Got Back Pain? This Suit Could Counteract Spine Problems In Space (And On Earth)

European Space Agency astronaut Thomas Pesquet (upside-down) testing out the "skinsuit" during a parabolic flight to simulate microgravity in March 2014. Credit: CNES/Novespace

If you’ve ever felt insecure about your height, orbit is a great place to be. Astronaut spines lengthen up to 2.75 inches (7 centimeters) while they’re in microgravity. There are big downsides, however. First there’s the backache. Second, you’re four times as likely to get a slipped disc when you return to Earth.

The solution could be as simple as tight clothing. Above you can see French astronaut Thomas Pesquet (already flying high this week after he was publicly named to a flight in 2016) trying out a prototype of the skinsuit. Essentially, it’s so tight that it could prevent you from growing, which in turn would stop the pain and risk of damage.

“The skinsuit is a tailor-made overall with a bi-directional weave specially designed to counteract the lack of gravity by squeezing the body from the shoulders to the feet with a similar force to that felt on Earth. Current prototypes are made of spandex, although new materials are being examined,” the European Space Agency wrote.

A model poses in the "skinsuit", a tight-fitting garment being tested to counteract back pain in space. Credit: ESA
A model poses in the “skinsuit”, a tight-fitting garment being tested to counteract back pain in space. Credit: ESA

The first astronaut to test the suit out in space will be Andreas Mogensen, who will launch to the International Space Station next year.

ESA says if it works, the suit would not only be useful for astronauts, but also could be great for people with back pain on Earth — and possibly, even those with conditions such as cerebral palsy.

Prototypes are being developed between ESA’s Space Medicine Office, King’s College London (United Kingdom), University College London (United Kingdom) and the Massachusetts Institute of Technology (United States).

Source: European Space Agency (1 and 2)

Why Flower Bouquets Regularly Show Up In NASA Mission Control

Flowers on a console in NASA Mission Control in 2011 for American Thanksgiving. The bouquets are regular gifts from the Shelton/Murphy families in Texas, who have been sending flowers regularly since shuttle mission STS-26 in 1988. Credit: NASA

Three red roses and a white one. The flower bouquet sitting in NASA Mission Control right now in Houston is one of a series that has appeared with every single mission since 1988 — a small gift from a Texas family whose members are long-standing fans of space exploration.

The first bouquet showed up on landing day for the first flight (STS-26) after the shuttle Challenger explosion. And bouquets have continued for every flight since, a gift that NASA is glad to see when it arrives.

“It means a lot to the team here in Houston,” NASA spokesperson Josh Byerly said in the YouTube video above, an excerpt from a broadcast on NASA TV. “We’re big on tradition here at NASA, and we are very happy that this tradition continues.”

Each red rose symbolizes a member of an expedition crew — in this case, Expedition 39/40‘s Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The white one is a symbol of all of the astronauts who have lost their lives, such as those in the Apollo 1, Challenger and Columbia disasters.

Four years ago, when the 100th bouquet came to Mission Control, a flight director from STS-26 described what happened when he saw the flowers in 1988.

“When I first walked into the control room I noticed them right away, because it was so different, and I walked over and read the card,” stated Milt Heflin, who was a shuttle flight director at the time. “It was very simple, saying congratulations and wishing everyone the best on the mission. It was signed but it didn’t have any contact information for the senders.”

Helfin did manage to track down the family — Mark, Terry and daughter MacKenzie — and over the years, the Sheltons received cards of thanks and invitations to see launches and Mission Control.

The Shelton family during a visit to NASA Mission Control in Houston in 1990. From left, NASA's Steve Stitch, Terry Shelton, Mark Shelton and daughter MacKenzie.  They have been sending flowers to NASA regularly since shuttle mission STS-26 in 1988. Credit: NASA
The Shelton family during a visit to NASA Mission Control in Houston in 1990. From left, NASA’s Steve Stitch, Terry Shelton, Mark Shelton and daughter MacKenzie. They have been sending flowers to NASA regularly since shuttle mission STS-26 in 1988. Credit: NASA

“I didn’t actually decide to do it until the day the STS-26 mission was to land, and I didn’t know that I even could get it done in time,” Mark Shelton stated, who added he first became interested in space after a childhood visit to the NASA Johnson Space Center in Houston in the 1960s.

