Remembering Apollo 1’s Tragic Anniversary: ‘It Was Too Late From The Beginning’

The Apollo 1 crew. Ed White, Gus Grissom, and Roger Chaffee. Credit: NASA

On this day (Jan. 27) in 1967, NASA astronauts Virgil “Gus” Grissom, Ed White and Roger Chaffee died in a pad fire inside of the Apollo 1 spacecraft that was supposed to lift off only a month hence. The tragedy shocked NASA, which was then aiming for manned landings on the moon, and caused an in-depth investigation into the spacecraft’s construction and the cause of the fire.

Above, you can see one of the first news reports after the fire took place, from ABC’s Jules Bergman and a correspondent at “Cape Kennedy” (which is called Cape Canaveral today, referring to an area adjacent to the Kennedy Space Center where the launch was supposed to take place.) “It was too late from the beginning,” Bergman said in the report, referring to the frantic effort to get the astronauts out of their burning spacecraft.

An investigation determined that a spark flew from somewhere inside of the spacecraft and easily ignited in the pure-oxygen atmosphere, fuelled by fire-friendly materials inside the spacecraft. The astronauts were unable to get out quickly because the hatch was complicated to open. The redesigned Apollo spacecraft featured a swift-to-open hatch, fewer flammable materials, covered electrical connections (to mitigate against short-circuits), and a mixed atmosphere of oxygen and nitrogen on the ground.

Safety measures arising from the tragedy did help with saving astronauts on other flights, notably Apollo 13. That mission saw an oxygen tank explode en route to the moon in April 1970.

Every year, NASA has a day of remembrance to commemorate lost crews. The Apollo 1 anniversary marks a solemn week in the agency, as it comes one day before the anniversary of the 1986 Challenger explosion that killed seven astronauts (Jan. 28) and a few days before the 2003 anniversary of the Columbia shuttle breakup, which killed another seven people (Feb. 1).

Four cosmonauts have died during spaceflight, all upon re-entry: Vladimir Komarov (during Soyuz 1 on April 24, 1967) and Georgi Dobrovolskiy, Viktor Patsayev, and Vladislav Volkov (during Soyuz 11 on June 30, 1971).

Training accidents have also claimed a few lives; a list of American ones is maintained at the Astronaut Memorial Foundation.

The Apollo 1 capsule after the fire. Credit: NASA
The Apollo 1 capsule after the fire. Credit: NASA

Watch Live As Russian Spacewalkers Try To Install Urthecast Cameras Again

The UrtheCast Corp. Iris camera aboard the International Space Station taking ultra HD video of Earth. Credit: NASA/UrtheCast

Think of this as Camera Install, Take 2. Russian spacewalkers are going to take another crack at installing the high-definition Urthecast cameras after a glitch prevented them from working properly during an attempt in December.

“The expedition crew members performed troubleshooting on several cable connectors and now believes the problem has been solved,” NASA wrote in an update on Friday (Jan. 24).

Russian Expedition 38 cosmonauts Oleg Kotov and Sergey Ryazanskiy are expected to head outside at 9:10 a.m. EST (2:10 p.m. UTC) today (Monday) to make the second attempt. The cameras will be installed on the International Space Station’s Zvezda service module and provide real-time views of the Earth to subscribers. The cosmonauts will also pick up an experiment package on the hull of the module.

Check out NASA TV coverage of the events above starting at 8:30 a.m. EST (1:30 p.m. UTC).

Stunning Astrophoto Captures Awe Inspiring NASA Rocket Launch Amidst Star Trails – Gallery

The rotation of the Earth captured in the trails of the stars over Cape Canaveral Air Force Station on Jan 23, 2014. NASA's latest Tracking & Data Relay Satellite, TDRS-L, is seen here hitching a fiery ride to orbit atop an Atlas-V rocket, as viewed from the Turn Basin on Kennedy Space Center just a few miles away. Credit: Mike Killian/www.MikeKillianPhotography.com/AmericaSpace

The rotation of the Earth captured in the trails of the stars over Cape Canaveral Air Force Station on Jan 23, 2014. NASA’s latest Tracking & Data Relay Satellite, TDRS-L, is seen here hitching a fiery ride to orbit atop an Atlas-V rocket, as viewed from the Turn Basin on Kennedy Space Center just a few miles away. Credit: Mike Killian/www.MikeKillianPhotography.com/AmericaSpace
see Atlas V/TDRS-L Launch Galley below
Story updated[/caption]

Space photographer Mike Killian has captured an absolutely stunning astrophoto of this week’s Atlas V blastoff that innovatively combines astronomy and rocketry – its the streak shot featured above. See additional Atlas launch imagery below – and here.

Mike’s awe inspiring imagery melds Thursday night’s (Jan. 23) spectacular Atlas V liftoff of NASA’s latest Tracking & Data Relay Satellite (TDRS) from Cape Canaveral, Florida, with brilliant star trails, reflecting the Earth’s rotation, moving in the crystal clear dark sky overhead and brilliantly glowing xenons and flaming reflections in the waters beneath.

Update 30 Jan:
This fabulous star trails/streak image has been featured as the APOD on Jan 30, 2014.

