NASA/JAXA Precipitation Measurement Satellite ‘GO’ for Feb. 27 Launch – Watch Live Here on NASA TV

Visualization of the GPM Core Observatory and Partner Satellites. Credit: NASA

Visualization of the GPM Core Observatory and Partner Satellites. GPM is slated to launch on Feb. 27 from Japan. Credit: NASA
See launch animation, Shinto ceremony, Rocket roll out and more below[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MARYLAND – Blastoff of the powerful and revolutionary new NASA/JAXA rain and snow precipitation measurement satellite atop a Japanese rocket from a tiny offshore island launch pad is now less than 24 hours away on Thursday, Feb. 27, EST (Feb. 28 JST).

The Global Precipitation Measurement (GPM) Core Observatory aimed at improving forecasts of extreme weather and climate change research has been given a green light for launch atop a Mitsubishi Heavy Industries H-IIA rocket from the Tanegashima Space Center on Tanegashima Island off southern Japan.

Roll out of the H-IIA launch vehicle from the Vehicle Assembly Building is scheduled for this evening, Feb. 26 at 11 p.m. EST.

Update: rocket rolled out. Photo below, plus watch streaming NASA TV below.

Following the Launch Readiness Review, mission managers approved the GO for liftoff.

The H-IIA rocket with GPM rolls to its launch pad in Japan! Credit: NASA/Bill Ingalls
The H-IIA rocket with GPM rolls to its launch pad in Japan! Credit: NASA/Bill Ingalls

Japanese team members also prayed at a Shinto ceremony for blessings for a successful launch at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage on Tuesday, Feb. 25, 2014 – see photo below.

However, the team also set a newly revised launch time of 1:37 p.m. EST (18:37 UTC, and Feb. 28 at 3:37 a.m. JST).



Live streaming video by Ustream

Mission managers adjusted the H-IIA launch time after concerns raised by a collision avoidance analysis between the GPM spacecraft and the International Space Station (ISS).

gpm launch

GPM will fly at an altitude of 253 miles (407 kilometers) above Earth – quite similar to the ISS.

It’s coverage runs over virtually the entire populated globe from 65 N to 65 S latitudes.

NASA plans live coverage of the launch on Feb. 27 beginning at 12 noon EST on NASA Television.

It will be streamed live at: http://www.nasa.gov/nasatv

The $933 Million observatory is a joint venture between the US and Japanese space agencies, NASA and the Japan Aerospace Exploration Agency (JAXA).

NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center, MD. Technicians at work on final processing during exclusive up-close inspection tour by Universe Today.  GPM is slated to launch on February 27, 2014 and will provide global measurements of rain and snow every 3 hours. Credit: Ken Kremer/kenkremer.com
NASA’s next generation Global Precipitation Measurement (GPM) observatory inside the clean room at NASA Goddard Space Flight Center, MD. Technicians at work on final processing during exclusive up-close inspection tour by Universe Today. GPM is slated to launch on February 27, 2014 and will provide global measurements of rain and snow every 3 hours. Credit: Ken Kremer/kenkremer.com

GPM has a one-hour launch window. In case of any delays, the team will be required to conduct a thorough new collision avoidance analysis to ensure safety.

Weather forecast is excellent at this time.

Watch this GPM Launch animation:

Video caption: NASA/JAXA GPM Core Observatory Launch Animation

GPM is a next-generation satellite that will provide global, near real time observations of rain and snow from space. Such data is long awaited by climate scientists and weather forecasters.

It will open a new revolutionary era in global weather observing and climate science. Therefore it will have a direct impact on society and people’s daily lives worldwide.

The mission will significantly advance our understanding of Earth’s water and energy cycles and improve forecasting of extreme weather events.

The 3850 kilogram GPM satellite is equipped with two instruments – an advanced, higher resolution dual -frequency precipitation (DPR) radar instrument (Ku and Ka band) built by JAXA in Japan and the GPM microwave imager (GMI) built by Ball Aerospace in the US.

Major components of the GPM Core Observatory labeled, including the GMI, DPR, HGAS, solar panels, and more. Credit: NASA Goddard
Major components of the GPM Core Observatory labeled, including the GMI, DPR, HGAS, solar panels, and more. Credit: NASA Goddard

“The GPM satellite was built in house at NASA’s Goddard Space Flight Center in Maryland,” Art Azarbarzin, GPM project manager, told Universe Today during my exclusive up-close clean room inspection tour of the huge satellite as final processing was underway.

Researchers will use the GPM measurements to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking.

“GPM will join a worldwide constellation of current and planned satellites,” Azarbarzin told me during an interview in the Goddard cleanroom beside GPM.

“GPM is the direct follow-up to the currently orbiting TRMM satellite,” Azarbarzin explained.

“TRMM is reaching the end of its usable lifetime. After GPM launches we hope it has some overlap with observations from TRMM.”

“The Global Precipitation Measurement (GPM) observatory will provide high resolution global measurements of rain and snow every 3 hours,” Dalia Kirschbaum, GPM research scientist, told me during an interview at Goddard.

Stay tuned here for Ken’s continuing GPM reports and on-site coverage at NASA Goddard Space Flight Center in Maryland.

And watch for Ken’s continuing planetary and human spaceflight news about Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars, Orion and more.