“I called information to find a florist near the space center, and then I asked the florist if they could deliver roses to Mission Control. At first they said they couldn’t do it … but then they said they would try.”

The attempt succeeded, obviously, and with each mission new flowers arrive. The bouquets are now including participation from a “second” generation, Byerly said in the video, saying that they now come from the Sheltons and the Murphys.

6-Year-Old ‘Right Stuff’ Boy Reaches for the Stars with Petition Drive and Astronauts to Save NASA Funding

Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Johnson, of Denver, Colo., initiated a petition to the White House to maintain NASA funding. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL- When 6-year-old Connor Johnson from Denver, Colo. heard that his youthful dreams of going to Mars and ‘Reaching for the Stars’ were in danger due to funding cuts to NASA’s budget, he decided to do something about it.

So, with the encouragement of his parents, Connor started an online petition drive on the White House website in December 2013 to help save NASA’s budget and fulfill his dreams.

Connor’s petition drive efforts were noticed by a Denver TV station that broadcast a report on the young lads work that spurred his efforts.

Over 22,000 folks have already signed Connor’s petition.

That’s when the Kennedy Space Center Visitor Complex noticed his zeal in communicating the excitement and benefits of science and space voyages.

The KSC Visitor Complex invited Connor and to visit as a guest of honor with his family and to participate in the first ever ‘Robot Rocket Rally’ held this past weekend from March 14 to 16.

At a special ‘guest of honor’ ceremony held on Saturday, NASA recognized Connor’s unique contributions to space exploration with a public meeting at the Visitor Complex with Kennedy Space Center Director and space shuttle commander Bob Cabana.

Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding.  Credit: Ken Kremer - kenkremer.com
Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding. Credit: Ken Kremer – kenkremer.com

Cabana, who flew four shuttle missions, gave Connor several mementos, including a mission patch and an actual bolt from the International Space Station, as a token of appreciation from the agency.

“I think it’s great for Connor to be so interested in the future of NASA,” Kennedy Center Director Bob Cabana said.

“It shows great initiative on his part to do what he’s done.”

Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding.  Credit: Ken Kremer - kenkremer.com
Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding.
Credit: Ken Kremer – kenkremer.com

“Ultimately, the budget supports what we want to do with continuing International Space Station research and technology which will feed into SLS and Orion, leading to the asteroid initiative and on to Mars.”

“And it will dictate how we work with commercial partners to launch our astronauts from U.S. soil,” Cabana explained.

Millions of kids of all ages worldwide have been inspired by NASA for generations to pursue their dreams of science research and exploring space.

After the ceremony with Bob Cabana, the media including myself met with Connor.

I asked Connor when he became interested in space and where did he want to journey.

“I’ve been interested in NASA and space since I was three years old.”

“I want to be an astronaut and go to Mars!” Connor told Universe Today.

Since NASA currently plans to send the first manned mission to Mars in the 2030s, Connor is just about the right age.

Connor Johnson clearly exhibits the ‘Right Stuff.’

So much so that Apollo 17 Astronaut and Moon walker Eugene Cernan also spoke with Connor upon hearing of his work to save NASA’s funding.

What did Cernan say to Connor?

“Dream the unimaginable,” Moon walker Eugene Cernan said to 6-year old future Mars walker Connor Johnson.

During his visit to the Visitor Complex, Connor also visited with the Earth bound brother of NASA’s Robonaut 2 at the ‘Robot Rocket Rally’ and saw a demonstration of the robots new legs heading soon to the ISS on the SpaceX CRS-3 mission later this month. He and his younger brother also operated other robots at the festival.

Connor and his family spent the rest of the weekend touring the new Space Shuttle Atlantis pavillion, enjoyed Lunch With An Astronaut, featuring space shuttle astronaut Sam Durrance, and participated in the Astronaut Training Experience with space shuttle astronaut Mike McCulley.

What a thrilling way to begin a space career.

Way to go Connor!

Connor Johnson (Future astronaut) and Ken Kremer (Universe Today) at the ceremony with former space shuttle commander Bob Cabana, on March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana. Johnson, of Denver, Colo., initiated a petition to the White House to maintain NASA funding. Credit: Jason Rhian/Spaceflight Insider
Connor Johnson (Future astronaut) and Ken Kremer (Universe Today) at the ceremony with former space shuttle commander Bob Cabana, on March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana. Credit: Jason Rhian/SpaceFlight Insider

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30.

