Could a long mission to Mars increase your risk of heart problems back on Earth? That’s something that scientists are trying to better understand after discovering that hearts become temporarily rounder in space, at least in a study of 12 astronauts.
The finding doesn’t appear to be a big surprise for cardiovascular scientists, however, who had the astronauts examine their hearts using ultrasound machines on the International Space Station as well as before and after spaceflight. The heart gets 9.4 percent more round, similar to models developed for the project, before returning to its normal shape on Earth.
“The heart doesn’t work as hard in space, which can cause a loss of muscle mass,” stated James Thomas, lead scientist for ultrasound at NASA, and senior author of the study. “That can have serious consequences after the return to Earth, so we’re looking into whether there are measures that can be taken to prevent or counteract that loss.”
Astronauts typically spend six months on the International Space Station. One year from now, NASA’s Scott Kelly and Roscomos’ Mikhail Kornienko are going to launch for a one-year mission. Spending months upon months in space leads to a host of problems upon returning to Earth. Your muscles get weaker, you’re more likely to pass out, and you’re at increased risk of bone fractures, among other problems.
A typical person on the space station spends two hours a day exercising just to ward off the worst of the effects. The researchers added that one remedy could be to add more exercises targeting the heart. This will be particularly important for missions that last 12 to 18 months or more — such as a Mars mission.
Studying astronauts in space could provide data on Earth-bound patients facing similar problems, the researchers said. Since the models that they made for astronauts were so congruent with reality, this gives the researchers confidence that they could create similar models for patients on Earth.
Conditions that could be considered include ischemic heart disease (the most common kind of heart disease and source of heart attacks), hypertrophic cardiomyopathy (thickened heart muscle) and valvular heart disease (damage to one of the heart’s valves).
Results were presented last week at the American College of Cardiology’s annual conference. It’s not immediately clear from a press release if the study was peer-reviewed. The researchers added that more study of astronauts after returning to Earth could be a useful research direction, to see how the effects persist (if at all.)
Update, 8:33 p.m. EDT: The Soyuz spacecraft arrived safely at station at 7:53 p.m. EDT (11:53 a.m. UTC) and coverage of the hatch opening is scheduled at 10:15 p.m. EDT (2:15 a.m. UTC).
After spending an extra couple of days in the cramped Russian Soyuz spacecraft, the incoming International Space Station crew will likely be very be glad to get out and stretch their legs. You can check out the festivities live in the video link above.
Three people are set to make a docking with the orbiting complex at 7:58 p.m. EDT (11:58 p.m. UTC). If all goes to schedule, they’ll pop the hatch open at 10:40 p.m. EDT (2:40 a.m. UTC). Meanwhile, engineers are trying to figure out what caused the malfunction that prevented a docking as planned on Tuesday (March 25).
Remember that all schedules are subject to change, so tune into NASA TV well before each event happens.
The Expedition 39/40 crew lifted off Tuesday afternoon (EDT) from Kazakhstan to take a fast track to the space station that should have seen them dock on launch day. The Soyuz has to make three engine firings or burns to accomplish this. The docking was cancelled after the third burn did not happen as planned. The Russian Federal Space Agency (Roscosmos) has determined this was because the spacecraft was in the wrong orientation, but the underlying cause is still being investigated.
Once this happened, the crew switched to a standard backup procedure to bring them to the station in two days instead. (This path, in fact, was what all crews did up until last year.) The crew is safe and in good spirits heading up to the docking, NASA has said. The Soyuz has done several other engine firings since, with no incident.
The Soyuz crew includes Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). Awaiting them on the station are Koichi Wakata (Japan Aerospace Exploration Agency), Rick Mastracchio (NASA) and Mikhail Tyurin (Roscosmos). Wakata is in command of the station, marking a first for Japan’s astronaut corps.
Despite a problem that held up last night’s International Space Station docking, the Expedition 39/40 crew is doing well as they execute a standard backup procedure to bring their Soyuz spacecraft to the station on Thursday, NASA said.