Ken Kremer

GPM: Three Shrine Pilgrimage  Japan Aerospace Exploration Agency (JAXA) team members bow at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays on Tuesday, Feb. 25, 2014 for a successful launch, Tanegashima Island, Japan.    Credit: NASA/Bill Ingalls
GPM: Three Shrine Pilgrimage Japan Aerospace Exploration Agency (JAXA) team members bow at the Ebisu Shrine, the first shrine in a traditional San-ja Mairi, or Three Shrine Pilgrimage, where the team prays on Tuesday, Feb. 25, 2014 for a successful launch, Tanegashima Island, Japan. Credit: NASA/Bill Ingalls
NASA/JAXA Global Precipitation Measurement (GPM) satellite inside the clean room at NASA Goddard Space Flight Center, MD, undergoes final processing during exclusive up-close inspection tour by Universe Today:   Dr. Art Azarbarzin/NASA GPM project manager, Dr. Ken Kremer/Universe Today and Dr. Dalia Kirschbaum/NASA GPM research scientist.    Credit: Ken Kremer/kenkremer.com
NASA/JAXA Global Precipitation Measurement (GPM) satellite inside the clean room at NASA Goddard Space Flight Center, MD, undergoes final processing during exclusive up-close inspection tour by Universe Today: Dr. Art Azarbarzin/NASA GPM project manager, Dr. Ken Kremer/Universe Today and Dr. Dalia Kirschbaum/NASA GPM research scientist. Credit: Ken Kremer/kenkremer.com

Next SpaceX Falcon 9 Rocket Gets Landing Legs for March Blastoff to Space Station – Says Elon Musk

1st stage of SpaceX Falcon 9 rocket equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk

1st stage of SpaceX Falcon 9 rocket newly equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
Story updated[/caption]

The next commercial SpaceX Falcon 9 rocket that’s set to launch in March carrying an unmanned Dragon cargo vessel will also be equipped with a quartet of landing legs in a key test that will one day lead to cheaper, reusable boosters, announced Elon Musk, the company’s founder and CEO.

The attachment of landing legs to the first stage of SpaceX’s new and more powerful, next-generation Falcon 9 rocket counts as a major step towards the firm’s eventual goal of building a fully reusable rocket.

Before attempting the use of landing legs “SpaceX needed to gain more confidence” in the new Falcon 9 rocket, Musk told me in an earlier interview.

Blastoff of the upgraded Falcon 9 on the Dragon CRS-3 flight is currently slated for March 16 from Cape Canaveral Air Force Station, Florida on a resupply mission to bring vital supplies to the International Space Station (ISS) in low Earth orbit for NASA.

“Mounting landing legs (~60 ft span) to Falcon 9 for next month’s Space Station servicing flight,” Musk tweeted, along with the up close photos above and below.

All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch.  Credit: SpaceX/Elon Musk
All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for March 16 launch. Credit: SpaceX/Elon Musk

“SpaceX believes a fully and rapidly reusable rocket is the pivotal breakthrough needed to substantially reduce the cost of space access,” according to the firm’s website.

SpaceX hopes to vastly reduce their already low $54 million launch cost when a reusable version of the Falcon 9 becomes feasible.

Although this Falcon 9 will be sprouting legs, a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers is still planned for this trip.

“However, F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” Musk quickly added in a follow-up twitter message.

In a prior interview, I asked Elon Musk when a Falcon 9 flyback would be attempted?

“It will be on one of the upcoming missions to follow [the SES-8 launch],” Musk told me.

“What we need to do is gain more confidence on the three sigma dispersion of the mission performance of the rocket related to parameters such as thrust, specific impulse, steering loss and a whole bunch of other parameters that can impact the mission.”

“If all of those parameters combine in a negative way then you can fall short of the mission performance,” Musk explained to Universe Today.

When the upgraded Falcon 9 performed flawlessly for the SES-8 satellite launch on Dec 3, 2013 and the Thaicom-6 launch on Jan. 6, 2014, the path became clear to attempt the use of landing legs on this upcoming CRS-3 launch this March.

Atmospheric reentry engineering data was gathered during those last two Falcon 9 launches to feed into SpaceX’s future launch planning, Musk said.

That new data collected on the booster stage has now enabled the approval for landing leg utilization in this March 16 flight.

SpaceX engineers will continue to develop and refine the technology needed to accomplish a successful touchdown by the landing legs on solid ground back at the Cape in Florida.

Extensive work and testing remains before a land landing will be attempted by the company.

Ocean recovery teams will retrieve the 1st stage and haul it back to port much like the Space Shuttle’s pair of Solid Rocket Boosters.

This will be the second attempt at a water soft landing with the upgraded Falcon 9 booster.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to December 2013 SpaceX upgraded Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The two stage Falcon 9 rocket and Dragon cargo carrier are currently in the final stages of processing by SpaceX technicians for the planned March 16 night time liftoff from Space Launch Complex 40 at 4:41 a.m. that will turn night into day along the Florida Space Coast.

“All four landing legs now mounted on Falcon 9,” Musk tweeted today, Feb. 25.

SpaceX has carried out extensive landing leg and free flight tests of ever increasing complexity and duration with the Grasshopper reusable pathfinding prototype.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000) pounds of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

SpaceX Falcon 9 landing leg. Credit: SpaceX
SpaceX Falcon 9 landing leg. Credit: SpaceX

To date SpaceX has completed two cargo resupply missions. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013.