And watch for Ken’s SpaceX launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

The new Space Shuttle Atlantis pavilion at the Kennedy Space Center Visitor Complex, Florida.  Credit: Ken Kremer - kenkremer.com
The new Space Shuttle Atlantis pavilion at the Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer – kenkremer.com

Why Trapping Somebody In Space Only Takes A Breeze (And Other Highlights From Expedition 40)

European Space Agency astronaut Alex Gerst during training prior to Expedition 40/41 in 2014. Credit: European Space Agency

Imagine that you were in the middle of a module on the International Space Station. Floating in mid-air, far from handholds or any way to propel yourself. Is there any way to get out of that situation?

The short answer is not easily, and the longer answer is it could be an effective way to trap criminals in space, joked veteran cosmonaut Maxim Suraev in a press conference today (March 18) for the upcoming Expedition 40/41 mission, which also includes rookies Alex Gerst and Reid Wiseman.

Speaking in Russian, Suraev explained that during his last 2010 mission, he had crew members set him up in the middle of the station’s Node 3. “It is true that you can twist as much as a contortionist, but you won’t be able to move because you have nothing to bear against,” he said in remarks translated into English.

That said, the ventilation system on station does tend to push objects (and people) towards the vents after a time, he observed. What if you had multiple vents set up, however?

“I thought that if ever we have a permanent human habitation in space, this would be the best way to keep a person confined — like in a prison — in the middle of the room, where he or she could not move anywhere,” Suraev continued. “Being in limbo, as you will. The only thing that is required is a large room, a person and several fans blowing in different directions to keep the person in the middle of the room. That’s scary, trust me!”

NASA astronaut Reid Wiseman does spacewalk training in a partial gravity simulator ahead of his Expedition 40/41 flight in 2014. Credit: NASA
NASA astronaut Reid Wiseman does spacewalk training in a partial gravity simulator ahead of his Expedition 40/41 flight in 2014. Credit: NASA

There’s no fear on Suraev’s part that it will happen with his crewmates, however. “My new crew, they’re really good guys and I’m really looking forward to being with my new crew in space, and to spend five and a half months aboard the space station,” he said in an English phone interview after the press conference. (Good news given that Suraev will assume command of Expedition 41.)

The crew (who lifts off in May) will have an action-packed mission. It will include the arrival of the last Automated Transfer Vehicle (ATV) and — if NASA fixes on a spacesuit leak allow — two American maintenance spacewalks. There also are 162 experiments to perform (this according to Gerst) and if there’s time, checking out our home planet.

“Earth observation was not one of the primary goals that [station] was designed for,” he cautioned in a phone interview, but he added that one of its strengths is there are people on board the orbiting laboratory that can fill in the gaps for other missions.

Gerst (who was a volcano researcher before becoming an astronaut) pointed out that if a volcano erupts, a typical Earth satellite would look straight down at it. Astronauts can swing around in the Cupola and get different views quickly, which could allow scientists to measure things such as the volcano plume height.

Another example of flexibility: The Expedition 39 crew right now is (news reports say) helping out with the search for the missing Malaysian Airline Flight 370.

“We’re really good at capturing things quickly and then sending the  pictures down to the ground,” Gerst said.

Wiseman, as one of the rookies on mission, says he is interested in comparing the experience to his multi-month Navy missions at sea. It’s all a matter of mindset, he said in a phone interview. He once was assigned to a naval voyage that was expected to be at sea for six months. Then they were instructed it would be 10 months, leading to fistfights and other problems on board, he recalled.

Russian cosmonaut Maxim Surayev during a spacewalk in January 2010 for Expedition 22. Credit: NASA
Russian cosmonaut Maxim Surayev during a spacewalk in January 2010 for Expedition 22. Credit: NASA

Astronauts for the forthcoming one-year mission to station, he pointed out, will launch with different expectations than someone expecting about a six-month stay. “If you know you’re up there for one year, you’re going to pace yourself for one year,” he said.

But there still will be sacrifices, as Wiseman has two daughters (five years old and eight years old). He’s asking the older child to do a bit of social media, and the younger one to draw pictures that could be included in the “care packages” astronauts receive from Earth. “It’s going to be tough not to see them on a daily basis. They grow so fast,” he said.