The crew was originally expected to dock with the station around 11 p.m. EDT (3 a.m. UTC), but an error with the spacecraft’s position in space prevented the engines from doing a third planned “burn” or firing to make that possible, NASA said in an update.
“At this point, the crew is in good shape and the vehicle appears to be in good shape,” said Kenny Todd, the space station’s operations integration manager, in an interview on NASA TV Wednesday morning (EDT). “At this point, everything looks real good.”
In fact, the spacecraft has done a couple of burns since to get it into the right spot for a docking Thursday evening, Todd added. (So it appears the crew just missed the window to get there on Tuesday night.) The underlying cause of the orientation problem was not mentioned in the interview, presumably because it’s still being investigated.
NASA is quite familiar with a two-day route to the space station as up until last year, all crews took two days to get to the space station. This took place for 14 years until a rapider method of reaching the orbiting complex within hours was introduced.
The crew includes Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos), who will join three people already on station when they arrive.
Current station residents Koichi Wakata (the commander, of the Japan Aerospace Exploration Agency), Rick Mastracchio (NASA) and Mikhail Tyurin (Roscosmos) got to sleep in this morning and had some minor modifications to their schedule because of the docking delay, Todd added.
Instead of taking the day off as planned, the crew will do some work. A planned ISS software update for last night is going to be pushed “down the line”, Todd said, adding that the forthcoming SpaceX launch on Sunday and docking on Tuesday is still going ahead as planned.
We’ll provide more updates as the situation progresses. Docking is scheduled for 7:58 p.m. EDT (11:58 p.m. UTC) Thursday and will be covered on NASA Television.
Update, 10:13 p.m. EDT: Tonight’s docking with the International Space Station will not happen because one of the engine firings scheduled to happen did not take place when it was supposed to. The crew is safe, according to NASA, and going to a standard backup plan that should bring the craft to the station on Thursday (2 days from now). Roscosmos is examining the issue. We will provide updates as warranted.
Update, 6:43 p.m. EDT: The Soyuz is on its way to space after an on-time launch — and by the way, astronauts saw it leave from the space station! It’s en route and NASA is still expecting an arrival around 11:04 p.m. EDT., which you can watch live on NASA TV above.
Despite tensions on the ground between the United States and Russia, officials say that it’s business as usual on the International Space Station. The three people launching to space today, in fact, are from both countries: Alexander Skvortsov and Oleg Artemyev of the Russian Federal Space Agency (Roscosmos), and Steve Swanson from NASA.
As has been the habit lately, the Expedition 39/40 crew will take a faster route to the International Space Station that see launch and docking happen in the same day, should all go to plan. It all begins with the launch at 5:17 p.m. EDT (9:17 p.m. UTC) from the Baikonur Cosmodrome in Kazakhstan, with docking scheduled to happen at 11:04 p.m. EDT (3:04 a.m. UTC).
Bear in mind that schedules are subject to change, so it’s a good idea to watch NASA TV (see video above) well before each milestone to see if things are happening on time. Once the crew arrives at station, one big question is if they’ll do spacewalks when they get there.
Last July, Italian astronaut Luca Parmitano experienced a severe water leak in his NASA spacesuit that sent the crew scrambling back to the station. While Parmitano emerged physically all right, the agency opened an investigation and suspended all non-essential activities. A report was issued in February and the agency pledged to deal with all the urgent items quickly.
Spacewalks are planned for Expedition 40, but only if these urgent items are cleared in time for that. (That expedition begins in May and will include NASA astronauts Alex Gerst, Reid Wiseman and Russian cosmonaut Maxim Suraev.)
Seriously, how cool is this picture? The International Space Station crew caught an incredible view of their three future crewmates rocketing up to meet them today around 5:17 p.m. EDT (9:17 p.m. UTC).