TDRS-L awaits launch atop Atlas V rocket. Credit: Mike Killian/mikekillianphotography.com
TDRS-L awaits launch atop Atlas V rocket. Credit: Mike Killian/mikekillianphotography.com

The 3.8 ton TDRS-L communications satellite was successfully delivered by the Atlas V to orbit where it will become an essential member of NASA’s vital network to relay all the crucial science and engineering data from a wide variety of science satellites – including the Hubble Space Telescope and the International Space Station.

The United Launch Alliance Atlas V launched at 9:33 p.m. from Pad 40.

Read my complete Atlas V/TDRS-L launch story – here.

Killian’s very creative image makes it looks as though the fiery rocket plume is slicing and dicing a path though the wandering stars as its thundering off the pad, arcing out over the Atlantic Ocean and soaring on to orbit.

And it’s all perfectly framed – as detailed below in my interview with Mike Killian.

Water reflection shot of NASA TDRS-L satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II - www.scriptunasimages.com
Water reflection shot of NASA TDRS-L satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II – www.scriptunasimages.com

Mike is a space friend of mine and we recently spent launch week together photographing the Jan. 9 Antares rocket launch from NASA’s Wallops Island Flight Facility in Virginia, amidst the bone chilling cold of the Polar Vortex – which by the way has returned! See a photo of us freezing together at NASA Wallops – below!!

See our Antares launch imagery – here and here.

Be sure to enjoy the Atlas V gallery herein including more space photog friends including Jeff Seibert, Alan Walters, Walter Scriptunas II and nasatech.net

NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com
NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com

Mike’s magnificent new astrophoto was snapped from the Press Site at the Kennedy Space Center – located right next to the world famous countdown clock and the Vehicle Assembly Building (VAB).

The two launch sites – NASA Wallops and Cape Canaveral/NASA Kennedy Space Center – sit about 800 miles apart on the US East Coast.

His stunning new astrophoto was several years in the making and the result of rather careful planning and of course some good luck too.

Mike is a very experienced and exceptionally talented and accomplished photographer in general.

So for the benefit of Universe Today readers, I asked Mike to describe how he planned, executed and processed the fabulous Jan. 23 star trail/Atlas launch photo.

“I’ve wanted to attempt this shot for 2 years now & finally the conditions for it came together Thursday night – no moonlight, no clouds, barely a breeze, mostly dry air & enough TIME between sunset and liftoff to capture some descent star trails,” Mike Killian told me.

What was the shooting time and equipment involved?

“Approximate total shooting time was about 3 hours, 380 20-second exposures @ ISO 400, shot with a Canon T4i w/ a 11-16mm Tokina 2.8 lens,” said Killian.

“For the launch I adjusted those setting for the rocket’s bright flame, did that exposure, then took the images and stacked using Photoshop. All images are the exact same framing.”

Killian took the photos from right along the edge of the water basin at the Press Site at the Kennedy Space Center, located right next to the VAB where NASA’s Saturn V Moon rockets and Space Shuttles were processed for launch.

NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com
NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Jeff Seibert/wired4space.com

Why shoot from Kennedy Space Center instead of Cape Canaveral?

“I chose to shoot from the water’s edge at Turn Basin mainly because of the water, I always like a nice reflection from the xenon lights and the launch itself.

“Plus I knew nobody would shoot from there, as both the VAB roof & Cape Canaveral were available for media to view from (both have fantastic views).”

“I wanted to do something different.”

“Generally we get an hour or so at whatever area we are shooting any given launch from, before heading back to the press site.”

“But since the Turn Basin is AT the press site, the location was open for several hours due to TDRS-L being a night launch.”

“So I had enough time to attempt this shot from about as close as you can get (4 miles or so)!

Is Mike pleased with the result?

“I’m happy with how this one came out!” Mike ecstatically told me.

For some background on the VAB and the imminent end of public tours inside – read my new VAB story, here.

And here’s my daytime shot showing the Turn Basin and Mike’s approximate shooting location at the KSC Press Site. Mike is shooting in the opposite direction – from waters edge looking to the right.

View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Remote camera shot of NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II - www.scriptunasimages.com
Remote camera shot of NASA TDRS-L relay satellite launch aboard Atlas V rocket on Jan. 23, 2014. Credit: Walter Scriptunas II – www.scriptunasimages.com
The TDRS-L mission begins as the Atlas V-401 roars from the pad. Credit: nasatech.net
The TDRS-L mission begins as the Atlas V-401 roars from the pad. Credit: nasatech.net
NASA’s TDRS-L blasts off atop Atlas V rocket on Jan. 23, 2014. Credit: Mike Killian/mikekillianphotography.com
NASA’s TDRS-L blasts off atop Atlas V rocket on Jan. 23, 2014. Credit: Mike Killian/mikekillianphotography.com

Spectacular Go Pro TDRS Launch Video by Matthew Travis

Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold. Credit: Ken Kremer – kenkremer.com
Photo Credit: Alan Walters / AmericaSpace
Photo Credit: Alan Walters / AmericaSpace

Now is Your Last Chance to Visit Inside NASA’s Iconic Vehicle Assembly Building – and maybe see an Orion

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA's Apollo Saturn V Moon rockets and Space Shuttles were assembled inside. Credit: Ken Kremer - kenkremer.com

NASA’s iconic Vehicle Assembly Building (VAB) and Launch Control Center (LCC) at the Kennedy Space Center, Florida. Public access tours inside the VAB will end on Feb. 11, 2014. NASA’s Apollo Saturn V Moon rockets and Space Shuttles were assembled inside.
Credit: Ken Kremer – kenkremer.com
Story updated- Last chance to visit VAB extended to Feb. 23[/caption]

If you have ever wanted to take a personal trip inside NASA’s world famous Vehicle Assembly Building (VAB) at Kennedy Space Center in Florida, now is the time.

