NASA Severs Most Ties With Russia, Sparing Station But Pushing For U.S. Launches Again

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

NASA plans to cease most work with the Russian Federal Space Agency amid growing tensions concerning the Ukrainian crisis, a spokesperson confirmed with a statement to Universe Today Wednesday evening (April 2).

While the International Space Station will still see work to “maintain safe and continuous operation”, most other NASA activities with Roscosmos will cease, the statement read. It added (citing the Obama administration) that Congress now faces a choice between fully funding human U.S. launches again in 2017, or facing years more of sending money to the Russians for Soyuz launches from Kazakhstan.

In full, this is the statement that Bob Jacobs, NASA’s deputy associate administrator of communications, sent to Universe Today (UPDATE, 8:54 p.m. EDT — this is also now available on NASA’s G+ page)

Given Russia’s ongoing violation of Ukraine’s sovereignty and territorial integrity, NASA is suspending the majority of its ongoing engagements with the Russian Federation. NASA and Roscosmos will, however, continue to work together to maintain safe and continuous operation of the International Space Station.

NASA is laser focused on a plan to return human spaceflight launches to American soil, and end our reliance on Russia to get into space. This has been a top priority of the Obama Administration’s for the past five years, and had our plan been fully funded, we would have returned American human spaceflight launches – and the jobs they support – back to the United States next year.

With the reduced level of funding approved by Congress, we’re now looking at launching from U.S. soil in 2017. The choice here is between fully funding the plan to bring space launches back to America or continuing to send millions of dollars to the Russians. It’s that simple. The Obama Administration chooses to invest in America – and we are hopeful that Congress will do the same.

It is unclear from this statement exactly what activities would constitute “safe and continuous operation” of station. So, for example, it’s unclear so far if (for example) NASA will still send photographers to cover launches and landing in Russia, or to what extent NASA TV broadcasts of Russian spacewalks would be affected.

Since the shuttle retired in 2011, NASA and other space agencies such as the European Space Agency have relied on Russian Soyuz spacecraft to bring astronauts to the International Space Station. Crews are generally made up of large proportions of Russian cosmonauts and American astronauts, as well as a few astronauts from other agencies. The current Expedition 39 crew has has three Russians, two Americans and a Japanese commander, Koichi Wakata. Expedition 40 will launch aboard a Soyuz spacecraft in May, if all goes to plan.

The crew members of Expedition 40/41 pose in front of a Soyuz spacecraft simulator in Star City, Russia. From left, Alex Gerst (European Space Agency), Max Suraev (Roscosmos) and Reid Wiseman (NASA). Credit: NASA
The crew members of Expedition 40/41 pose in front of a Soyuz spacecraft simulator in Star City, Russia. From left, Alex Gerst (European Space Agency), Max Suraev (Roscosmos) and Reid Wiseman (NASA). Credit: NASA

The human spaceflight relationship between NASA and Russia stretches back to the 1970s when Russia was then the Soviet Union. Their first joint mission was with the Apollo-Soyuz Test Project in 1975. That relationship expanded when several NASA shuttles visited the Russian space station Mir in the 1990s, laying the groundwork for the International Space Station agreement today.

NASA is working on a commercial crew program that right now is slated to bring U.S. astronauts into space from American soil again in 2017. There are several proposals being considered: a human-rated version of SpaceX’s Dragon, Blue Origin’s New Shepard, Sierra Nevada Corp.’s Dream Chaser and the Boeing Co.’s CST-100. NASA releases regular updates on how these companies — most of which receive money from the agency for development — are progressing, with the most recent update coming March 31.

It is unclear, however, how much money CCP will receive in the upcoming fiscal 2015 budget request before Congress. Historically, NASA receives less money for this program than what the agency requests (which has pushed back launches by a few years). The new tensions with Russia, however, could make things different this time around. This seems to be what NASA is counting on in the statement.