Expedition 39’s Rick Mastracchio (from NASA) shared this on Twitter, casually mentioning that he will expect more crewmates to arrive later today. Upon the rocket were Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos).
Check out the launch video and some NASA pictures of the activities below the jump. (Update, 10:21 p.m. EDT: One of the engine firings did not take place as planned, meaning the astronauts will not dock with the station as planned tonight. The crew is safe and doing a standard backup plan that will bring them to the station on Thursday. We will provide updates as the situation progresses.)
Got some ideas about how to snag an asteroid? NASA has just announced $6 million in opportunities for its asteroid retrieval initiative, which would see astronauts explore one of these space rocks in the 2020s if the agency receives budgetary approval to go through with the idea.
First proposed in the 2014 fiscal year budget (which has yet to be approved by Congress), the agency is moving forward with the idea by getting ideas from industry about the best way to approach the asteroid, capture it, and other priority areas. Up to 25 proposals will be selected.
The announcement comes just ahead of a one-day conference to (in part) gather public ideas for the mission. For those who weren’t able to snag one of the sold-out seats, NASA is offering virtual attendance at the forum. Follow the instructions at this page and then make a note of the program schedule on Wednesday.
In NASA’s words, these are the topics that are priority areas for solicitation:
Asteroid capture system concepts including using deployable structures and autonomous robotic manipulators;
Rendezvous sensors that can be used for a wide range of mission applications including automated rendezvous and docking and asteroid characterization and proximity operations;
Commercial spacecraft design, manufacture, and test capabilities that could be adapted for development of the Asteroid Redirect Vehicle (ARV);
Studies of potential future partnership opportunities for secondary payloads on either the ARV or the SLS;
Studies of potential future partnership opportunities for the Asteroid Redirect Crewed Mission, or other future missions, in areas such as advancing science and in-situ resource utilization, enabling commercial activities, and enhancing U.S. exploration activities in cis-lunar space after the first crewed mission to an asteroid.
“NASA is developing two mission concepts for the Asteroid Redirect Mission (ARM): one concept uses a robotic spacecraft to capture a whole small near-Earth asteroid, and the second concept uses largely the same robotic spacecraft to capture a cohesive mass from a larger asteroid,” the agency added in the solicitation documents.
“In both mission concepts, the asteroid mass would be redirected into a stable orbit around the Moon. Astronauts aboard the Orion spacecraft launched on the Space Launch System (SLS) would rendezvous with the captured asteroid mass in lunar orbit and collect samples for return to Earth.”
The agency is framing this initiative as a way to prepare for longer-duration missions (such as going to Mars) as well as better characterizing the threat from asteroids — which is certainly on many people’s minds after a meteor broke up over Chelyabinsk, Russia just over a year ago.
You wanna talk about fear? This view would likely be many people’s worst nightmare — being in a spacesuit, untethered, floating away from the International Space Station and its relative safety. NASA has astronauts covered for this Gravity-type scenario, however, with a sort of jet backpack that can send astronauts back to safety.
A new video featuring European Space Agency astronaut Alexander Gerst (also embedded below) explains the steps an astronaut would take to swing back to safety. “We actually train how to use that in the virtual reality lab,” he said shortly after the video showed an astronaut floating away.
The key lies in a system called SAFER (Simplified Aid for EVA Rescue), which Gerst has practiced on numerous times (virtually) in preparation for his flight in May, which could involve spacewalks if NASA addresses a spacesuit water leak problem in time.
“You have to train it for a while to operate and actually come back, and not miss the station and fly into the blackness of space,” Gerst said.
The Russian Orlan spacesuit (which Gerst is also trained on) does not have such a system, but Roscosmos gets around that by having a different procedure for spacewalking than the Americans. The Russians mandate a minimum of two attachment points to station at all times, whether it’s a pair of tethers or a tether and a gripped hand.