The Falcon 9 and Dragon were privately developed by SpaceX with seed money from NASA in a public-private partnership.

The goal was to restore the cargo up mass capability the US completely lost following the retirement of NASA’s space shuttle orbiters in 2011.

SpaceX along with Orbital Sciences Corp are both partnered with NASA’s Commercial Resupply Services program.

Orbital Sciences developed the competing Antares rocket and Cygnus cargo spacecraft.

This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news – and upcoming launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch nearby SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com

Dale Gardner, Astronaut Who Rescued A Satellite With A Jetpack, Dead At 65

Dale Gardner (left) prior to the launch of STS-8 in 1983, along with the rest of his crew. Moving left, Guy Bluford, Bill Thornton, Daniel Brandenstein and Dick Truly. Credit: NASA

When Dale Gardner smiled for this preflight picture somewhere around 1983, there was another mission on his horizon: picking up a broken satellite … using a jet backpack. And while we believe that all astronauts have an element of derring-do to them, strapping on a device to bring you away from the shuttle’s safety must have taken a special kind of confidence in your equipment.

Gardner, who died Wednesday (Feb. 18) of a brain aneurysm at the age of 65, was one of a handful of astronauts who used the Manned Maneuvering Unit. In his case, it was to retrieve the malfunctioning Westar 6 satellite. Listen to his account of the story (around 9:25 here), however, and you’ll hear a man more focused on favorable sun angles and learning from the experience of another crewmate on STS-51A.

“I essentially just had a lot of fun on Flight Day 7,” he said in the video. And as the sequence of pictures below shows you, technical as the procedure was, the view must have been breathtaking.

Sequence of images showing NASA astronaut Dale Gardner approaching and capturing the malfunctioning Westar 6 satellite in 1984 during STS-51A. Click for a larger version. Credit: NASA (images) / Elizabeth Howell (photo combination)
Sequence of images showing NASA astronaut Dale Gardner approaching and capturing the malfunctioning Westar 6 satellite in 1984 during STS-51A. Click for a larger version. Credit: NASA (images) / Elizabeth Howell (photo combination)

Gardner, who was born in Minnesota, joined the U.S. Navy after graduating from the University of Illinois in 1970. He earned his wings the following year, then made his way through assignments to the prestigious Naval Air Test Center in Patuxent River, Maryland (the training ground for many future astronauts).

There, he participated in the development and evaluation of the Grumman F-14 Tomcat, an aircraft eventually used in Operation Desert Storm in the 1990s, among many other missions. Gardner was in fact part of the first F-14 squadron from none other than the USS Enterprise (the aircraft carrier, not the Star Trek ship.)

Gardner came to NASA as part of an immense astronaut class in 1978 that was later known as the “Thirty-Five New Guys” (which, it should be noted, also included six women, a first for the agency). With shuttle flights about to begin — a program that was then expected to launch dozens of flights a year — there appeared to be plenty of room for new recruits. Gardner’s first space-based assignment came upon STS-8, which flew in 1983 to deploy an Indian satellite called Insat-1B.

But it was for STS-51A’s eight-day mission in November 1984 where Gardner will be best remembered, because he did this:

NASA astronaut Dale Gardner captures the malfunctioning Westar 6 satellite during STS-51A in 1984. Gardner was using the Manned Maneuvering Unit, a sort of space backpack that was discontinued for astronaut use after the Challenger explosion of 1986. Credit: NASA
NASA astronaut Dale Gardner captures the malfunctioning Westar 6 satellite during STS-51A in 1984. Gardner was using the Manned Maneuvering Unit, a sort of space backpack that was discontinued for astronaut use after the Challenger explosion of 1986. Credit: NASA

The shuttle mission was packed with satellite activity, with crew members deploying the Canadian communications satellite Anik D2, and U.S. defense communications satellite Leasat-1. Then it was time to pick up a couple of broken satellites to haul back to Earth.

Using a sort of grapple tool and his MMU, Joe Allen successfully retrieved Palapa-B2 on Flight Day 5. After Allen told his crewmates that he had some trouble with the sun in his eyes, Gardner used that information on his own MMU trip to pick up Westar 6 two days later. Specifically, Gardner and the crew had him approach in such a way that the shadow of the satellite fell across the astronaut, stopping the sun glare from becoming a problem.

NASA astronaut Dale Gardner holds a "For Sale" sign during STS-51A in 1984, referring to two satellites captured and retrieved on that mission. Credit: NASA
NASA astronaut Dale Gardner holds a “For Sale” sign during STS-51A in 1984, referring to two satellites captured and retrieved on that mission. Credit: NASA

Both satellites had been in improper orbits due to problems with motors, but Gardner and his crew nabbed them safely for a return back to Earth, allowing insurers to resell the satellites for separate launches in 1990. But Gardner had a parting gotcha before handing them back: he held up a “For Sale” sign that you’ve likely seen reprinted somewhere, as it’s among the most famous shots of the shuttle program.

Gardner returned to the Navy in October 1986 (almost a year after the shuttle Challenger explosion), where he joined U.S. Space Command and held several senior positions. He retired from the Navy in 1990 to work in the private sector.

His death this week from a brain aneurysm was said to be sudden, and prompted a Twitter comment from the Association of Space Explorers saying that it was “devastating news.”