As far as what missions could be affected due to cooperation with Russia, planetary scientist Barbara Cohen said on Twitter that while it may appear the US may do little with Russia beyond the International Space Station, cooperation in planetary science is rather big. Russian scientists contribute to several ongoing and upcoming NASA robotic missions, and US scientists are contributing to the planning for ExoMars, which is an ESA-Roscosmos mission, and the US is contributing Elektra telecommunication radios to the orbiter and part of a mass spectrometer for the rover. Additionally, US scientists are working with the Verera-D mission, a strategic Venus mission sponsored by Roscosmos, with participation by NASA’s Planetary Science Division.

The news of the breach comes about a month after NASA administrator Charlie Bolden told reporters that the Russian diplomacy crisis, which erupted after troops went to Crimea a few weeks ago (to U.S. and other countries’ condemnation), would not affect Soyuz launches or other activities related to the space station.

Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.
Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.

“Everything is nominal right now in our relationship with the Russians. We continue to monitor the situation,” said NASA administrator Charles Bolden in a conference call with reporters March 4, following the release of NASA’s preliminary budget request.

“The safety of our crews and our assets that has not changed. Safety is the No. 1 of NASA’s core values, so we are constantly doing contingency planning on the International Space Station for emergencies that might arise,” Bolden added, citing an emergency ammonia pump replacement in December as one such example.

“Those are the kinds of things we are always planning for, and in terms of the situation on the ground, we will go into contingency planning for that as the situation dictates. But right now, we don’t see any reason to do so,” he added.

International Space Station operations were recently extended to at least 2024, and NASA officials have pointed out that it and similar agreements have weathered other world crises.

Wednesday’s news first came to light in a reported internal memo posted on SpaceRef’s website that morning. Jacobs did not confirm or deny the memo’s authenticity in the e-mail to Universe Today.

Universe Today will issue updates as circumstances warrant.

SpaceX’s Next-Generation Reusable Rocket Roars In Tie-Down Test

The first stage of SpaceX's F9R rocket was tested in a "static fire" in March 2014. Credit: SpaceX/YouTube (screenshot)

As SpaceX pursues its quest of rocket reusability, it recently subjected the first stage of its next generation Falcon 9 rocket (called the Falcon 9-reusable or F9R) to a tie-down test ahead of some more heavy-duty work in the coming months and years. Early indications are that the test was a success, the firm said.

Details of the rocket are still scance on the SpaceX’s website, but the California-based company said that the rocket would generate about a million pounds of thrust at sea level, and 1.5 million pounds in space. It’s also a sort of follow-on from the leaping reusable Grasshopper rocket that retired last year.

Rockets are usually the “throwaway” items in a flight, but SpaceX is betting that by creating a reusable one that it will save on launch costs in the long run. (The rocket has been tested before, such as this long-duration one last June.)

“F9R test flights in New Mexico will allow us to test at higher altitudes than we are permitted for at our test site in Texas, to do more with unpowered guidance and to prove out landing cases that are more-flight like,” SpaceX stated in the YouTube video description.

SpaceX’s next launch to the space station was supposed to be in March, but it was scrubbed due to a radar outage that is affecting several launches. You can read more about the Falcon 9 rocket’s development (including the addition of landing legs) in this recent Universe Today article by Ken Kremer.

Have A Heart! This Organ Plays Shape-Shifter In Space, Leading To Mars Mission Questions

Astronaut Piers Sellers during an STS-121 spacewalk in 2006 to demonstrate techniques on repairing the shuttle's heat shield. Credit: NASA

Could a long mission to Mars increase your risk of heart problems back on Earth? That’s something that scientists are trying to better understand after discovering that hearts become temporarily rounder in space, at least in a study of 12 astronauts.

The finding doesn’t appear to be a big surprise for cardiovascular scientists, however, who had the astronauts examine their hearts using ultrasound machines on the International Space Station as well as before and after spaceflight. The heart gets 9.4 percent more round, similar to models developed for the project, before returning to its normal shape on Earth.

“The heart doesn’t work as hard in space, which can cause a loss of muscle mass,” stated James Thomas, lead scientist for ultrasound at NASA, and senior author of the study. “That can have serious consequences after the return to Earth, so we’re looking into whether there are measures that can be taken to prevent or counteract that loss.”