In fact this is your last chance. Because access to the hugely popular public tours will end very soon. And perhaps you’ll see an Orion test capsule too.

Indeed you only have until Feb. 11 [Update: now extended to Feb. 23] to enjoy the KSC “Up-Close Tour” inside the 52 story tall VAB, according to an announcement by the privately run Kennedy Space Center Visitor Complex, which organizes the VAB tours.

The VAB is an iconic world wide symbol of America’s space program.

And it’s home to many of NASA’s finest and most historic exploration achievements – including all the manned Apollo Moon landings and the three decade long Space Shuttle program that launched the Hubble Space Telescope and the International Space Station (ISS) to orbit.

Why are the interior public tours being halted, barely 2 years after they started?

Because after a bit of a lull following the termination of NASA’s Space Shuttle program, space launch activities are ramping up once again and the agency must complete much needed building renovations to prepare for the next step in human exploration of the cosmos – SLS, Orion and commercial ‘space taxis’.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com

The agency needs unfettered use of the VAB to prepare for assembly, lifting and stacking of the new Orion crew capsule and it’s new monster booster rocket – the Space Launch System (SLS) – slated for its maiden blastoff in 2017.

You can always see the 525 foot tall VAB from the outside, gleaming proudly from miles away.

And it’s a must see from up close outside glimpses aboard tour buses driving by all day long – resplendent with a mammoth red, white and blue American flag painted on its side.

But nothing compares to being an eyewitness to history and seeing it from the inside with your own eyes, especially if you are a space enthusiast!

The VAB is one of the largest and most voluminous buildings in the world.

Since 1978, the VAB interior had been off limits to public visitors for more than 30 years during the shuttle era. It was too hazardous to visit because of the presence of the giant shuttle solid rocket boosters loaded with fuel.

Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB).    Credit: Ken Kremer - kenkremer.com
Orion Ground Test Article (GTA) recently displayed on the floor inside the Vehicle Assembly Building (VAB). Credit: Ken Kremer – kenkremer.com

Inside access was finally restored to guests at Kennedy Space Center Visitor Complex in November 2011, following the retirement of the space shuttles.

Visitors could again “see firsthand where monstrous vehicles were assembled for launch, from the very first Saturn V rocket in the late 1960s to the very last space shuttle, STS-135 Atlantis, in 2011.”

Although the shuttles are now gone, there is a possibility that maybe you’ll be lucky enough to see an Orion test capsule that’s been used in real ground testing to help NASA prepare for upcoming missions.

Since the layout is constantly changing, there is no guarantee on seeing the Orion.

Possibly either an Orion boilerplate test article or the Ground Test Article (GTA) which was the first flight worthy Orion capsule to be built. The GTA is the path finding prototype for the Orion EFT-1 capsule currently in final assembly and slated to launch this Fall 2014.

Perhaps you’ll be lucky enough to snap a shot like one of mine of the Orion GTA on the floor of the main working area of the VAB – known as the transfer aisle.

You will definitely get the feel for the greatest hits in space history inside the place where the moon rockets and space shuttles were lifted, stacked and assembled for flight and then rolled out to either Launch Pad 39 A or 39 B.

Atlantis approaches the VAB for the final time. Credit: Ken Kremer
Atlantis approaches the VAB for the final time during preparations for the STS-135 flight in 2011. Credit: Ken Kremer – kenkremer.com

“Kennedy Space Center Visitor Complex has been honored to give our guests rare access to the VAB for the past two years, yet we knew that the day would come when preparations for the SLS would take precedent,” said Therrin Protze, chief operating officer for the Visitor Complex, in a statement.

“Kennedy Space Center is an operating space program facility, and preparations for the next chapter in space exploration are the utmost priority, and we are very excited about the future.”

Starting in 2017, America will again launch a mighty rocket – the SLS that will blast Americans to deep space after an unbelievable 50 year gap.

Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission.  Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer - kenkremer.com
Full belly view of Space Shuttle Discovery coated with thousands of protective heat shield tiles in the transfer aisle of the VAB where it was processed for final launch on STS-133 mission. Note two rectangular attach points holding left and right side main separation bolts. Credit: Ken Kremer – kenkremer.com

So for only about the next two weeks, you can see one of the greatest treasures of America’s space program and appreciate the cavernous interior from where our astronauts once set off for the Moon as part of the “Mega Tour”.

The “Mega Tour”, which also included visits to Launch Pad 39 A and the Launch Control Center (LCC) ends on Feb. 11, the visitor complex announced.

However the visitor complex is still offering a modified “Up-Close” tour to Pad 39A and the Launch Control Center (LCC) – at this time. But that’s subject to change at any moment depending on NASA’s priorities.

View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the top of Launch Pad 39 A.    Credit: Ken Kremer - kenkremer.com
View of NASA’s 52 story tall Vehicle Assembly Building (VAB) as seen from the very top of Launch Pad 39 A gantry. Credit: Ken Kremer – kenkremer.com

And don’t forget that you can also see NASA’s genuine Space Shuttle Atlantis in its new permanent exhibition hall at the Kennedy Space Center Visitor Complex.