Other things to watch for on this mission include the arrival of the station’s first 3-D printer, setup of an alloy furnace to make new materials in microgravity, and a potential Wiseman-led “come out and wave campaign” that would encourage families to go outside and tweet about the space station as they watch it.

You can follow Expedition 40/41’s continuing adventures at Universe Today as well as on social media: @astro_reid for Wiseman, and for Gerst, @astro_alex or his Facebook page.

The crew members of Expedition 40/41 pose in front of a Soyuz spacecraft simulator in Star City, Russia. From left, Alex Gerst (European Space Agency), Max Suraev (Roscosmos) and Reid Wiseman (NASA). Credit: NASA
The crew members of Expedition 40/41 pose in front of a Soyuz spacecraft simulator in Star City, Russia. From left, Alex Gerst (European Space Agency), Max Suraev (Roscosmos) and Reid Wiseman (NASA). Credit: NASA

 

Rocket Fail Video Shows Human And Technological Risk With Each Launch

The Challenger space shuttle a few moments after the rupture took place in the booster. Credit: NASA

What you see above is 32 minutes of something going wrong during each launch. While humanity has been launching things into space since the 1950s, you can see just how hard it is — over and over again. And when humans are riding aboard the rockets, the toll becomes more tragic.

According to the YouTube author of the video above, the vehicles shown include “V2, Vanguard TV3, Explorer S-1, Redstone 1, Titan I, Titan II, Titan IV, Atlas, Atlas-Centaur, N1, Delta, Delta III, Foton, Soyuz, Long March, Zenith, Space Shuttle Challenger, and more.”

Naturally, with each failure the engineers examine the systems and work to fix things for next time. A famous example is the Challenger shuttle explosion, which you can see about halfway through the video. There were multiple causes for the failure (human and technical), but one of them was an O-ring that failed in cold weather before the launch. NASA revised the launch rules and with contractors, made some changes to the booster rocket design, as a 2010 Air and Space Smithsonian article points out:

Freezing temperatures weakened an O-ring seal in a joint between two segments of the right booster. The weakness allowed hot gases to burn through the casing, causing the shuttle to break apart on ascent, which killed the seven-member crew. Two joints were redesigned with interlocking walls that had new bolts, pins, sensors, seals, and a third O-ring.

Still, launching is a risky business. That’s why it’s so important that engineers try to catch problems before they happen, and that as soon as a problem is seen, it’s fixed.

Robonaut 2 To Toddle And Waddle Around Space Station This Summer

NASA's Robonaut 2 (left) flashes a Star Trek Vulcan salutation along with George Takei, a star of the original series, in 2012. "It was a keen demonstration of Robonaut 2’s manual dexterity. The gesture is difficult for many humans to make," Takei wrote on Facebook. Credit: NASA/James Blair

Legs — yes, legs — are on the manifest for the next SpaceX Dragon flight. The commercial spacecraft is expected to blast off March 16 with appendenges for Robonaut 2 on board, allowing the humanoid to move freely around station. After some initial tests in June will come R2’s first step, marking a new era in human spaceflight.

What’s exciting about R2 is not only its ability to take over simple tasks for the astronauts in station, but in the long run, to head “outside” to do spacewalks. This would greatly reduce risk to the astronauts, as extravehicular activity is one of the most dangerous things you can do outside (as a spacesuit leak recently reminded us.)

When installed, Robonaut will have a “fully extended leg span” of nine feet (wouldn’t we love to see the splits with that). Instead of a foot, each seven-jointed leg will have an “end effector” that is a sort of clamp that can grab on to things for a grip. It’s similar to the technology used on the Canadarm robotic arm, and also like Canadarm, there will be a vision system so that controllers know where to grasp.

NASA Expedition 35 astronaut Tom Marshburn (background) performs teleoperation activitites with Robonaut 2 aboard the International Space Station in 2013. Credit: NASA
NASA Expedition 35 astronaut Tom Marshburn (background) performs teleoperation activitites with Robonaut 2 aboard the International Space Station in 2013. Credit: NASA

The robot first arrived on station in February 2011 and (mostly while tied down) has done a roster of activities, such as shake hands with astronaut Dan Burbank in 2012 (a humanoid-human first in space), say hello to the world with sign language, and do functions such as turn knobs and flip switches. During Expedition 34/35 in 2012-13, astronaut Tom Marshburn even made Robonaut 2 catch a free-floating object through teleoperation.