Astronauts typically spend six months on the International Space Station. One year from now, NASA’s Scott Kelly and Roscomos’ Mikhail Kornienko are going to launch for a one-year mission. Spending months upon months in space leads to a host of problems upon returning to Earth. Your muscles get weaker, you’re more likely to pass out, and you’re at increased risk of bone fractures, among other problems.

NASA astronaut Norm Thagard exercises aboard the Russian Mir space station in 1995. Thagard was the first American to launch into space aboard a Soyuz and spent what was then a record-breaking 115 days in space. Credit: NASA
NASA astronaut Norm Thagard exercises aboard the Russian Mir space station in 1995. Thagard was the first American to launch into space aboard a Soyuz and spent what was then a record-breaking 115 days in space. Credit: NASA

A typical person on the space station spends two hours a day exercising just to ward off the worst of the effects. The researchers added that one remedy could be to add more exercises targeting the heart. This will be particularly important for missions that last 12 to 18 months or more — such as a Mars mission.

Studying astronauts in space could provide data on Earth-bound patients facing similar problems, the researchers said. Since the models that they made for astronauts were so congruent with reality, this gives the researchers confidence that they could create similar models for patients on Earth.

Conditions that could be considered include ischemic heart disease (the most common kind of heart disease and source of heart attacks), hypertrophic cardiomyopathy (thickened heart muscle)  and valvular heart disease (damage to one of the heart’s valves).

Results were presented last week at the American College of Cardiology’s annual conference. It’s not immediately clear from a press release if the study was peer-reviewed. The researchers added that more study of astronauts after returning to Earth could be a useful research direction, to see how the effects persist (if at all.)

Source: American College of Cardiology

Event Alert: Watch Space Station Hatch Opening Live Tonight

The Expedition 39/40 crew just before climbing into their Soyuz spacecraft in Kazakhstan on March 25, 2014. From top, Oleg Artemyev (Roscosmos), Steve Swanson (NASA) and Alexander Skvortsov (Roscosmos). Credit: NASA/Joel Kowsky

Update, 8:33 p.m. EDT: The Soyuz spacecraft arrived safely at station at 7:53 p.m. EDT (11:53 a.m. UTC) and coverage of the hatch opening is scheduled at 10:15 p.m. EDT (2:15 a.m. UTC).

After spending an extra couple of days in the cramped Russian Soyuz spacecraft, the incoming International Space Station crew will likely be very be glad to get out and stretch their legs. You can check out the festivities live in the video link above.

Three people are set to make a docking with the orbiting complex at 7:58 p.m. EDT (11:58 p.m. UTC). If all goes to schedule, they’ll pop the hatch open at 10:40 p.m. EDT (2:40 a.m. UTC). Meanwhile, engineers are trying to figure out what caused the malfunction that prevented a docking as planned on Tuesday (March 25).

Remember that all schedules are subject to change, so tune into NASA TV well before each event happens.

The Expedition 39/40 crew lifted off Tuesday afternoon (EDT) from Kazakhstan to take a fast track to the space station that should have seen them dock on launch day. The Soyuz has to make three engine firings or burns to accomplish this. The docking was cancelled after the third burn did not happen as planned. The Russian Federal Space Agency (Roscosmos) has determined this was because the spacecraft was in the wrong orientation, but the underlying cause is still being investigated.

Once this happened, the crew switched to a standard backup procedure to bring them to the station in two days instead. (This path, in fact, was what all crews did up until last year.) The crew is safe and in good spirits heading up to the docking, NASA has said. The Soyuz has done several other engine firings since, with no incident.

The Soyuz crew includes Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). Awaiting them on the station are Koichi Wakata (Japan Aerospace Exploration Agency),  Rick Mastracchio (NASA) and Mikhail Tyurin (Roscosmos). Wakata is in command of the station, marking a first for Japan’s astronaut corps.

