Leaky Spacesuit Fixed For Christmas Spacewalk Blitz On Station, NASA Says

NASA astronaut Rick Mastracchio during a spacewalk on STS-118. Credit: NASA

When NASA astronaut Mike Hopkins steps into space for the first time this week, he will wear a spacesuit that previously sprung a water leak and forced Italian astronaut Luca Parmitano back to station in July, NASA officials said Wednesday (Dec. 18).

While at first glance this sounds like an extra bit of drama as Hopkins and Rick Mastracchio make contingency spacewalks Dec. 21, 23 and 25 to kickstart a shut-down cooling loop, NASA officials say the suit is ready to go for another trip outside because astronauts (under NASA’s direction) have made a bunch of changes to the unit.

Repurposing spacesuit parts, a new pad will be added to the back of all NASA spacesuit helmets to soak up water, should one leak again. Astronauts also velcroed a pipe into each suit — a sort of snorkel — that in the worst case, would give an astronaut with a water leak an alternate route for drawing in air.

Also, the Expedition 38 crew swapped out a fan pump separator that likely malfunctioned and caused the spacesuit leak. The cause is still under investigation, but NASA believes that a problem in the water chemistry caused contamination that plugged a tiny hole inside the water separation part of the unit. This allowed the water to escape, enter the air loop and get into the helmet.

Finally, there are new procedures in place for the astronauts themselves. They will monitor the helmet pad for fluid. NASA additionally plotted out its spacewalk procedures — which include the use of a Canadian robotic arm on station — to make sure the astronauts are always within reasonable reach of an airlock.

NASA astronauts Rick Mastracchio and Mike Hopkins will do spacewalks in December 2013 to swap out a cooling pump on the International Space Station. Credit: : NASA
NASA astronauts Rick Mastracchio and Mike Hopkins will do spacewalks in December 2013 to swap out a cooling pump on the International Space Station. Credit: NASA

So here’s why the spacewalks are happening: a week ago (Dec. 11), a flow control valve inside of a pump — the pump is located outside of the station — stopped regulating ammonia temperatures inside of an external cooling loop. The loop is required to, as the name implies, cool down space station electronics. The loop got too cold, it shut down automatically, and NASA took science experiments and redundant systems offline to deal with the problem. (The main problem is NASA can’t run a heat exchanger on Node 2, which affects experiments in the U.S. Columbus laboratory and Japanese Experiment Module. No completed research has been lost to date, however.)

After figuring out that it couldn’t control the valve again, NASA shifted its attention to an isolation valve upstream. That valve is only designed to be in two positions — opened or closed — but the hardware vendor said it could be used at spots in between to regulate the ammonia flow. So software engineers created a patch to make this happen, and uploaded it to station.

Throw in another element, however: the station is about to enter what’s called an annual “high beta” period, when orbital dynamics mean the sun will be shining on it for longer periods of time than usual. (Read more technical details here.) When the angle exceeds 60 degrees, for safety reasons NASA suspends all cargo flights to station as well as spacewalks.  This year, it will happen between about Dec. 30, 2013 and Jan. 9, 2014.

Space Station
The International Space Station in 2010. Credit: NASA

So if NASA spent time playing with the valve and found out it couldn’t work in the long run, a couple of problems could happen. First, it would be harder to do a spacewalk to fix it.

Also, the agency was weighing whether to allow Orbital Sciences to fly a Cygnus cargo flight this month, and felt that they could run into a problem where the spacecraft was ready to go, but NASA needed more time to fix the problem. So that’s why the spacewalk is happening.

Here’s a diagram of the pump that Mastracchio and Hopkins plan to replace:

A view of a pump module aboard the International Space Station that is used  to maintain ammonia at the correct temperature in an external cooling loop. Credit: NASA
A view of a pump module aboard the International Space Station that is used to maintain ammonia at the correct temperature in an external cooling loop. Credit: NASA

The “nominal” plan is for three spacewalks, but it could range anywhere from two to four depending on how things go. To put things simply, here’s how the spacewalks would go:

  • EVA 1: The pump with the broken valve would be disconnected and a spare pump (which is some distance away, but reachable using Canadarm2) would be prepped for the swap.
  • EVA 2: The pump with the broken valve would be removed and set aside while the spare pump is partially installed (meaning, only the bolts and electrical connections would be put in.)
  • EVA 3:  The spare pump’s installation would be finished, and the pump with the broken valve would be stowed more permanently outside. NASA thinks that eventually, it could use that first pump again if astronauts installed a new valve on it, but that isn’t a need for the time being.