Eventually NASA expects to use the robot outside the station, but more upgrades to Robonaut 2’s upper body will be needed first. The robot could then be used as a supplement to spacewalks, which are one of the most dangerous activities that humans do in space.

Closer to Earth, NASA says the technology has applications for items such as exoskeletons being developed to help people with physical disabilities.

Source: NASA

NASA's Robonaut 2 with "climbing legs" intended to let the robot rove around in the microgravity environment aboard the International Space Station. This version is being tested on the ground for eventual use in space. Credit: NASA
NASA’s Robonaut 2 with “climbing legs” intended to let the robot rove around in the microgravity environment aboard the International Space Station. This version is being tested on the ground for eventual use in space. Credit: NASA
R2A waving goodbye. Robonaut R2A waving goodbye as Robonaut R2B launches into space aboard STS-133 from the Kernnedy Space Center.   R2 is the first humanoid robot in space.  Credit: Joe Bibby
R2A waving goodbye. Robonaut R2A waving goodbye as Robonaut R2B launches into space aboard STS-133 from the Kernnedy Space Center. R2 is the first humanoid robot in space. Credit: Joe Bibby

How Astronauts Could Survive In The Cold After A Soyuz Landing

Astronauts participate in survival training in early 2014 in the wilderness near Star City, Russia. Credit: European Space Agency (YouTube)

If your spaceship comes back in rural Kazakhstan, and it’s blowing snow, and rescue forces can’t get there right away, how would you survive the cold? This winter survival video below shows how cosmonauts and astronauts would leave the spacecraft and make shelter while waiting for help to arrive.

An even more complicated scenario would arise if the crew member was injured, explain European Space Agency astronauts Andreas Mogensen and Thomas Pesquet, who were reflecting on Mogensen’s survival training in January in the video.

The video shows crew members creating a makeshift brace for a broken arm, which would be painful — but would not necessarily inhibit walking. If it was a broken leg, other crew members would need to carry the injured person — slowing down the march if they needed to move to another location.

For more information on the rigors of winter survival training, check out this 2004 blog post from NASA astronaut Clay Anderson.

)

SpaceX Unveils Gorgeous Rocket Legs for Space Station Launch on March 16

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX

SpaceX is nearly ready to Rock ‘n’ Roll with their first rocket sporting landing legs and slated to blast off this coming weekend carrying a commercial Dragon cargo freighter bound for the International Space Station (ISS).

Check out the Falcon 9 rockets gorgeous legs unveiled today by SpaceX in an eye popping new photo featured above.

The newly released image shows the private Falcon 9 positioned horizontally inside the Cape Canaveral processing hanger and looking up directly from the bottom of her legs and nine powerful first stage engines.

Following a brief static hotfire test this past weekend of all nine upgraded Merlin 1D engines powering the first stage of SpaceX’s next generation Falcon 9 rocket, the path is clear for Sunday’s (March 16) night time lift off at 4:41 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

This week, engineers working inside the hanger are loading the Dragon vessel with the final cargo items bound for the station that are time sensitive.

Engineers pack Dragon with cargo, including support for more than 150 science investigations on the ISS. Credit: SpaceX
Engineers pack Dragon with cargo, including support for more than 150 science investigations on the ISS. Credit: SpaceX

Altogether, this unmanned SpaceX CRS-3 mission will deliver over 5000 pounds of science experiments and essential gear, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

An upgraded SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on March 16, 2014 from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
An upgraded SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS is slated to launch on March 16, 2014 from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Dragon is carrying research cargo and equipment for over 150 science investigations, including 100 protein crystal experiments that will allow scientists to observe the growth of crystals in zero-G.

Conducted in the absence of gravity, these space experiments will help Earth bound researchers to potentially learn how to grow crystals of much larger sizes compared to here on Earth and afford scientists new insights into designing and developing new drugs and pesticides.

A batch of new student science experiments are also packed aboard and others will be returned at the end of the mission.

The attachment of landing legs to the first stage of SpaceX’s next-generation Falcon 9 rocket counts as a major first step towards the firm’s future goal of building a fully reusable rocket.

For this Falcon 9 flight, the rocket will sprout legs for a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers.

“F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” says SpaceX CEO and founder Elon Musk.