Astronauts ‘In Good Shape’ As They Face Space Station Docking Delay

The Expedition 39/40 crew gives a thumbs-up during quarantine prior to their March 25, 2014 launch from Kazakhstan. From left: Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). Credit: NASA

Despite a problem that held up last night’s International Space Station docking, the Expedition 39/40 crew is doing well as they execute a standard backup procedure to bring their Soyuz spacecraft to the station on Thursday, NASA said.

The crew was originally expected to dock with the station around 11 p.m. EDT (3 a.m. UTC), but an error with the spacecraft’s position in space prevented the engines from doing a third planned “burn” or firing to make that possible, NASA said in an update.

“At this point, the crew is in good shape and the vehicle appears to be in good shape,” said Kenny Todd, the space station’s operations integration manager, in an interview on NASA TV Wednesday morning (EDT). “At this point, everything looks real good.”

In fact, the spacecraft has done a couple of burns since to get it into the right spot for a docking Thursday evening, Todd added. (So it appears the crew just missed the window to get there on Tuesday night.) The underlying cause of the orientation problem was not mentioned in the interview, presumably because it’s still being investigated.

NASA is quite familiar with a two-day route to the space station as up until last year, all crews took two days to get to the space station. This took place for 14 years until a rapider method of reaching the orbiting complex within hours was introduced.

The crew includes  Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos), who will join three people already on station when they arrive.

Japanese astronaut Koichi Wakata plays around wiith humanoid robot Robonaut 2 during Expedition 39 in March 2014. Credit: NASA
Japanese astronaut Koichi Wakata plays around wiith humanoid robot Robonaut 2 during Expedition 39 in March 2014. Credit: NASA

Current station residents Koichi Wakata (the commander, of the Japan Aerospace Exploration Agency),  Rick Mastracchio (NASA) and Mikhail Tyurin (Roscosmos) got to sleep in this morning and had some minor modifications to their schedule because of the docking delay, Todd added.

Instead of taking the day off as planned, the crew will do some work. A planned ISS software update for last night is going to be pushed “down the line”, Todd said, adding that the forthcoming SpaceX launch on Sunday and docking on Tuesday is still going ahead as planned.

We’ll provide more updates as the situation progresses. Docking is scheduled for 7:58 p.m. EDT (11:58 p.m. UTC) Thursday and will be covered on NASA Television.

UPDATE 2: Crew’s Space Station Docking Delayed Two Days Due To Glitch

Steve Swanson, commander of Expedition 40, during a spacewalk on 2007 shuttle mission STS-117. Credit: NASA

Update, 10:13 p.m. EDT: Tonight’s docking with the International Space Station will not happen because one of the engine firings scheduled to happen did not take place when it was supposed to. The crew is safe, according to NASA, and going to a standard backup plan that should bring the craft to the station on Thursday (2 days from now). Roscosmos is examining the issue. We will provide updates as warranted.

Update, 6:43 p.m. EDT: The Soyuz is on its way to space after an on-time launch — and by the way, astronauts saw it leave from the space station! It’s en route and NASA is still expecting an arrival around 11:04 p.m. EDT., which you can watch live on NASA TV above.

Despite tensions on the ground between the United States and Russia, officials say that it’s business as usual on the International Space Station. The three people launching to space today, in fact, are from both countries: Alexander Skvortsov and Oleg Artemyev of the Russian Federal Space Agency (Roscosmos), and Steve Swanson from NASA.

As has been the habit lately, the Expedition 39/40 crew will take a faster route to the International Space Station that see launch and docking happen in the same day, should all go to plan. It all begins with the launch at 5:17 p.m. EDT (9:17 p.m. UTC) from the Baikonur Cosmodrome in Kazakhstan, with docking scheduled to happen at 11:04 p.m. EDT (3:04 a.m. UTC).

Bear in mind that schedules are subject to change, so it’s a good idea to watch NASA TV (see video above) well before each milestone to see if things are happening on time. Once the crew arrives at station, one big question is if they’ll do spacewalks when they get there.

Last July, Italian astronaut Luca Parmitano experienced a severe water leak in his NASA spacesuit that sent the crew scrambling back to the station. While Parmitano emerged physically all right, the agency opened an investigation and suspended all non-essential activities. A report was issued in February and the agency pledged to deal with all the urgent items quickly.