Gaping Inside The Huge Vehicle Assembly Building NASA Used For Space Shuttles And Moon Missions

The Vehicle Assembly Building at the Kennedy Space Center in Florida on Nov. 16, 2009, just hours before the launch of STS-129. Credit: Elizabeth Howell

ORLANDO, FLORIDA – There’s something about this city that brings out the crazy travel planner in me. I visited here four times betting a shuttle would launch, luckily winning on three occasions. I also once took an epic bus trip from here as far south as Fort Lauderdale before zooming back north, looking at space exhibits up and down the coast.

This time, it was to catch the Vehicle Assembly Building tour before it was gone. Tours inside the iconic, huge structure — best known as the spot where the Apollo rockets and space shuttle went through final assembly before going to the pad — are closing down on Sunday (Feb. 23). Warned by Ken Kremer and others that soon the public couldn’t get inside, I booked a ticket late last month after the announcement was made.

I came in search of the past, but what I saw instead was the future — an agency preparing to hand over a launch pad  to SpaceX, and at least part of an Orion spacecraft on the VAB floor, ready to be shipped to Langley, Virginia.

The floor of the Vehicle Assembly Building at the Kennedy Space Center in Florida during a tour in February 2014. At left is an Orion spacecraft prototype readied for shipping to Langley, Virginia. Credit: Elizabeth Howell
The floor of the Vehicle Assembly Building at the Kennedy Space Center in Florida during a tour in February 2014. At left is an Orion spacecraft prototype readied for shipping to Langley, Virginia. Credit: Elizabeth Howell
Atlantis suspended in the Vehicle Assembly Building during the shuttle era. Image credit: NASA
Atlantis suspended in the Vehicle Assembly Building during the shuttle era. Image credit: NASA

It’s hard to convey the size of one of the world’s largest buildings. It’s so big that it can form its own weather inside, without proper air conditioning. It stands almost twice as high as the Statue of Liberty, at 160 meters (525 feet) tall and 158 meters (518 feet) wide.

The 3.25-hectare (8-acre) building needed to be so huge to hold the 363-foot (111-meter) Apollo/Saturn vehicles in the 1960s and 1970s, and then was modified for use of the shuttle in the 1970s until just a few years ago.

What surprised me, however, was how narrow the main floor appeared. That’s because there are all of these catwalks on either side of the space for workers to get access to different parts of the spacecraft.

A view of scaffolding inside the Vehicle Assembly Building at the Kennedy Space Center in Florida. Photo taken in February 2014. Credit: Elizabeth Howell
A view of scaffolding inside the Vehicle Assembly Building at the Kennedy Space Center in Florida. Photo taken in February 2014. Credit: Elizabeth Howell

Tours of this building were off-limits between 1978 and 2011, when the shuttle program was launching its vehicles in earnest. After the program retired, however, NASA opened the VAB and nearby facilities (including the Launch Control Center and Launch Pad 39A) up to visitors. As these areas are now being used by contractors and the Orion/Space Launch System, however, the agency is closing down public access so the work of getting to space can continue.

As NASA prepares for a test of Orion later in 2014, the agency is also looking to lease out parts of the big building to commercial vendors. It appears negotiations for at least some of the high bays are ongoing.

Meanwhile, we were lucky enough to glimpse at least part of an Orion spacecraft prototype ready for shipping to Langley, Virginia, with about a dozen people busily milling around it as it lay on the back of a tractor trailer. It’s unclear to me how much of the spacecraft was inside that package, but our tour guide told us it was the whole thing. Yes, the truck looked really tiny in the big building.

An Orion prototype spacecraft in the Vehicle Assembly Building at the Kennedy Space Center in Florida, ready to be shipped to Langley, Virginia. Credit: Elizabeth Howell
An Orion prototype spacecraft in the Vehicle Assembly Building at the Kennedy Space Center in Florida, ready to be shipped to Langley, Virginia. Credit: Elizabeth Howell

Our group also had the chance to visit Launch Pad 39A, one of the two pads used in the Apollo program and also for shuttle. It was eerie to see the pad still in its shuttle configuration, complete with the clamshell-like structure that used to protect the vehicle from the weather until just prior to launch.

All that is going to be torn down for scrap shortly as SpaceX likely takes over the pad, our guide told us, and it’s unclear how long pad tours will continue. Likely those will be gone soon as well. Meanwhile, I took special delight standing in the “flame trench” where noxious chemicals from the launch used to flow. You certainly didn’t want to be close to this spot when a Saturn V or shuttle stack took off.

By the way, the first thing I thought of when I saw the huge pipes on the side of the picture below is the 1996 movie Apollo 13, which has a dramatic launch sequence that includes a neat pan across the coolant tubing. That’s about the time when I decided I wanted to see the VAB and launch pads, so it only took me 18 years to get out here.

Launch Pad 39A at the Kennedy Space Center, one of two locations where the shuttle went into space. Photo taken in February 2014. Credit: Elizabeth Howell
Launch Pad 39A at the Kennedy Space Center, one of two locations where the shuttle went into space. Photo taken in February 2014. Credit: Elizabeth Howell

Although these tours are likely changing or closing, these steps are to get the complex ready for manned launches again, if the current plan and funding holds as NASA hopes.

In the meantime, there are other things to see at the center. The picture at the top of this article shows the Vehicle Assembly Building just before the launch of STS-129, my first experience seeing a shuttle rocket into space.