It will be left to a future mission to accomplish a successful first stage touchdown by the landing legs on solid ground back at Cape Canaveral, Florida.

Much development works remains before a land landing will be attempted.

The Falcon will roll out from the hanger to Launch Pad 40 on Saturday, March 15.

Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX
Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX

SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

To date SpaceX has completed two operational cargo resupply missions and a test flight to the station. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.

All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch.  Credit: SpaceX/Elon Musk
All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch. Credit: SpaceX/Elon Musk

Following the scheduled March 16 launch and a series of orbit raising and course corrections over the next two days, Dragon will rendezvous and dock at the Earth facing port on the station’s Harmony module on March 18.

The Harmony port was recently vacated by the Orbital Sciences built Cygnus cargo spacecraft to make way for Dragon.

This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

Indeed Dragon is loaded with about double the cargo weight carried previously.

The Merlin 1D engines are arrayed in an octaweb layout for improved efficiency.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news. Learn more at Ken’s upcoming presentations at the NEAF astro/space convention on April 12/13.

And watch for Ken’s upcoming SpaceX launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

Morpheus Flies Higher and Farther Than Ever

Engineers prepare the Morpheus craft for its FF9 test flight on March 11, 2014 (NASA)

)
NASA’s Project Morpheus nailed it again today with yet another successful free flight of their prototype lander, soaring higher, faster, and farther than ever before! Go Morpheus!

The FF9 test, which occurred at 3:41 p.m. EDT at Kennedy Space Center, saw the 2,300-lb (1000-kg) Morpheus craft rise to a height of 580 feet (177 meters) and travel 837 feet (255 m) downrange at 30 mph (48 km/h). After the 85-second flight the craft set down almost exactly on target — only about a foot (.3 m) off.

During today’s test flight the oxygen-and-methane-propelled Morpheus could have cleared the Washington Monument.

The next step is to integrate the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors, which allow the craft to identify dangerous terrain and determine the best route to a safe landing — all by itself. This capability will be invaluable for future landings on unexplored surfaces on the Moon and Mars.

“It’s never been done,” said Dr. Jon Olansen, project manager of the Morpheus Project, in 2012. “We’ve never landed of the moon or Mars with real-time hazard detection and avoidance. Most of the Mars missions use air bags. They go where they go, they roll them and they stop… whatever comes, comes.”

Check out the latest incredible free flight video above, and learn more about Project Morpheus here.

Source: NASA

UPDATE: Here’s the “official” NASA video of FF9, showing some fantastic camera views from the craft itself:
)

Space Station Astronauts Land Tonight — Here’s How To Watch Live

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

UPDATE: The Expedition 38 crew landed safely at about 11:24 p.m. EDT (3:24 a.m. UTC) on March 11. You can catch the highlights of the crew extraction at this NASA video.

They fixed a broken space station and participated in a space Olympic torch relay. And now that they’ve spent their allotted six months in space, it’s time for Expedition 38 to come home.

The action starts today around 4:30 p.m. EDT (8:30 p.m. UTC) with the hatch closure ceremony, which you can watch in the video, with landing expected at 11:24 p.m. EDT (3:24 a.m. UTC). We have full details of the schedule below the jump.

Expedition 38’s landing crew includes Russian astronauts Oleg Kotov and Sergey Ryazanskiy, and NASA astronaut Michael Hopkins. Kotov was the one in charge of the station while four spacewalks and hundreds of experiments took place, not to mention visits from three vehicles. This past weekend, he passed the baton to Japanese astronaut Koichi Wakata, making Wakata the first person from his country to assume control of station.

Farewells and hatch closure will start around 4:30 p.m. EDT (8:30 p.m. UTC) on NASA Television, with undocking occurring at 8:02 p.m. EDT (12:02 a.m. UTC.) As usual, the crew will be in a Russian Soyuz spacecraft for the landing, making their way back to an area near Dzhezkazgan, Kazakhstan. The deorbit burn will take place around 10:30 p.m. EDT (2:30 a.m. UTC), and landing at 11:24 p.m. EDT (3:24 a.m. UTC).

We recommend you tune into NASA TV slightly before each of these events, and to expect that the timing might be variable as mission events warrant. NASA’s full schedule (in central time) is at the bottom of this story.

Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.
Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.

expedition 38 landing