Flying Canadarm2 would be Japanese astronaut Koichi Wakata, who has operated every type of robotics currently in orbit. Mastracchio has six spacewalks under his belt already, while Hopkins will be on his first go.

If all goes to plan, NASA will not only swap out the pump, but also preserve the option for the Russians to proceed with a planned Dec. 27 spacewalk that is less urgent. In that case, the cosmonauts plan to swap out experiments, put in a foot restraint and install some cameras.

We’ll cover the spacewalks as they happen. They’re scheduled for Dec. 21, 23 and 25 at 7:10 a.m. EST (12:10 p.m. UTC) and should run about 6.5 hours each. Broadcasts will run live on NASA Television.

By the way, the pump with the problem is just three years old — astronauts had to make three spacewalks in 2010 to install it after a more severe failure. NASA characterized this situation as a more unusual failure and said this is not a symptom of an aging station at all.

Overview of the tasks that Rick Mastracchio and Mike Hopkins will perform during three spacewalks in December 2013 to remove and replace a pump with a faulty valve inside of it. The pump is required to maintain the external cooling system at the right temperature. Credit: NASA
Overview of the tasks that Rick Mastracchio and Mike Hopkins will perform during three spacewalks in December 2013 to remove and replace a pump with a faulty valve inside of it. The pump is required to maintain the external cooling system at the right temperature. Credit: NASA

Space Shows Up Prominently in What the World Searched for in 2013

A view outside the cupola of the ISS. Credit: NASA.

For the past 13 years, Google has put together their annual “Zeitgeist” lists — “signs of the times” as to what people around the world were interested in, as registered by the internet’s largest search engine. In this compilation video, released by Google today, you’ll see space exploration and astronomical events show up several times. At :17 in the “New Frontiers” section with Voyager 2 entering interstellar space; at :45 the Chelyabinsk meteor flashes across the screen, at :53 the Kirobo robot shows up, at 1:13 Curiosity rolls across Mars, and at 1:14 you can look out the cupola windows of the International Space Station in the “Inspiration” section. You can see what trended in the various charts here.

How to See Spectacular Prime Time Night Launch of Antares Commercial Rocket to ISS on Dec. 19

Antares Launch – Maximum Elevation Map The Antares nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Dec 19, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences

Antares Launch – Maximum Elevation Map
The Antares nighttime launch will be visible to millions of spectators across a wide area of the Eastern US -weather permitting. This map shows the maximum elevation (degrees above the horizon) that the Antares rocket will reach during the Dec 19, 2013 launch depending on your location along the US east coast. Credit: Orbital Sciences[/caption]

UPDATE: The launch of Cygnus has been delayed until no earlier than January 7, 2014 due to the coolant leak at the International Space Station and necessary spacewalks to fix the problem. You can read more about the issue here and here.

WALLOPS ISLAND, VA – Orbital Sciences Corp. is marching forward with plans for a spectacular night blastoff of the firms privately developed Antares rocket and Cygnus cargo spacecraft on Thursday, Dec. 19 from a seaside pad at Wallops Island, Virginia on a mission for NASA that’s bound for the International Space Station (ISS).

The nighttime Antares liftoff is currently scheduled for prime time – at 9:19 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island, Virginia. It should be easily visible to tens of millions of residents along a wide swath of the US East Coast spanning from South Carolina to southern Maine – weather permitting.

Here’s our guide on “How to See the Antares/Cygnus Dec. 19 Night Launch” – with your own eyes – complete with viewing maps and trajectory graphics from a variety of prime viewing locations; including Philadelphia, NYC, Baltimore and historic landmarks in Washington, DC.

Update: launch postponed to mid-January 2014 to allow NASA astronauts to conduct 3 EVA’s to swap out the ammonia pump module and restore full cooling capacity to the ISS

It will be visible to spectators inland as well, stretching possibly into portions of West Virginia and western Pennsylvania.

For example; Here’s the expected view from Rocky’s famous workout on the steps of the Philadelphia Art Museum.

Philadelphia
Philadelphia

The viewing maps are courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus resupply vessel aimed at keeping the ISS fully stocked and operational for science research.