That shuttle happened to be Atlantis, which today is handily displayed nearby in the KSC Visitor Complex. Weird, I thought, as I looked at the immense vehicle’s bulk. The last time I saw you in November 2009, you were on your way to orbit and making a lot of noise.

I wonder how much things will change at KSC in the next four years.

The Atlantis space shuttle at the Kennedy Space Center in Florida in February 2014. Credit: Elizabeth Howell
The Atlantis space shuttle at the Kennedy Space Center in Florida in February 2014. Credit: Elizabeth Howell

Private Cygnus Cargo Carrier departs Space Station Complex

The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station's robotic arm at 6:41am EST, Feb 18. It will burn up in Earth's atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV

Following a picture perfect blastoff from NASA’s frigid Virginia spaceport and a flawless docking at the International Space Station (ISS) in mid-January, the privately built Cygnus cargo resupply vehicle has completed its five week long and initial operational station delivery mission and departed the facility early this morning, Tuesday, Feb. 18.

The Expedition 38 crewmembers Michael Hopkins of NASA and Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) demated the Orbital Sciences Cygnus commercial spacecraft from the Earth-facing port of the Harmony node using the Canadian built robotic arm at about 5:15 a.m. EST.

The cylindrically shaped ship was released from the grappling snare on the terminus of the 57 foot long extended arm at about 6:41 a.m. EST and with a slight shove as both vehicles were flying at 17500 mph and some 260 miles (415 km) altitude above Earth over the southern tip of Argentina and the South Atlantic Ocean.

The astronauts were working at a robotics work station in the windowed Cupola module facing the Earth. The arm was quickly pulled back about 5 feet (1.5 m) after triggering the release from the grappling pin.

NASA TV carried the operation live. Station and arm cameras provided spectacular video views of the distinctive grey cylindrical Cygnus back dropped by the massive, cloud covered blue Earth as it was released and sped away.

The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station's robotic arm at 6:41am EST, Feb 18. It will burn up in Earth's atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV
The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station’s robotic arm at 6:41am EST, Feb 18. It will burn up in Earth’s atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV

Cygnus was commanded to fire its jets for the departure maneuvers to quickly retreat away from the station. It was barely a speck only 5 minutes after the arm release maneuver by Wakata and Hopkins.

“The departure was nominal,” said Houston mission control. “Cygnus is on its way.”

The solar powered Cygnus is America’s newest commercial space freighter and was built by Orbital Sciences Corporation with seed money from NASA in a public-private partnership aimed at restoring the cargo up mass capabilities lost following the retirement of NASA’s space shuttles in 2011.

Cygnus, as well as the SpaceX Dragon cargo vessel, functions as an absolutely indispensable “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.

The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station's robotic arm at 6:41am EST, Feb 18. It will burn up in Earth's atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV
The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station’s robotic arm at 6:41am EST, Feb 18. It will burn up in Earth’s atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV

The freighter delivered a treasure trove of 1.5 tons of vital research experiments, crew provisions, two dozen student science projects, belated Christmas presents, fresh fruit and more to the million pound orbiting lab complex and its six man crew.

The milestone flight dubbed Orbital 1, or Orb-1, began with the flawless Jan. 9 blast off of Cygnus mounted atop Orbital Sciences’ two stage, private Antares booster on the maiden operational launch from NASA’s Wallops Flight Facility along Virginia’s eastern shore. See a gallery of launch photos and videos – here and here.

“Today’s launch gives us the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle astronaut.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

And NASA’s commercial cargo initiative is even more important following the recent extension of station operations to at least 2024.

“I think it’s fantastic that the Administration has committed to extending the station,” Culbertson told me following the launch at NASA Wallops.

“So extending it gives not only commercial companies but also researchers the idea that Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”

Following a two day orbital chase the Cygnus spacecraft reached the station on Jan. 12.

The ship is named in honor of NASA shuttle astronaut C. Gordon Fullerton who passed away in 2013.

Science experiments weighing 1000 pounds accounted for nearly 1/3 of the cargo load.

Among those were 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The students are participants of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).

Over 20 of the students attended the launch at Wallops. The student experiments selected are from 6 middle school and high school teams from Washington, DC, Traverse, MI, Downingtown and Jamestown, PA, North Charleston, SC and Hays County, TX.

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
These are among the students benefiting from ISS extension
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

“More than half the student experiments were activated within four days of arrival,” Dr. Jeff Goldstein, Director of the NCESSE, told Universe Today exclusively.

Ant colonies from three US states were also on board to study “swarm behavior.” The “ants in space” experiment was among the first to be unloaded from Cygnus to insure they are well fed for their expedition on how they fare and adapt in zero gravity.

33 cubesats were also aboard. Several of those were deployed last week from the Japanese Experiment Module airlock.

The Orbital-1 mission was the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA to deliver 20,000 kg (44,000 pounds) of cargo through 2016.

Cygnus was berthed at the ISS for some 37 days.

After fully unpacking the 2,780 pounds (1,261 kilograms) of supplies packed inside Cygnus, the crew reloaded it with all manner of no longer need trash and have sent it off to a fiery and destructive atmospheric reentry to burn up high over the Pacific Ocean on Feb. 19.

“The cargo ship is now a trash ship,” said NASA astronaut Cady Coleman.

“Getting rid of the trash frees up a lot of valuable and much needed space on the station.”