Please check the visitor center website for complete details and admission pricing on “Up-Close” tours and everything else – www.kennedyspacecenter.com

There is one thing I can guarantee – if you don’t go you will see nothing!

Catch it if you can. It’s NOT coming back any time soon!

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer - kenkremer.com
Space Shuttle Atlantis permanent display at Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com
View of the Vehicle Assembly Building (VAB) and the Turn Basin adjacent to the Kennedy Space Center Press Center and the countdown clock. Credit: Ken Kremer – kenkremer.com

Will Spacewalks Happen On Expedition 40? NASA Undecided Due To Leak Investigation

Steve Swanson, commander of Expedition 40, during a spacewalk on 2007 shuttle mission STS-117. Credit: NASA

Remember those snorkels and pads astronauts used during the ammonia pump replacement on station this past December? The new measures went a long way to helping astronauts stay safe if another helmet water leak happens, but at the same time, NASA is eager to find the cause so they know how it happened and how to prevent it.

Two maintenance spacewalks are planned for Expedition 40, but they’re not necessarily going forward yet. NASA has traced the issue to a fan pump separator, but there’s another issue, explained expedition commander Steve Swanson: where the particulates in the water came from. Perhaps they were from a filter, or perhaps from the water system itself. So NASA is reserving spacewalks on a need-only basis until more is known.

“That was the problem. Now, we’ve got to find out where that came from,” Swanson said in a phone interview with Universe Today from Houston to preview Expedition 39/40’s mission, which launches in late March. Joining the two-time shuttle astronaut will be two other people, including Alexander Skvortsov. The Russian cosmonaut commanded Expedition 24 in 2010, which experienced a similar ammonia leak to the one that was just repaired a few months ago.

Expedition 39/40 cosmonaut Alexander Skvortsov during a 2010 mission to the International Space Station, when he served as commander of Expedition 24.  In the background is NASA astronaut NASA astronaut Tracy Caldwell Dyson. Credit: NASA
Expedition 39/40 cosmonaut Alexander Skvortsov during a 2010 mission to the International Space Station, when he served as commander of Expedition 24. In the background is NASA astronaut NASA astronaut Tracy Caldwell Dyson. Credit: NASA

While leaks and spacewalks are the items that grab headlines when it comes to spaceflight, one of the major goals of the International Space Station is more subtle. Researchers hope to understand how spaceflight affects the human body during long-duration missions. (This will be a major focus of a one-year mission to station in 2015.) Through a translator, Skvortsov explained that the recent decision to extend station’s operations to at least 2024 will be a help for research of this kind.

“It is great that they have expanded the station until 2024 at least, and it will be very beneficial to the science programs and projects we have on board,” he said in Russian. “I hope that it will be extended even further. It will depend on the condition of the station.”

Rounding out the crew will be Oleg Artemyev, a first-time cosmonaut who has participated in precursor isolation experiments to the Mars 500 mission that saw a crew of people simulate a mission to Mars.

Expedition 39 is expected to launch March 26, 2014 from the Baikonour Cosmodrome in Kazakhstan. The crew will join orbiting spacefarers Koichi Wakata (who will command Expedition 39, a first for Japan), Rick Mastracchio (who participated in the ammonia pump swap-out) and Mikhail Tyurin.

The Expedition 39/40 crew at a NASA press conference in January 2014. From left, Oleg Artemyev, Alexander Skvortsov and Steve Swanson. Credit: NASA
The Expedition 39/40 crew at a NASA press conference in January 2014. From left, Oleg Artemyev, Alexander Skvortsov and Steve Swanson. Credit: NASA

NASA Pressing Towards Fall 2014 Orion Test Flight – Service Module Complete

Engineers prepare Orion’s service module for installation of the fairings that will protect it during launch this fall when Orion launches on its first mission. The service module, along with its fairings, is now complete. Credit: NASA

Engineers prepare Orion’s service module for installation of the fairings that will protect it during launch this fall when Orion launches on its first mission. The service module, along with its fairings, is now complete. Credit: NASA
Story Updated[/caption]

2014 is the Year of Orion.

Orion is NASA’s next human spaceflight vehicle destined for astronaut voyages beyond Earth and will launch for the first time later this year on its inaugural test flight from Cape Canaveral, Florida.

The space agency is rapidly pressing forward with efforts to finish building the Orion crew module slated for lift off this Fall on the unmanned Exploration Flight Test – 1 (EFT-1) mission.

NASA announced today that construction of the service module section is now complete.

NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The Orion module stack is comprised of three main elements – the Launch Abort System (LAS) on top, the crew module (CM) in the middle and the service module (SM) on the bottom.

With the completion of the service module, two thirds of the Orion EFT-1 mission stack are now compete.

LAS assembly was finalized in December.

The crew module is in the final stages of construction and completion is due by early spring.

Orion is being manufactured at NASA’s Kennedy Space Center (KSC) inside a specially renovated high bay in the Operations and Checkout Building (O&C).

“We are making steady progress towards the launch in the fall,” said NASA Administrator Charles Bolden at a media briefing back dropped by the Orion service module inside the O&C facility.

“It’s very exciting because it signals we are almost there getting back to deep space and going much more distant than where we are operating in low Earth orbit at the ISS.”