Gerst emphasizes a floating away scenario is unlikely, in either case — it would involve losing the anchor, losing the tether and also losing your grip all at the same time. While this has never actually happened, NASA did test the SAFER system in space on STS-64 in 1994 with a crew member standing by on the Canadarm robotic arm if something went wrong. In 2000, two astronauts aboard STS-92 each did a 50-foot flight with the system.
In 2006, the SAFER system got a little loose on the back of astronaut Piers Sellers, necessitating a tether fix. NASA emphasized that the system was not in danger of being lost.
You can view the section on SAFER in the video below at around 6 minutes. Gerst recorded this as a summary of his training ahead of Expedition 40/41, which lifts off in May.
A lighter and stronger “game-changing” tank that could have flown in space in a few years will be tested on the ground only, at least for now, according to the NASA budget and a few reports.
“Cryogenic Propellant Storage and Transfer will reformulate from a flight demonstration mission into a series of large-scale ground demonstrations supportive of future exploration propulsion needs and upgraded versions of SLS,” the agency stated, which could leave the door open for future tests in space.
The information is mentioned on Page 336 of the 713-page budget request document NASA released earlier this month. The budget is not finalized and is subject to approval from Congress. More high-profile cuts include the SOFIA airborne telescope and the Opportunity Mars rover mission.
The cryogenic change was mentioned in a few news reports, and then highlighted in a press release today (Thursday) from an advocacy group called the Space Development Steering Committee, who says these tanks would have been good for space-based refueling stations.
“Instead of trying out technologies designed for space where they count — in space — space gas station technologies are now going to be tested down here on Earth, where we already know how to make them function,” SDSC’s press release read. “Down here where we do not face the challenges of weightlessness and vacuum. Down here where it’s useless.”
The SDSC includes the heads of the National Space Society, the Space Frontier Foundation, and the Mars Society, plus past astronauts and former NASA employees (among others). In November, the committee released an unfunded gas-tanks-in-space proposal to fuel missions to Mars.
“There is no problem so bad that you can’t make it worse.” So with that old astronaut principle in mind, what is the best reaction to take when your eyes become blinded while you’re working on the International Space Station, in no more protection than with a spacesuit?
The always eloquent Canadian (retired) astronaut Chris Hadfield — commander of Expedition 35 — faced this situation in 2001. He explains the best antidotes to fear: knowledge, practice and understanding. And in this TED talk uploaded this week, he illustrates how to conquer some dangers in space with the simple analogy of walking into a spiderweb.
Say you’re terrified of spiders, worried that one is going to poison you and kill you. The first best thing to do is look at the statistics, Hadfield said. In British Columbia (where the talk was held), there is only one poisonous spider among hundreds. In space, the odds are grimmer: a 1 in 9 chance of catastrophic failure in the first five shuttle flights, and something like 1 in 38 when Hadfield took his first shuttle flight in 1995 to visit the space shuttle Mir.
So how do you deal with the odds? For spiders, control the fear, walk through spiderwebs as long as you see there’s nothing poisonous lurking. For space? “We don’t practice things going right, but we practice things going wrong, all the time so you are always walking through those spiderwebs,” Hadfield said.
Be sure to watch the talk to the end, as Hadfield has a treat for the audience. And as always, listening to Hadfield’s descriptions of space is a joy: “A self propelled art gallery of fantastic changing beauty that is the world itself,” is among the more memorable phrases of the talk.
TED, a non-profit that bills itself as one that spreads ideas, charged a hefty delegate fee for attendees at this meeting (reported at $7,500 each) but did free livestreaming at several venues in the Vancouver area. It also makes its talks available on the web for free.
Hadfield rocketed to worldwide fame last year after doing extensive social media and several concerts from orbit.
Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com
Stroy updated[/caption]
CAPE CANAVERAL AIR FORCE STATION, FL – The urgent need by the US Air Force to launch a pair of previously classified Space Situational Awareness satellites into Earth orbit this year on an accelerated schedule has bumped the inaugural blastoff of NASA’s highly anticipated Orion pathfinder manned capsule from September to December 2014.