When it reaches a sufficiently safe separation distance from the ISS, mission controllers will fire its engines two times to slow the Cygnus and begin the final deorbit sequence starting at about 8:12 a.m. on Wednesday.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12
Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

Cygnus departure is required to make way for the next private American cargo freighter – the SpaceX Dragon, which is now slated to blast off from Cape Canaveral, Florida on March 16 atop the company’s upgraded Falcon 9 booster.

Two additional Antares/Cygnus flights are slated for this year.

They are scheduled to lift off around May 1 and early October, said Culbertson.

Indeed there will be a flurry of visiting vehicles to the ISS throughout this year and beyond – creating a space traffic jam of sorts.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

Savage Spacesuit: ‘Mythbusters’ Host’s Mercury Costume Looks Real Enough For Space

Mythbusters' Adam Savage shows off a Mercury replica spacesuit in February 2014. Credit: Tested/YouTube (screenshot)

Who wants Adam Savage’s job right now? The cohost of Mythbusters spent the last year working with a San Francisco Bay-area costume designer to come up with this remarkable Mercury spacesuit. While it’s not a faithful replica of any one mission — it’s more a blend of greatest hits from the designs of several — it really looks like Savage could step into a spacecraft at any moment.

“The whole point of the Mercury program … was to figure out how to safely get people into space and what would happen to them,” Savage says in a new video, which you can see below.

“So every single time they came down from a Mercury mission they [the astronauts] would talk to the engineers and spend weeks in meetings going ‘Okay, I couldn’t move my arm this way. I couldn’t hit this switch in this way. I couldn’t turn my head.”

As if that isn’t cool enough, Savage also is sporting an Apollo flight jacket replica that is advertised as being pretty darn close to the original. Check out Adam Savage’s Tested blog for amazing photos as well as a more complete video (for premium members.)

Mercury was the first American spaceflight program, and had six flights between 1961 and 1963. For more information about the Mercury spacesuit, check out this chapter from NASA book “This New Ocean: A History of Project Mercury“. You can also see a photo gallery of different Mercury suits.

Coincidentally, there’s a travelling exhibit on about the history of spacesuits, which Universe Today’s David Dickinson wrote about last week.

Mythbusters' Adam Savage (left) in front of a replica Mercury spacesuit. Credit: Tested/YouTube (screenshot)
Mythbusters’ Adam Savage (left) in front of a replica Mercury spacesuit. Credit: Tested/YouTube (screenshot)
A close-up of a Mercury replica spacesuit ordered by Mythbusters' Adam Savage. Credit: Tested/YouTube (screenshot)
A close-up of a Mercury replica spacesuit ordered by Mythbusters’ Adam Savage. Credit: Tested/YouTube (screenshot)

At ‘Star City’, This Is How Astronauts Learn About Soyuz Spacecraft

European astronaut Andreas Morgensen resting between parabolas on a "Vomit Comet"-like plane during training in 2010.

While the world is having a good time watching Olympic sports in Sochi, about a day’s drive north in Russia there are a bunch of astronauts using their evenings for a different purpose: reading an 18-inch high stack of Soyuz spacecraft textbooks.

“So let’s study all this real quick, let’s learn everything, we’ll learn everything we have to learn, and then let’s go to sim[ulation],” says European astronaut Thomas Pesquet in a new video from living quarters in training facility Star City, near Moscow.

“Okay, but I think it takes about a year,” answers fellow European astronaut Andreas Mogensen.

“Oh … so we better get started,” Pesquet says, handing gobs of books to his colleague.

Mogensen has his hands full in other ways as well as he shows us around Star City: there’s a new baby in his family, as you see at the beginning. We doubt he’s getting a lot of sleep right now, but this will certainly be a memorable time as he prepares to be the first Dane in space in 2015.

For more information on the Gagarin Cosmonaut Training Center at Star City, check out this link.

How Would Earth Send Messages To A Starship — Or A Distant Civilization?

USS Enterprise-D, a starship of the Star Trek: The Next Generation era. Credit: MemoryAlpha.Org/Paramount Pictures/CBS Studios

I have a new exercise routine where I watch Star Trek: The Next Generation most mornings of the week while doing my thing. Besides serving as awesome distraction, the episodes do get me thinking about how humans would talk to extraterrestrials. It likely wouldn’t be as easy as the show portrays to zoom across space to conduct diplomatic negotiations at the planet “Parliament”, for example, so interstellar communication would be a problem.

Luckily for non-engineers such as me, there are folks out there (on Earth, at least) that are examining the problem of talking between stars. David Messerschmitt, of the University of California at Berkeley, is one of those people. A new paper by him on Arxiv examines the issue. Note this is a preprint site and not a peer-reviewed journal, but all the same it provides an intriguing addition to how to communicate outside of Earth.

Messerschmitt explains that humans already communicate with probes that are a fair distance from Earth (say, Voyager 1 in interstellar space) at radio frequencies, and there is some usage now of laser/optical communications (namely between the Earth and the moon).

Across greater distances, however, you lose information, the interstellar medium gets in the way, and stars shift due to relative motion. Besides all that, at first you wouldn’t know how the other civilization designs its systems and you could therefore send a message that wouldn’t be picked up.