“And I’m very excited for the young people who will have an opportunity to fly Orion,” Bolden told me in the O&C.

Lockheed Martin is the prime contractor for Orion under terms of a contract from NASA.

Orion is NASA’s first spaceship designed to carry human crews on long duration flights to deep space destinations beyond low Earth orbit, such as asteroids, the Moon, Mars and beyond.

The inaugural flight of Orion on the unmanned Exploration Flight Test – 1 (EFT-1) mission is on schedule to blast off from the Florida Space Coast in mid September 2014 atop a Delta 4 Heavy booster, Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told Universe Today during a recent interview at KSC.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Service Module at bottom. Credit: Ken Kremer/kenkremer.com

Orion is currently under development as NASA’s next generation human rated vehicle to replace the now retired space shuttle.

Concurrently, NASA’s commercial crew initiative is fostering the development of commercial space taxi’s to ferry US astronauts to low Earth orbit and the International Space Station (ISS).

Get the details in my interview with SpaceX CEO Elon Musk about his firm’s Dragon ‘space taxi’ launching aboard the SpaceX upgraded Falcon 9 boosterhere.

The two-orbit, four- hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

The crew module rests atop the service module, similar to the Apollo Moon landing program architecture.

Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center.   Credit: Ken Kremer/kenkremer.com
Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The SM provides in-space power, propulsion capability, attitude control, thermal control, water and air for the astronauts.

For the EFT-1 flight, the SM is not fully outfitted. It is a structural representation simulating the exact size and mass.

In a significant difference from Apollo, Orion is equipped with a trio of massive fairings that encase the SM and support half the weight of the crew module and the launch abort system during launch and ascent. The purpose is to improve performance by saving weight from the service module, thus maximizing the vehicles size and capability in space.

All three fairings are jettisoned at an altitude of 100 miles up when they are no longer need to support the stack.

The fairings that will protect it during launch are added to Orion’s service module at the Operations and Checkout facility at Kennedy Space Center.  Credit: NASA
The fairings that will protect it during launch are added to Orion’s service module at the Operations and Checkout facility at Kennedy Space Center. Credit: NASA

On the next Orion flight in 2017, the service module will be manufactured built by the European Space Agency (ESA).

“When we go to deep space we are not going alone. It will be a true international effort including the European Space Agency to build the service module,” said Bolden.

The new SM will be based on components from ESA’s Automated Transfer Vehicle (ATV) which is an unmanned resupply spacecraft used to deliver cargo to the ISS.

A key upcoming activity for the CM is installation of the thermal protection system, including the heat shield.

The heat shield is the largest one ever built. It arrived at KSC last month loaded inside NASA’s Super Guppy aircraft while I observed. Read my story – here.

The 2014 EFT-1 test flight was only enabled by the extremely busy and productive year of work in 2013 by the Orion EFT-1 team.

“There were many significant Orion assembly events ongoing on 2013” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Martin Space Systems in Denver.

“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles and building the service module which finally leads to mating the crew and service modules (CM & SM) in early 2014,” Price told me.

Orion was originally planned to send American astronauts back to Moon – until Project Constellation was cancelled by the Obama Administration.

Now with Orion moving forward and China’s Yutu rover trundling spectacularly across the Moon, one question is which country will next land humans on the Moon – America or China?

Read my story about China’s manned Moon landing plans – here.

Stay tuned here for Ken’s continuing Orion, Chang’e-3, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more news.

Ken Kremer

Orion schematic. Credit: NASA
Orion schematic. Credit: NASA
NASA Administrator Charles Bolden meets the media including Ken Kremer/Universe Today to discuss NASA’s human spaceflight initiatives and Orion crew capsule being assembled at the Kennedy Space Center. Credit: Urijan Poerink
NASA Administrator Charles Bolden meets the media including Ken Kremer/Universe Today to discuss NASA’s human spaceflight initiatives and Orion crew capsule being assembled at the Kennedy Space Center. Credit: Urijan Poerink

Extend ISS to 2050 as Stepping Stone to Future Deep Space Voyages – Orbital VP/Astronaut tells Universe Today

The International Space Station as seen from the crew of STS-119. Credit: NASA

The International Space Station could potentially function far beyond its new extension to 2024. Perhaps out to 2050. The ISS as seen from the crew of STS-119. Credit: NASA
Story updated[/caption]

WALLOPS ISLAND, VA – Just days ago, the Obama Administration approved NASA’s request to extend the lifetime of the International Space Station (ISS) to at least 2024. Ultimately this will serve as a stepping stone to exciting deep space voyages in future decades.

“I think this is a tremendous announcement for us here in the space station world,” said Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate, at a press briefing on Jan. 8.

But there’s really “no reason to stop it there”, said Frank Culbertson, VP at Orbital Sciences and former NASA astronaut and shuttle commander, to Universe Today when I asked him for his response to NASA’s station extension announcement.

“It’s fantastic!” Culbertson told me, shortly after we witnessed the picture perfect blastoff of Orbital’s Antares/Cygnus rocket on Jan. 9 from NASA’s Wallops launch facility in Virginia, bound for the ISS.

“In my opinion, if it were up to me, we would fly it [the station] to 2050!” Culbertson added with a smile. “Of course, Congress would have to agree to that.”