Up top is the map showing the maximum elevation the rocket will reach in the eastern United States.

Capitol-East-Front-Steps
Capitol-East-Front-Steps

The flight is designated the Orbital-1, or Orb-1 mission.

Orb-1 is the first of eight commercial cargo resupply missions to the ISS by Orbital according to its Commercial Resupply Services (CRS) contract with NASA.

Of course you can still view the launch live via the NASA TV webcast.

This marks the maiden night launch of the two stage Antares rocket following a pair of daytime test and demonstration launches earlier this year, in April and September.

It’s important to note that the Dec. 19 liftoff is still dependent on NASA engineers resolving the significant issue with the ammonia cooling system that popped up late last week when a critical flow control valve malfunctioned.

If the pump valve can’t be brought back online, two American astronauts may make two or three unscheduled spacewalks starting later this week.

So in the event spacewalks are required, Antares launch could still slip a few days to the end of the launch window around Dec. 21 or Dec. 22. Thereafter the launch would be postponed until January 2014.

Battery Park, NYC
Battery Park, NYC

Here’s your chance to witness a mighty rocket launch – from the comfort of your home and nearby locations along the east coast.

And its smack dab in the middle of the Christmas and holiday season resplendent with shining bright lights.

Weather outlook appears rather promising at this time – 95% favorable chance of lift off.

National Mall, Washington, DC
National Mall, Washington, DC

The rocket was rolled out to the Wallops launch pad this morning by Orbital’s technicians.

Cygnus is loaded with approximately 1465 kg (3,230 lbs.) of cargo for the ISS crew for NASA.

NASA Television coverage of the Antares launch will begin at 8:45 p.m. on Dec. 19 – www.nasa.gov/ntv

Stay tuned here for Ken’s Antares launch reports from NASA Wallops Flight Facility, VA.

Ken Kremer

Iwo Jima memorial
Iwo Jima memorial
Dover
Dover

Chinese rover & lander beam back Portraits with China’s Flag shining on Moon’s Surface

Yutu rover emblazoned with Chinese Flag as seen by the Chang'e 3 lander on the moon on Dec. 15, 2013. Credit: China Space

Yutu rover emblazoned with Chinese Flag as seen by the Chang’e-3 lander on the moon on Dec. 15, 2013. Notice the rover tire tracks left behind in the loose lunar topsoil. Credit: China Space
Story updated[/caption]

China’s ambitious lunar space exploration program achieved another stunning success Sunday night, Dec 15, when the countries inaugural Chang’e-3 lunar lander and rover beamed back portraits of one another snapped from the Moon’s surface – that also proudly displayed the brilliant red Chinese national flag shining atop an extraterrestrial body for the very first time in human history.

“I announce the complete success of the Chang’e-3 mission,” said Ma Xingrui, chief commander of China’s lunar program, during a live CCTV broadcast as the portraits were shown to a worldwide audience from huge screens mounted at the mission control at the Beijing Aerospace Control Center (BACC) in Beijing.

Chinese President Xi Jinping was on hand to personally witness the momentous events in real time.

A wave of cheers and high fives rocked around mission control as the startling imagery of the ‘Yutu’ rover and Chang’e-3 lander nestled atop the Moon’s soil in the Bay of Rainbows was received around 11:42 p.m. Sunday, local Beijing time, 10:42 a.m. EST, via China’s own deep space tracking network.

Xi Jinping’s presence was a clear demonstration of China’s confidence in its lunar team and the importance of this space spectacular to China’s prestige and technological prowess.

China thus became only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

China’s ‘Yutu’ rover had just rolled majestically onto the Moon’s soil hours earlier on Sunday, Dec. 15, at 4:35 a.m. Beijing local time – barely seven hours after the Chang’e-3 mothership touched down atop the lava filled plains of the Bay of Rainbows on Dec. 14.

The rover’s wheels left behind noticeable tire tracks as it drove across the loose lunar topsoil.

Read my earlier detailed accounts of the Dec. 15 drive by Yutu onto the lunar surface illustrated with an extensive photo gallery – here; and of the stunning Dec. 14 landing – here.

CCTV showed China’s President gleefully shaking hands and extending congratulations with many members of the mission team at BACC after seeing the high resolution photos of the Chang’e-3 rover emblazoned with China’s flag for himself.