This sequence of images, showing a region where fewer stars are forming near the constellation of Perseus, illustrates how the structure and distribution of the interstellar medium can be distilled from the images obtained with Planck. Credit: ESA / HFI and LFI Consortia
This sequence of images, showing a region where fewer stars are forming near the constellation of Perseus, illustrates how the structure and distribution of the interstellar medium can be distilled from the images obtained with Planck. Credit: ESA / HFI and LFI Consortia

He further explains that starships and civilizations would have different communications requirements. Starship communication would be two-way and based on a similar design, so success comes by having high “uplink and downlink transmit times”. The more information, the better it would be for scientific observations and keeping down errors.

Civilization-to-civilization chats, however, would present headaches. As with all diplomatic negotiations, crafting suitable messages would take time. Then we’d have to send the message out repeatedly to make sure it is heard (which actually means that reliability is not as big of a problem.) Then the ISM would have to be contended with (something that pulsar astronomers and astrophysicists are already working on, he said).

In either case — talking to starships or other civilizations — one can assume there’d be a lot of energy involved, he added. “Starships are likely to be much closer than the nearest civilizations, but the cost of either a large transmit antenna or transmit energy is likely to be considerably greater for the starship than for a terrestrial-based transmitter,” he said, suggesting that a solution would be to minimize the energy delivered to the receiver. Other civilizations may have found more efficient ways to overcome this problem, he added.

You can read more details of the research on Arxiv, where Messerschmitt talks about Gaussian noise, channel coding and other parameters to keep in mind during communication.

What to Wear? The History and Future of Spacesuits

Credit:

The issue of “what to wear?” takes on an extra dimension of life and death when it comes to space travel. Upon exiting a spacecraft on a spacewalk, an astronaut becomes his very own personal satellite in orbit about the Earth and must rely on the flimsy layer of his suit to provide them with a small degree of protection from radiation and extreme fluctuations of heat and cold.

We recently had a chance to see the past, present and future of space suit technology in the Smithsonian Institutions’ touring Suited for Space exhibit currently on display at the Tampa Bay History Center in Tampa, Florida.

Tampa Bay History Center Director of Marketing Manny Leto recently gave Universe Today an exclusive look at the traveling display. If you think you know space suits, Suited for Space will show you otherwise, as well as give you a unique perspective on a familiar but often overlooked and essential piece of space hardware. And heck, it’s just plain fascinating to see the design and development of some of these earlier suits as well as videos and stills of astronauts at work – and yes, sometimes even at play – in them.

One of the highlights of the exhibit are some unique x-ray images of iconic suits from space travel history. Familiar suits become new again in these images by Smithsonian photographer Mark Avino, which includes a penetrating view of Neil Armstrong’s space suit that he wore on Apollo 11.

Credit
X-ray images of Neil Armstrong’s historic suit on display in Suited for Space. (Photo by author).

Space suits evolved from pressure suits developed for high-altitude flights in the 1950’s, and Suited for Space traces that progression. It was particularly interesting to see the depiction of Wiley Post’s 1934 suit, complete with steel cylindrical helmet and glass portal! Such early suits resembled diving bell suits of yore — think Captain Nemo in a chemsuit. Still, this antiquated contraption was the first practical full pressure suit that functioned successfully at over 13,000 metres altitude.

Credit:
Wiley Post’s 1934 “rubber bladder suit.” (Photo by author).

No suit that has been into space is allowed to tour due to the fragility of many historic originals that are now kept at the Smithsonian, though several authentic suits used in training during the U.S. space program are on display. We thought it was  interesting to note how the evolution of the spacesuit closely followed the development of composites and materials through the mid-20th century. You can see the progression from canvas, glass and steel in the early suits right up though the advent of the age of plastic and modern fabrics. Designs have flirted with the idea of rigid and semi-rigid suits before settling on the modern day familiar white astronaut suit.

credit
A x-ray photo of an EX-1A spacesuit. (Photo by author).

Spacesuit technology has also always faced the ultimate challenge of protecting an astronaut from the rigors of space during Extra-Vehicular Activity, or EVA.

Cosmonaut Alexey Leonov performed the first 12 minute space walk during Voskhod 2 back in 1965, and NASA astronaut Ed White became the first American to walk in space on Gemini 4 just months later. Both space walkers had issues with over-heating, and White nearly didn’t make it back into his Gemini capsule.

credit
Early evolution of space suits on display at the Suited for Space exhibit. (Photo by author).

Designing a proper spacesuit was a major challenge that had to be overcome. In 1962, Playtex (yes THAT Playtex) was awarded a contract to develop the suits that astronauts would wear on the Moon. Said suits had 13 distinct layers and weighed 35 kilograms here on Earth. The Playtex industrial division eventually became known as the International Latex Corporation or ILC Dover, which still makes spacesuits for ISS crewmembers today. It’s also fascinating to see some of the alternate suits proposed, including one “bubble suit” with arms and legs (!) that was actually tested but, thankfully, was never used.

These suits were used by astronauts on the Moon, to repair Hubble, build the International Space Station and much more. Al Worden recounts performing the “most distant EVA ever” on the return from the Moon in his book Falling to Earth. This record will still stand until the proposed asteroid retrieval mission in the coming decade, which will see astronauts performing the first EVA ever in orbit around Earth’s Moon.

credit
An A5-L Spacesuit. Credit: Smithsonian/Suited for Space.

And working in a modern spacesuit during an EVA is anything but routine. CSA Astronaut Chris Hadfield said in his recent book An Astronaut’s Guide to Life on Earth that “Spacewalking is like rock climbing, weightlifting, repairing a small engine and performing an intricate pas de deux – simultaneously, while encased in a bulky suit that’s scraping your knuckle, fingertips and collarbone raw.”