Gerstenmaier emphasized that the extension will allow both the research and business communities to plan for the longer term and future utilization, be innovative and realize a much greater return on their investments in scientific research and capital outlays.

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told me at Wallops following Antares launch.

The Alpha Magnetic Spectrometer (AMS) – which is searching for elusive dark matter – was one of the key science experiments that Gerstenmaier cited as benefitting greatly from the ISS extension to 2024. The AMS is the largest research instrument on the ISS.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port on Jan. 12, 2014. Credit: NASA TV

The extension will enable NASA, the academic community and commercial industry to plan much farther in the future and consider ideas not even possible if the station was de-orbited in 2020 according to the existing timetable.

Both the Antares rocket and Cygnus cargo freighter are private space vehicles developed and built by Orbital Sciences with seed money from NASA in a public-private partnership to keep the station stocked with essential supplies and research experiments and to foster commercial spaceflight.

So I asked Culbertson and Lightfoot to elaborate on the benefits of the ISS extension to NASA, scientific researchers and commercial company’s like Orbital Sciences.

“First I think it’s fantastic that the Administration has committed to extending the station, said Culbertson. “They have to work with the ISS partners and there is a lot to be done yet. It’s a move in the right direction.”

“There is really no reason to stop operations on the space station until it is completely no longer usable. And I think it will be usable for a very long time because it is very built and very well maintained.”

“If it were up to me, we would fly it to 2050!”

“NASA and the engineers understand the station very well. I think they are operating it superbly.”

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer

“The best thing about the station is it’s now a research center. And it is really starting to ramp up. It’s not there yet. But it is now finished [the assembly] as a station and a laboratory.”

“The research capability is just starting to move in the right direction.”

The Cygnus Orbital 1 cargo vehicle launched on Jan. 9 was loaded with approximately 2,780 pounds/1,261 kilograms of cargo for the ISS crew for NASA including vital science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

The research investigations alone accounted for over 1/3 of the total cargo mass. It included a batch of 23 student designed experiments representing over 8700 students sponsored by the National Center for Earth and Space Science Education (NCESSE).

“So extending it [ISS] gives not only commercial companies but also researchers the idea that ‘Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”

“I think that’s really important for them [the researchers] to understand, that it will be backed for that long time and that they won’t be cut off short in the middle of preparing an experiment or flying it.”

Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments.  Credit: Ken Kremer – kenkremer.com
Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments. Credit: Ken Kremer – kenkremer.com

“So I think that first of all it demonstrates the commitment of the government to continue with NASA. But also it presents a number of opportunities for a number of people.”

What does the ISS extension mean for Orbital?

The purpose for NASA and Orbital Sciences in building Antares and Cygnus was to restore America’s ability to launch cargo to the ISS – following the shutdown of NASA’s space shuttles – by using commercial companies and their business know how to thereby significantly reduce the cost of launching cargo to low Earth orbit.

“As far as what it [the ISS extension] means for Orbital and other commercial companies – Yes, it does allow us to plan long term for what we might be able to do in providing a service for NASA in the future,” Culbertson replied.

“It also gives us the chance to be innovative and maybe invest in some improvements in how we can do this [cargo service] – to make it more cost effective, more efficient, turnaround time quicker, go more often, go a lot more often!”

“So it allows us the chance to think long term and make sure we can get a return on our investment.”

What does the ISS extension mean for NASA?

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told Universe Today. “If you use that analogy of stepping stones and the next stone. We need to use this stone to know what the next stone looks like. So we can get ready. Whether that’s research or whether that things about the human body. You don’t want to jump off that platform before you are ready.”

“We are learning every day how to live and operate in space. Fortunately on the ISS we are close to home. So if something comes up we can get [the astronauts] home.”

The ISS extension is also the pathway to future exciting journey’s beyond Earth and into deep space, Culbertson and Lightfoot told Universe Today.

“It actually also presents a business opportunity that can be expanded not just to the station but to other uses in spaceflight, such as exploration to Asteroids, Mars and wherever we are going,” said Culbertson.

And we hope it will extend to other civilian uses in space also. Maybe other stations in space will follow this one and we’ll be able to participate in that.”

Lightfoot described the benefits for astronaut crews.

“The further out we go, the more we need to know about how to operate in space, what kind of protection we need, what kind of research we need for the astronauts,” said Lightfoot.

“Orbital is putting systems up there that allow us to test more and more. Get more time. Because when we get further away, we can’t get home as quick. So those are the kinds of things we can do.

“So with this extension I can make those investments as an Agency. And not just us, but also our academic research partners, our industry partners, and the launch market too is part of this.”

He emphasized the benefits for students, like those who flew experiments on Cygnus, and how that would inspire the next generation of explorers!

“You saw the excitement we had today with the students at the viewing area. For example with those little cubesats, 4 inches by 4 inches, that they worked on, and got launched today!”

“That’s pretty cool! And that’s exactly what we need to be doing!

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
These are among the students benefiting from ISS extension
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

“So eventually they can take our jobs. And as long as they know that station will be there for awhile, the extension gives them the chance to get the training and learning and do the research we need to take people further out in space.”

“The station is the stepping stone.”

“And it really is important to have this station extension,” Lightfoot explained to me.

The Jan. 9 launch of the Orbital-1 mission is the first of eight operational Antares/Cygnus flights to the space station scheduled through 2016 by Orbital Sciences under its $1.9 Billion Commercial Resupply Services (CRS) contract with NASA to deliver 20,000 kg of cargo to orbit.

