A SpaceX Falcon 9 rocket was rolled out to its Florida launch pad early this morning at 1 a.m., Friday, June 20, in anticipation of blastoff at 6:08 p.m. EDT this evening on an oft delayed commercial mission for ORBCOMM to carry six advanced OG2 communications satellites to significantly upgrade the speed and capacity of their existing data relay network, affording significantly faster and larger messaging services.
The Falcon 9 rocket is lofting six second-generation ORBCOMM OG2 commercial telecommunications satellites from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.
Update (6/23): The Saturday launch was scrubbed due to 2nd stage pressure decrease and then was scrubbed on Saturday and Sunday due to weather and technical reasons. SpaceX must now delay the launch until the first week in July because of previously scheduled maintenance for the Eastern Test Range, which supports launches from Cape Canaveral Air Force Station. This also allows SpaceX to take “a closer look at a potential issue identified while conducting pre-flight checkouts during [Sunday’s] countdown,” the company said in statement on its website on June 23.
The next generation SpaceX Falcon 9 rocket is launching in its more powerful v1.1 configuration with upgraded Merlin 1D engines, stretched fuel tanks, and the satellites encapsulated inside the payload fairing.
Falcon 9 will deliver all six next-generation OG2 satellites to an elliptical 750 x 615 km low-Earth orbit. They will be deployed one at a time starting 15 minutes after liftoff.
The first stage is also equipped with a quartet of landing legs to conduct SpaceX’s second test of a controlled soft landing in the Atlantic Ocean in an attempt to recover and eventually use the stage as a means of radically driving down overall launch costs – a top goal of SpaceX’s billionaire CEO and founder Elon Musk.
The launch has been delayed multiple times from May due to technical problems with both the Falcon 9 rocket and the OG2 satellites.
The May launch attempt was postponed when a static hot-fire test was halted due to a helium leak and required engineers to fix the issues.
Last week on June 13, SpaceX conducted a successful static hot-fire test of the 1st stage Merlin engines (see photos above and below) which had paved the way for blastoff as soon as Sunday, June 15.
However ORBCOMM elected to delay the launch in order to conduct additional satellite testing to ensure they are functioning as expected, the company reported.
“In an effort to be as cautious as possible, it was decided to perform further analysis to verify that the issue observed on one satellite during final integration has been fully addressed. The additional time to complete this analysis required us to postpone the OG2 Mission 1 Launch,” said ORBCOMM.
You can watch the launch live this evening with real time commentary from SpaceX mission control located at their corporate headquarters in Hawthorne, CA.
The six new satellites will join the existing constellation of ORBCOMM OG1 satellites launched over 15 years ago.
The weather outlook is currently not promising with only a 30% chance of favorable conditions at launch time. The launch window extends for 53 minutes.
The primary concerns according to the USAF forecast are violations of the Cumulus Cloud Rule, Thick Cloud Rule, Lightning Rule, Anvil Cloud Rule.
In the event of a scrub, the backup launch window is Saturday June 21. The weather outlook improves to 60% ‘GO’.
Fueling of the rocket’s stages begins approximately four hours before blastoff – shortly after 2 p.m. EDT. First with liquid oxygen and then with RP-1 kerosene propellant.
Each of the 170 kg OG2 satellites was built by Sierra Nevada Corporation and will provide a much needed boost in ORBCOMM’s service capacity.
10 more OG2 satellites are scheduled to launch on another SpaceX Falcon 9 in the fourth quarter of 2014 to complete ORBCOMM’s next generation constellation.
“ORBCOMM’s OG2 satellites will offer up to six times the data access and up to twice the transmission rate of ORBCOMM’s existing OG1 constellation,” according to the SpaceX press kit.
“Each OG2 satellite is the equivalent of six OG1 satellites, providing faster message delivery, larger message sizes and better coverage at higher latitudes, while drastically increasing network capacity. Additionally, the higher gain will allow for smaller antennas on communicators and reduced power requirements, yielding longer battery lives.”
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Cosmonauts Alexander Skvortsov and Oleg Artemyev are working outside at the International Space Station today! They will spend about 6.5 hours outside installing an antenna for data relays, relocating a cargo boom, swabbing samples from a window on the Zvezda service module and switching out science experiment gear. Watch live above.
This is milestone of sorts for ISS spacewalks: it is the 180th spacewalk in support of space station construction and maintenance since December 1998, when the Russian Zarya module was mated to the US Unity node. You can read what that first spacewalk was like in an interview with astronauts Bob Cabana: What Day 1 on the International Space Station Was like for the Astronauts.
And what’s going on inside the ISS today?
Pretty neat up here right now- two Russian crew mates are spacewalking but business as usual for me and @astro_alex
If you want to know who is who during the spacewalk, Skvortsov is wearing the Russian Orlan spacesuit with red stripes, and Artemyev’s has a spacesuit with blue stripes.
NASA’s decade old Opportunity rover has reached a long sought after region of aluminum-rich clay mineral outcrops at a new Endeavour crater ridge now “named ‘Pillinger Point’ after Colin Pillinger the Principal Investigator for the [British] Beagle 2 Mars lander”, Prof. Ray Arvidson, Deputy Principal Investigator for the rover, told Universe Today exclusively. See above the spectacular panoramic view from ‘Pillinger Point’ – where ancient water once flowed billions of year ago.