And one only has to look at the recent drama that cut ESA astronaut Luca Parmitamo’s EVA short last year to realize that your spacesuit is the only thin barrier that exists between yourself and the perils of space.

“We’re delighted to host our first Smithsonian Institution Travelling Exhibition Service (SITES) and we think that Florida’s close ties to NASA and the space program make it a great fit for us,” said Rodney Kite-Powell, the Tampa Bay History Center’s Saunders Foundation Curator of History.

Be sure to catch this fascinating exhibit coming to a city near you!

-And you can see these suits in action on the up and coming future EVAs for 2014.

-Here’s the schedule for Suited for Space Exhibit tour.

-Astronaut Nicole Stott (veteran of STS-128, -129, -133, & ISS Expeditions 20 and 21) will also be on hand at the Tampa Bay History Center on March 2014 (Date to be Announced) to present Suited for Space: An Astronaut’s View.

– Follow the Tampa Bay History Museum of Twitter as @TampaBayHistory.

 

Who Wants A One-Way Trip To Mars? Meet Three People Applying For Mars One

Three Mars One applicants that made it to the second round. From left, Max Fagin, Brian Hinson and Andrew Rader. (All pictures provided by the respective subjects of the photos).

If you were to find yourself on the Red Planet, what would you do when you get there? Those who made the second round of the Mars One mission (which aims to establish a colony on Mars in the next decade) are a step closer to answering that question. In interviews with Universe Today, applicants Andrew Rader, Max Fagin and Brian Hinson explained what they’ll do if they embark on a planned one-way trip to the Red Planet.

It’s impossible in three interviews to capture the diversity of more than 1,000 second-round applicants, so we encourage you to head over to Mars One’s website to browse the full list of people. As for these three would-be Marstronauts, we have their application videos and their plans for Mars exploration below the jump.

Max Fagin, 26, United States

With a resume including the NASA Academy and the Mars Desert Research Station, you’d expect that Fagin would be interested in the conventional astronaut program. He wants to try for Mars One first, however, because the Red Planet is the destination he prefers.

“Applying to become an astronaut at NASA is still an option, but at the moment they don’t have Mars as a destination,” he said. “Right now it’s the asteroids, which is cool, I’d love to see that, but it’s not something I’m willing to risk my life over.” Going to Mars would provide a greater payoff, he added, in that a new home base could be established for humanity.

One question intriguing Fagin is how to make a vehicle that travels to Mars better optimized to be used on the surface. He believes that the design will need to be changed somehow post-landing to make it possible to perform agriculture and do other duties on station. (He is in fact doing graduate engineering work at Indiana’s Purdue University right now to study more about this problem.)

Fagin is looking forward to diversifying his training if he does get selected. He’s strong in engineering, he said, but feels that learning medical skills, for example, will position all crew members well to work on the surface.

Brian Hinson, 44, United States

As you can see by the application video, Hinson is not afraid of standing out. He’s been to 39 countries and describes himself as experienced in learning about different cultures. He’s a private pilot and has also tested himself physically, for example by mountain-climbing to altitudes above 19,685 feet (6,000 meters).

“The whole Mars thing came up, and it sounds like the greatest adventure of all time,” said Hinson, who co-founded the company Skin Beautiful Dermaceuticals with his wife, Kathleen Eickholt (who is supportive of the Mars mission, but doesn’t necessarily want him to leave, he adds).

Hinson is a lifelong space enthusiast, but says his math capabilities weren’t enough to consider the NASA astronaut program. He would contribute to the mission as an engineer: “I think I could help out with hydroponics, recycle the water and everything else … [and also] picking up samples for scientists back home.”

From spending as long as 2.5 weeks on trips with strangers, Hinson added that he thinks psychological aspects will be key to success of the crew. He added that he expects the Mars One training process will include extended periods of time in isolation, perhaps something similar to the six months a science crew typically spends in Antarctica.

Andrew Rader, 34, Canada

Rader’s skills span both the technical and the human, as he earned a Ph.D. in aerospace engineering from the Massachusetts Institute of Technology and also was crowned “Canada’s Greatest Know-It-All” in a reality show competition hosted by the Discovery Channel. Mars One will only succeed as a venture if it can be “sold” to the public as a worthy endeavor, he said, adding that space enthusiasts will be among the hardest to convince because of their knowledge.

“Mars One could possibly happen if it gains enough support, if everyone donated a dollar, or space enthusiasts donated a hundred dollars [each], or billionaires donated a chunk, it could happen,” he added.

He characterizes the first few years of the colony as a time when people need to focus on the basic parts of Maslow’s hierarchy of needs. Keeping people safe and fed will come before scientific return for the first bit. His first goal on the surface will be to make the base as self-sustaining as possible. If that works out, he’d be happy to do things such as maintain rovers to pick up samples for people to analyze back at a Mars “lab”. (Having robots do surface exploration would reduce the risk of radiation, he said.)

Space is the long-term solution to the survival of our species, Rader adds, with the ultimate destination being outside the solar system. To get there first, however, you need stepping stones, and he believes Mars is the most likely destination for humans. “Mars is a very challenging place to go for us, but it is within our technological capabilities, and going there would create the technological incentives to go further.”