Orbital Sciences and SpaceX – NASA’s other cargo provider – will compete for follow on ISS cargo delivery contracts.

The next Antares/Cygnus flight is slated for about May 1 from NASA Wallops.

In an upcoming story, I’ll describe Orbital Sciences’ plans to upgrade both Antares and Cygnus to meet the challenges of the ISS today and tomorrow.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff.  Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff. Credit: Ken Kremer – kenkremer.com

Up Close Launch Pad Cameras capture Spectacular Sound and Fury of Antares/Cygnus Jan. 9 Blast off to Space Station – Video Gallery

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 9. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com


Video caption: Antares ORB-1 Launch Pad Camera on south side of pad 0A being hammered from Orbital Sciences Antares rocket launch at 1:07 p.m. EST on January 9th 2014, from NASA’s Wallops Flight Facility, VA, carrying the Cygnus resupply spacecraft to the ISS. Credit: Mike Killian/Jeff Seibert/Mike Barrett/AmericaSpace.com/MikeKillianPhotography.com/Wired4Space.com

What’s it like to be standing at a rocket launch pad? Especially when it’s a private spaceship embarking on a history making flight to the space station that’s blasting the opening salvos of the new ‘commercial space era’ heard round the world?

Thrilling beyond belief!

And what’s it like to be standing at the launch pad when the engines ignite and the bird begins soaring by guzzling hundreds of thousands of pounds of burning fuel, generating intense heat and deadly earsplitting noise?

Well for a first-hand, up-close adventure to hear the deafening sound and feel the overwhelming fury, I’ve collected a gallery of videos from the Jan. 9 blastoff of the privately built Antares rocket from NASA’s Wallops Flight Facility, VA on a historic mission to the International Space Station (ISS).

The videos were created by a team of space journalists from a variety of space websites working together to create the best possible products for everyone’s enjoyment- including Alan Walters, Mike Killian, Matt Travis, Jeff Seibert, Mike Barrett and Ken Kremer representing AmericaSpace, Zero-G News, Wired4Space and Universe Today.


Video caption: Close up camera captures Antares liftoff carrying the Cygnus Orb-1 ISS resupply spacecraft. This was composed of 59 images taken by a Canon Rebel xti and 18 mm lens of the Antares Orbital 1 launch to the ISS on Jan. 9, 2013 at NASA Wallops Island, VA. Credit: Ken Kremer/Alan Walters/Matthew Travis/kenkremer.com

Wallops is located along the eastern shore of Virginia at America’s newest space port.

Because the launch pad is near the most heavily populated ares of the US, millions have a chance to view the launch along the US eastern seaboard.

And the pad sits almost directly on the Atlantic Ocean, so you can hear the waves constantly crashing on shore.

Well we always want to be as close as possible. But as you’ll see, it’s really not a very good idea to be right there.


North Side Launch Pad Camera Captures Antares Rocket Launch With Orbital Sciences Cygnus Orb-1 To ISS on Jan. 9, 2013 from NASA Wallops. A GoPro Hero 2 camera captures the launch of Orbital Sciences Antares rocket carrying the Cygnus spacecraft on the Orb-1 mission to resupply the International Space Station. Credit: Matt Travis/Mike Killian/MikeKillianPhotography.com/ZeroGnews.com/AmericaSpace.com

Virtually every camera on the south side got creamed and was blown over by the approaching fiery exhaust fury seen in the videos.

Amazingly they continued taking pictures of the exhaust as they were violently hit and flung backwards.

Luckily, as they were knocked over and fell to the ground, the lenses were still facing skyward and snapping away showing the sky and exhaust plume swirling around and eventually dissipating.

Our cameras capture the experience realistically.

We’ve set them up around the north and side sides at NASA’s Wallops Launch Pad 0A on the Mid-Atlantic Regional Spaceport (MARS).

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

How do the cameras, called remotes, collect the imagery?

They are activated either by sound triggers or timers.

It takes a lot of hard work and equipment and doesn’t always work out as planned.

But the payoff when it does is absolutely extraordinary.

The Jan. 9 blast off of Orbital Sciences’ private Antares booster delivered the firm’s Cygnus Orbital-1 cargo freighter to orbit.

Orbital Sciences' Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA
Orbital Sciences’ Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA

Following a two day orbital chase and an intricate series of orbit raising maneuvers, the Cygnus vessel reached the station on Sunday, Jan. 12, and was berthed by astronauts maneuvering the robot arm at an Earth-facing port on the massive orbiting lab complex.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

SpaceX likewise has a contract with NASA to deliver cargo to the ISS via their Dragon spaceship. The next SpaceX launch is slated for Feb. 22.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the imagery featured herein. Credit: Ken Kremer – kenkremer.com

Stunning Footage from SpaceShipTwo’s Third Rocket-Powered Flight

Image from the "tail cam" on SpaceShipTwo of engine ignition. Credit: Virgin Galactic.

Virgin Galactic released video from SpaceShipTwo’s flight test last Friday, January 10, 2014. This was the third supersonic, rocket-powered test of the Virgin Galactic system after dozens of successful subsonic test flights. The pilots Dave Mackay and Mark Stucky tested the spaceship’s Reaction Control System, the newly installed thermal protection coating on the vehicle’s tail booms, and the “feather” re-entry system, all with great success.