The Beagle 2 lander was built to search for signs of life on Mars.
The Mars Exploration Rover (MER) team named the noteworthy ridge in honor of Prof. Colin Pillinger – a British planetary scientist at the Open University in Milton Keynes, who passed away at the age of 70 on May 7, 2014.
‘Pillinger Point’ is a scientifically bountiful place possessing both clay mineral outcrops and mineral veins where “waters came up through the cracks”, Arvidson explained to me.
Since water is a prerequisite for life as we know it, this is a truly fitting tribute to name Opportunity’s current exploration site ‘Pillinger Point’ after Prof. Pillinger.
See our new photo mosaic above captured by Opportunity peering out from ‘Pillinger Point’ ridge on June 5, 2014 (Sol 3684) and showing a panoramic view around the eroded mountain ridge and into vast Endeavour crater.
The gigantic crater spans 14 miles (22 kilometers) in diameter.
See below our Opportunity 10 Year traverse map showing the location of Pillinger Point along the segmented rim of Endeavour crater.
Pillinger Point is situated south of Solander Point and Murray Ridge along the western rim of Endeavour in a region with caches of clay minerals indicative of an ancient Martian habitable zone.
For the past several months, the six wheeled robot has been trekking southwards from Solander towards the exposures of aluminum-rich clays – now named Pillinger Point- detected from orbit by the CRISM spectrometer aboard NASA’s powerful Martian ‘Spysat’ – the Mars Reconnaissance Orbiter (MRO) – while gathering context data at rock outcrops along the winding way.
“We are about 3/5 of the way along the outcrops that show an Al-OH [aluminum-hydroxl] montmorillonite [clay mineral] signature at 2.2 micrometers from CRISM along track oversampled data,” Arvidson told me.
“We have another ~160 meters to go before reaching a break in the outcrops and a broad valley.”
The rover mission scientists ultimate goal is travel even further south to ‘Cape Tribulation’ which holds a motherlode of the ‘phyllosilicate’ clay minerals based on extensive CRISM measurements accomplished earlier at Arvidson’s direction.
“The idea is to characterize the outcrops as we go and then once we reach the valley travel quickly to Cape Tribulation and the smectite valley, which is still ~2 km to the south of the present rover location,” Arvidson explained.
Mars Express and Beagle 2 were launched in 2003, the same year as NASA’s twin rovers Spirit and Opportunity, on their interplanetary voyages to help unlock the mysteries of Mars potential for supporting microbial life forms.
Pillinger was the driving force behind the British built Beagle 2 lander which flew to the Red Planet piggybacked on ESA’s Mars Express orbiter. Unfortunately Beagle 2 vanished without a trace after being deployed from the orbiter on Dec. 19, 2003 with an expected air bag assisted landing on Christmas Day, Dec. 25, 2003.
In an obituary by the BBC, Dr David Parker, the chief executive of the UK Space Agency, said that Prof. Pillinger had played a critical role in raising the profile of the British space programme and had inspired “young people to dream big dreams”.
During his distinguished career Pillinger also analyzed lunar rock samples from NASA’s Apollo moon landing missions and worked on ESA’s Rosetta mission.
“It’s important to note that Colin’s contribution to planetary science goes back to working on Moon samples from Apollo, as well as his work on meteorites,” Dr Parker told the BBC.
Today, June 16, marks Opportunity’s 3696th Sol or Martian Day roving Mars – compared to a warranty of just 90 Sols.
So far she has snapped over 193,400 amazing images on the first overland expedition across the Red Planet.
Her total odometry stands at over 24.51 miles (39.44 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.
Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp after drilling into her 3rd Red Planet rock at Kimberley.
Stay tuned here for Ken’s continuing Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more planetary and human spaceflight news.
The full scale CST-100 mockup was unveiled at an invitation only ceremony for Boeing executives and media held inside a newly renovated shuttle era facility at the Kennedy Space Center where the capsule would start being manufactured later this year.
Universe Today was invited to tour the capsule for a first hand inspection of the CST-100’s interior and exterior and presents my photo gallery here.
The CST-100 is a privately built manrated capsule being developed with funding from NASA under the auspices of the agency’s Commercial Crew Program (CCP) in a public/private partnership between NASA and private industry.
The vehicle will be assembled inside the refurbished processing hangar known during the shuttle era as Orbiter Processing Facility-3 (OPF-3). Boeing is leasing the site from Space Florida.
Boeing is one of three American aerospace firms vying for a NASA contract to build an American ‘space taxi’ to ferry US astronauts to the space station and back as soon as 2017.
The SpaceXDragon and Sierra Nevada Dream Chaser are also receiving funds from NASA’s commercial crew program.
NASA will award one or more contracts to build Americas next human rated spaceship in August or September.
Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.
Chris Ferguson, the final shuttle commander for NASA’s last shuttle flight (STS-135) now serves as director of Boeing’s Crew and Mission Operations.
Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.
Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.
The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.
The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.
The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.