Spacewalks are planned for Expedition 40, but only if these urgent items are cleared in time for that. (That expedition begins in May and will include NASA astronauts Alex Gerst, Reid Wiseman and Russian cosmonaut Maxim Suraev.)

Seen From Space! Crew’s Rocket Launch Spotted By NASA Astronaut In Orbit

The launch of Expedition 39/40's Steve Swanson, Alexander Skvortsov and Oleg Artemyev as seen from space. Picture captured by NASA's Rick Mastracchio aboard the International Space Station on March 25, 2014. Credit: Rick Mastracchio

Seriously, how cool is this picture? The International Space Station crew caught an incredible view of their three future crewmates rocketing up to meet them today around 5:17 p.m. EDT (9:17 p.m. UTC).

Expedition 39’s Rick Mastracchio (from NASA) shared this on Twitter, casually mentioning that he will expect more crewmates to arrive later today. Upon the rocket were Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos).

Check out the launch video and some NASA pictures of the activities below the jump. (Update, 10:21 p.m. EDT: One of the engine firings did not take place as planned, meaning the astronauts will not dock with the station as planned tonight. The crew is safe and doing a standard backup plan that will bring them to the station on Thursday. We will provide updates as the situation progresses.)

 

 

 

 

 

NASA Opens Doors For Asteroid Capture Ideas, Offering $6M For Possible Future Missions

An astronaut retrieves a sample from an asteroid in this artist's conception. Credit: NASA

Got some ideas about how to snag an asteroid? NASA has just announced $6 million in opportunities for its asteroid retrieval initiative, which would see astronauts explore one of these space rocks in the 2020s if the agency receives budgetary approval to go through with the idea.

First proposed in the 2014 fiscal year budget (which has yet to be approved by Congress), the agency is moving forward with the idea by getting ideas from industry about the best way to approach the asteroid, capture it, and other priority areas. Up to 25 proposals will be selected.

The announcement comes just ahead of a one-day conference to (in part) gather public ideas for the mission. For those who weren’t able to snag one of the sold-out seats, NASA is offering virtual attendance at the forum. Follow the instructions at this page and then make a note of the program schedule on Wednesday.

In NASA’s words, these are the topics that are priority areas for solicitation:

  • Asteroid capture system concepts including using deployable structures and autonomous robotic manipulators;
  • Rendezvous sensors that can be used for a wide range of mission applications including automated rendezvous and docking and asteroid characterization and proximity operations;
  • Commercial spacecraft design, manufacture, and test capabilities that could be adapted for development of the Asteroid Redirect Vehicle (ARV);
  • Studies of potential future partnership opportunities for secondary payloads on either the ARV or the SLS;
  • Studies of potential future partnership opportunities for the Asteroid Redirect Crewed Mission, or other future missions, in areas such as advancing science and in-situ resource utilization, enabling commercial activities, and enhancing U.S. exploration activities in cis-lunar space after the first crewed mission to an asteroid.

“NASA is developing two mission concepts for the Asteroid Redirect Mission (ARM): one concept uses a robotic spacecraft to capture a whole small near-Earth asteroid, and the second concept uses largely the same robotic spacecraft to capture a cohesive mass from a larger asteroid,” the agency added in the solicitation documents.

Artist's conception of NASA's asteroid retrieval mission. Credit: NASA
Artist’s conception of NASA’s asteroid retrieval mission. Credit: NASA

“In both mission concepts, the asteroid mass would be redirected into a stable orbit around the Moon. Astronauts aboard the Orion spacecraft launched on the Space Launch System (SLS) would rendezvous with the captured asteroid mass in lunar orbit and collect samples for return to Earth.”

The agency is framing this initiative as a way to prepare for longer-duration missions (such as going to Mars) as well as better characterizing the threat from asteroids — which is certainly on many people’s minds after a meteor broke up over Chelyabinsk, Russia just over a year ago.

More information on the initiative is available at this NASA webpage, and you can read the solicitation documents at this link.