Chang'e 3 lander as seen by the rover Yutu on the moon on Dec. 15, 2013.  Credit: China Space
Chang’e 3 lander as seen by the rover Yutu on the moon on Dec. 15, 2013. Credit: China Space

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft back in 1976.

America’s last visit to the Moon’s surface occurred with the manned Apollo 17 landing mission – crewed by astronauts Gene Cernan and Harrison ‘Jack’ Schmitt , who coincidentally ascended from the lunar soil on Dec. 14, 1972 – exactly 41 years ago.

“The Central Committee of the Communist Party and the Central Military Commission [responsible for China’s space program] sends congratulations to all the staff that participated in the successful completion of the mission and China’s first soft landing on the moon,” said the Chinese vice premier Ma Kai during the CCTV broadcast.

“The rover and lander are working properly and reaching the goals set.”

“Chang’e-3 is China’s most complicated space mission,” said Kai. “This shows China is dedicated to the peaceful uses of space.”

“There are many more complicated and difficult tasks ahead.”

Chang'e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013.  Note landing ramp at bottom. Credit: CCTV
Chang’e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013. Note landing ramp at bottom. Credit: CCTV

Indeed so far the Chang’e-3 mission has been primarily a highly successful demonstration of the extremely challenging engineering required to accomplish China’s first lunar landing.

Now the science phase can truly begin.

Over 4600 images have already been transmitted by Chang’e-3 since the Dec. 14 touchdown.

After rolling all six wheels into the dirt, Yutu – which translates as Jade Rabbit – drove to a location about nine meters north of the lander, according to CCTV commentators.

The rover then turned around so that the red Chinese flag emblazoned on the front side would be facing the lander’s high resolution color cameras for the eagerly awaited portraits of one another.

Yutu is nearly the size of a golf cart. It measures about 1.5 m x 1 m on its sides and stands about 1.5 m (nearly 5 feet) tall – nearly human height.

The 120 kg Yutu rover will now begin driving in a circle around the right side of the 1200 kg Chang’e-3 lander – for better illumination – at a distance ranging from 10 to 18 meters.

The rover will snap further photos of the lander as it traverses about from 5 specific locations – showing the front, side and back – over the course of the next 24 hours.

See the accompanying graphic – written in Chinese.

Yutu and the Chang'e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept.  Credit: China Space
Yutu and the Chang’e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept. Credit: China Space

Thereafter Yutu will depart the landing site forever and begin its own lunar trek that’s expected to last at least 3 months.

So the rover and lander will soon be operating independently.

They are equipped with eight science instruments including multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

A UV camera will study the earth and its interaction with solar wind and a telescope will study celestial objects. This is done during the lunar day.

It will also investigate the moon’s natural resources for use by potential future Chinese astronauts.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV

The two probes are now almost fully operational. Most of the science instruments are working including at least three cameras and the ground penetrating radar.

And although they have survived the harsh lunar environment thus far, they still face massive challenges. They must prove that they can survive the extremely cold lunar night and temperature fluctuations of more than 300 degrees Celsius – a great engineering challenge.

The rover will hibernate during the two week long lunar night.

A radioisotopic heater will provide heat to safeguard the rovers computer and electronics – including the alpha particle X-ray instrument on the rover’s robotic arm.

The Bay of Rainbows, or Sinus Iridum region, is located in the upper left portion of the moon as seen from Earth. You can see the landing site with your own eyes.

Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum
Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum

It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter and is shown in graphics herein.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer

China’s Maiden Lunar Rover ‘Yutu’ Rolls 6 Wheels onto the Moon – Photo and Video Gallery

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer

China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
Updated- See below Photo Gallery of Yutu’s descent to lunar surface on Dec. 15, 2013[/caption]

China’s first ever lunar rover rolled majestically onto the Moon’s soil on Sunday, Dec. 15, barely seven hours after the Chang’e-3 mothership touched down atop the lava filled plains of the Bay of Rainbows.

Check out the gallery of stunning photos and videos herein from China’s newest space spectacular atop stark lunar terrain.

The six wheeled ‘Yutu’, or Jade Rabbit, rover drove straight off a pair of ramps at 4:35 a.m. Beijing local time and sped right into the history books as it left a noticeably deep pair of tire tracks behind in the loose lunar dirt.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV

The stunning feat was broadcast on China’s state run CCTV using images transmitted to Earth from cameras mounted on the Chang’e-3 lander and aimed directly at the rear of the departing moon buggy.