It’s a simple case of US national security taking a higher priority over the launch of NASA’s long awaited unmanned Orion test flight on the Exploration Flight Test-1 (EFT-1) mission.
The EFT-1 flight is NASA’s first concrete step towards sending human crews on Beyond Earth Orbit (BEO) missions since the finale of the Apollo moon landing era in December 1972.
The very existence of the covert Geosynchronous Space Situational Awareness Program, or GSSAP, was only recently declassified during a speech by General William Shelton, commander of the US Air Force Space Command.
Shelton made the announcement regarding the top secret GSSAP program during a Feb. 21 speech about the importance of space and cyberspace at the Air Force Association Air Warfare Symposium and Technology exposition, in Orlando, FL.
US national security requirements forced NASA’s Orion EFT-1 mission to swap launch slots with the GSSAP satellites – which were originally slated to launch later in 2014.
Since both spacecraft will blast off from the same pad at Complex 37 and atop Delta rockets manufactured by United Launch Alliance (ULA), a decision on priorities had to be made – and the military won out.
At a Cape Canaveral media briefing with Delta first stage boosters on Monday, March 17, Universe Today confirmed the order and payloads on the upcoming Delta IV rockets this year.
“The firing sequence for the Delta’s is the USAF Global Positioning System GPS 2F-6 [in May], GSSAP [in September] and Orion EFT-1 [in December], Tony Taliancich, ULA Director of East Coast Launch Operations, told me.
Universe Today also confirmed with the top management at KSC that NASA will absolutely not delay any Orion processing and assembly activities.
Despite the EFT-1 postponement, technicians for prime contractor Lockheed Martin are pressing forward and continue to work around the clock at the Kennedy Space Center (KSC) so that NASA’s Orion spacecraft can still meet the original launch window that opens in mid- September 2014 – in case of future adjustments to the launch schedule sequence.
“Our plan is to have the Orion spacecraft ready because we want to get EFT-1 out so we can start getting the hardware in for Exploration Mission-1 (EM-1) and start processing for that vehicle that will launch on the Space Launch System (SLS) rocket in 2017,” Bob Cabana, director of NASA’s Kennedy Space Center and former shuttle commander, told me.
Shelton stated that two of the GSSAP military surveillance satellites would be launched on the same launch vehicle later this year.
“GSSAP will present a significant improvement in space object surveillance, not only for better collision avoidance, but also for detecting threats,” Shelton said.
“GSSAP will bolster our ability to discern when adversaries attempt to avoid detection and to discover capabilities they may have, which might be harmful to our critical assets at these higher altitudes.”
According to a new GSSAP online fact sheet, the program will be a space-based capability operating in near-geosynchronous orbit, supporting U.S. Strategic Command space surveillance operations as a dedicated Space Surveillance Network sensor.
“Some of our most precious satellites fly in that orbit – one cheap shot against the AEHF [Advanced Extremely High Frequency] constellation would be devastating,” added Shelton. “Similarly, with our Space Based Infrared System, SBIRS, one cheap shot creates a hole in our environment. GSSAP will bolster our ability to discern when adversaries attempt to avoid detection and to discover capabilities they may have which might be harmful to our critical assets at these higher altitudes.”
GSSAP will allow more accurate tracking and characterization of man-made orbiting objects, uniquely contribute to timely and accurate orbital predictions, enhance knowledge of the geosynchronous orbit environment, and further enable space flight safety to include satellite collision avoidance.
The GSSAP satellites were covertly developed by Orbital Sciences and the Air Force.
Two additional follow on GSSAP satellites are slated for launch in 2016.
“We must be prepared as a nation to succeed in increasingly complex and contested space and cyber environments, especially in these domains where traditional deterrence theory probably doesn’t apply,” Shelton explained. “We can’t afford to wait … for that catalyzing event that will prod us to action.”
Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the Moon, Mars and beyond.
The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission had been on schedule to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during a recent interview at KSC.
The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30