A Terrifying Virtual View Of Floating Away From The Space Station

A virtual-reality view of what it would look like if you were floating away from the International Space Station. Credit: European Space Agency (YouTube)

You wanna talk about fear? This view would likely be many people’s worst nightmare — being in a spacesuit, untethered, floating away from the International Space Station and its relative safety. NASA has astronauts covered for this Gravity-type scenario, however, with a sort of jet backpack that can send astronauts back to safety.

A new video featuring European Space Agency astronaut Alexander Gerst (also embedded below) explains the steps an astronaut would take to swing back to safety. “We actually train how to use that in the virtual reality lab,” he said shortly after the video showed an astronaut floating away.

The key lies in a system called SAFER (Simplified Aid for EVA Rescue), which Gerst has practiced on numerous times (virtually) in preparation for his flight in May, which could involve spacewalks if NASA addresses a spacesuit water leak problem in time.

“You have to train it for a while to operate and actually come back, and not miss the station and fly into the blackness of space,” Gerst said.

An astronaut floating away from the International Space Station in virtual-reality training for emergencies. Credit: European Space Agency/YouTube (screenshot)
An astronaut floating away from the International Space Station in virtual-reality training for emergencies. Credit: European Space Agency/YouTube (screenshot)

The Russian Orlan spacesuit (which Gerst is also trained on) does not have such a system, but Roscosmos gets around that by having a different procedure for spacewalking than the Americans. The Russians mandate a minimum of two attachment points to station at all times, whether it’s a pair of tethers or a tether and a gripped hand.

Gerst emphasizes a floating away scenario is unlikely, in either case — it would involve losing the anchor, losing the tether and also losing your grip all at the same time. While this has never actually happened, NASA did test the SAFER system in space on STS-64 in 1994 with a crew member standing by on the Canadarm robotic arm if something went wrong.  In 2000, two astronauts aboard STS-92 each did a 50-foot flight with the system.

In 2006, the SAFER system got a little loose on the back of astronaut Piers Sellers, necessitating a tether fix. NASA emphasized that the system was not in danger of being lost.

You can view the section on SAFER in the video below at around 6 minutes. Gerst recorded this as a summary of his training ahead of Expedition 40/41, which lifts off in May.

ff

NASA ‘Game-Changing’ Space Propellant Tank To Stay Grounded For Now

As of 2014, NASA and Boeing are developing a propellant tank made of composite materials to hold cryogenic (low-temperature) gases in space. Initially slated for a 2018 test flight, NASA's 2015 budget will keep these tanks on the ground for the foreseeable future. Credit: NASA/MSFC/Emmett Given

A lighter and stronger “game-changing” tank that could have flown in space in a few years will be tested on the ground only, at least for now, according to the NASA budget and a few reports.

Last year, the agency conducted ground tests on a composite propellant tank intended to be better than its heavier counterparts, saving on launch costs. At the time, NASA said it was aiming to test this on a demonstration flight in 2018, but the new budget request says testing will stay grounded.

“Cryogenic Propellant Storage and Transfer will reformulate from a flight demonstration mission into a series of large-scale ground demonstrations supportive of future exploration propulsion needs and upgraded versions of SLS,” the agency stated, which could leave the door open for future tests in space.

The information is mentioned on Page 336 of the 713-page budget request document NASA released earlier this month. The budget is not finalized and is subject to approval from Congress. More high-profile cuts include the SOFIA airborne telescope and the Opportunity Mars rover mission.

The cryogenic change was mentioned in a few news reports, and then highlighted in a press release today (Thursday) from an advocacy group called the Space Development Steering Committee, who says these tanks would have been good for space-based refueling stations.

“Instead of trying out technologies designed for space where they count — in space — space gas station technologies are now going to be tested down here on Earth, where we already know how to make them function,” SDSC’s press release read. “Down here where we do not face the challenges of weightlessness and vacuum.  Down here where it’s useless.”

The SDSC includes the heads of the National Space Society, the Space Frontier Foundation, and the Mars Society, plus past astronauts and former NASA employees (among others). In November, the committee released an unfunded gas-tanks-in-space proposal to fuel missions to Mars.