See some images from the flight below.

You can read our coverage from Friday’s test flight here.

Image from SpaceShipTwo's third powered flight on January 10, 2014. Credit: Virgin Galactic.
Image from SpaceShipTwo’s third powered flight on January 10, 2014. Credit: Virgin Galactic.
Feathered Flight during Virgin Galactic's SpaceShipTwo's third powered flight on January 10,  2014 over the Mojave desert. This image was taken by MARS Scientific as part of the Mobile Aerospace Reconnaissance System optical tracking system.
Feathered Flight during Virgin Galactic’s SpaceShipTwo’s third powered flight on January 10, 2014 over the Mojave desert. This image was taken by MARS Scientific as part of the Mobile Aerospace Reconnaissance System optical tracking system.

Private Cygnus Freighter Berths at Space Station with Huge Science Cargo and Ant Colony

Orbital Sciences' Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA

With the Moon as a spectacular backdrop, an Orbital Sciences’ Cygnus cargo spacecraft speeding at 17500 MPH on a landmark flight and loaded with a huge treasure trove of science, belated Christmas presents and colonies of ants rendezvoued at the space station early this Sunday morning (Jan. 12), captured and then deftly parked by astronauts guiding it with the Canadian robotic arm.

Cygnus is a commercially developed resupply freighter stocked with 1.5 tons of vital research experiments, crew provisions and student science projects that serves as an indispensible “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.

Following a two day orbital chase that started with the spectacular blastoff on Jan. 9 atop Orbital’s private Antares booster from NASA Wallops Flight Facility, Va., Cygnus fired its on board thrusters multiple times to approach in close proximity to the million pound International Space Station (ISS) by 3 a.m. Sunday.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

When Cygnus had moved further to within 30 feet (10 meters) NASA Astronaut and station crew member Mike Hopkins – working inside the Cupola – then successfully grappled the ship with the stations 57 foot long Canadarm2 at 6:08 a.m. EST to complete the first phase of today’s operations.

“Capture confirmed,” radioed Hopkins as the complex was flying 258 miles over the Indian Ocean and Madagascar.

“Congratulations to Orbital and the Orbital-1 team and the family of C. Gordon Fullerton,” he added. The ship is named in honor of NASA shuttle astronaut G. Gordon Fullerton who passed away in 2013.

“Capturing a free flyer is one of the most critical operations on the ISS,” explained NASA astronaut and ISS alum Cady Coleman during live NASA TV coverage.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

Koichi Wakata of the Japan Aerospace Exploration Agency then took command of the robotic arm and maneuvered Cygnus to berth it at the Earth-facing (nadir) port on the station’s Harmony Node at 8:05 a.m while soaring over Australia.

16 bolts will be driven home and 4 latches tightly hooked to firmly join the two spacecraft together and insure no leaks.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The purpose of the unmanned, private Cygnus spaceship – and the SpaceX Dragon – is to restore America’s cargo to orbit capability that was terminated following the shutdown of NASA’s space shuttles.

Cygnus and Dragon will each deliver 20,000 kg (44,000 pounds) of cargo to the station according to the NASA CRS contracts.

“This cargo operation is the lifeline of the station,” said Coleman.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12
Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The six person crew of Expedition 38 serving aboard the ISS is due to open the hatch to Cygnus tomorrow, Monday, and begin unloading the 2,780 pounds (1,261 kilograms) of supplies packed inside.

“Our first mission under the CRS contract with NASA was flawlessly executed by our Antares and Cygnus operations team, from the picture-perfect launch from NASA’s Wallops Flight Facility to the rendezvous, capture and berthing at the space station this morning,” said Mr. David W. Thompson, Orbital’s President and Chief Executive Officer, in a statement from Orbital.

“From the men and women involved in the design, integration and test, to those who launched the Antares and operated the Cygnus, our whole team has performed at a very high level for our NASA customer and I am very proud of their extraordinary efforts.”

Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com
Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com

Science experiments weighing 1000 pounds account for nearly 1/3 of the cargo load.

Among those are 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The students are part of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).

Student Space Flight team  at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today.  23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station.  Credit: Ken Kremer - kenkremer.com
Student Space Flight team at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today. 23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station. Credit: Ken Kremer – kenkremer.com

Ant colonies from three US states are also aboard, living inside 8 habitats. The “ants in space” experiment will be among the first to be unloaded from Cygnus to insure the critters are well fed for their expedition on how they fare and adapt in zero gravity.

33 cubesats are also aboard that will be deployed from the Japanese Experiment Module airlock.

“One newly arrived investigation will study the decreased effectiveness of antibiotics during spaceflight. Another will examine how different fuel samples burn in microgravity, which could inform future design for spacecraft materials,” said NASA in a statement.

Cygnus is currently scheduled to remain berthed at the ISS for 37 days until February 18.

The crew will reload it with all manner of no longer need trash and then send it off to a fiery and destructive atmospheric reentry so it will burn up high over the Pacific Ocean on Feb. 19.

Cygnus departure is required to make way for the next cargo freighter – the SpaceX Dragon, slated to blast off from Cape Canaveral, Florida on Feb. 22 atop the company’s upgraded Falcon 9.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus berthed at Harmony node on ISS. Credit: NASA TV
Cygnus berthed at Harmony node on ISS. Credit: NASA TV