Watch this YouTube video from CCTV showing the separation of ‘Yutu’ from the lander:

The scene was reminiscent of NASA’s Mars Sojourner rover driving of the Mars Pathfinder lander back in 1997.

Chinese space engineers based at the Beijing Aerospace Control Center (BACC) carefully extended a pair of ramps out from the lander in a complex process, drove Yutu onto the ramps and then gently lowered them onto the moon’s soil.

China’s Change’-3 mission had just safely soft landed on the Moon hours only earlier on Saturday, Dec. 14 at 9:11 p.m. Beijing time, 8:11 EST at the Sinus Iridum region, or Bay of Rainbows.

China thus became only the 3rd country in the world to successfully land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

A video grab shows China's first moon rover, Yutu, or Jade Rabbit, separating from Chang'e-3 moon lander early Dec. 15, 2013. The six-wheeled rover separated from the lander early on Sunday, several hours after the Chang'e-3 probe soft-landed on the lunar surface.  Credit: Xinhua
A video grab shows China’s first moon rover, Yutu, or Jade Rabbit, separating from Chang’e-3 moon lander early Dec. 15, 2013. The six-wheeled rover separated from the lander early on Sunday, several hours after the Chang’e-3 probe soft-landed on the lunar surface. Credit: Xinhua

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft.

Read my detailed account of the Chang’e-3 landing on Dec. 14 – here.

1st post landing image transmitted from the Moon’s surface by China’s Chang’e-3 lunar lander on Dec. 14, 2013. Credit: CCTV/post processing by Marco Di Lorenzo/Ken Kremer
1st post landing image transmitted from the Moon’s surface by China’s Chang’e-3 lunar lander on Dec. 14, 2013. Credit: CCTV/post processing by Marco Di Lorenzo/Ken Kremer

Watch this YouTube video compilation of CCTV’s Dec. 14 landing coverage:

Over 4600 images have already been transmitted by Chang’e-3 in less than a day on the Moon.

Tomorrow, the 120 kg Yutu rover will begin driving in a circle around the 1200 kg lander.

And the pair of lunar explorers will snap eagerly awaited portraits of one another!

The rover and lander are equipped with 8 science instruments multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

Yutu moves towards drive off ramp still atop the Chang’e-3 lander, shown in this screen shot from early Dec. 15, 2013.  Credit: CCTV
Yutu moves towards drive off ramp still atop the Chang’e-3 lander, shown in this screen shot from early Dec. 15, 2013. Credit: CCTV
Yutu atop the transfer ramp to lunar surface. Credit: CCTV
Yutu atop the transfer ramp to lunar surface. Credit: CCTV
Yutu descends down the transfer ramp to lunar surface. Credit: CCTV
Yutu descends down the transfer ramp to lunar surface. Credit: CCTV
Image shows the trajectory of the lunar probe Chang'e-3 approaching the landing site  on Dec. 14.
Image shows the trajectory of the lunar probe Chang’e-3 approaching the landing site on Dec. 14.
China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua

China Scores Historic Success as Chang’e-3 Rover Lands on the Moon Today

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang'e-3 on the screen of the Beijing Aerospace Control Center in Beijing. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang’e-3 on the screen of the Beijing Aerospace Control Center in Beijing. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV
Story updated[/caption]

China scored a stunning, history making success with the successful touchdown of the ambitious Chang’e-3 probe with the ‘Yutu’ rover on the surface of the Moon today, Dec. 14, on the country’s first ever attempt to conduct a landing on an extraterrestrial body.

The dramatic Chang’e-3 soft landing on the lava filled plains of the Bay of Rainbows occurred at about 8:11 am EST, 9:11 p.m. Beijing local time, 1311 GMT today.

The monumental feat is the first landing on the Moon by any entity in nearly four decades. It was broadcast live on CCTV, China’s state run television network.

Note: Read my related new story with a photo gallery of Yutu’s 6 wheels rolling onto lunar soil – here

This maiden Chinese moon landing marks a milestone achievement for China and clearly demonstrates the country’s technological prowess.

chang'e-3 approach 1A tidal wave of high fives was unleashed by the huge teams of Chinese space engineers teams controlling the flight from the Beijing Aerospace Control Center (BACC).

There was also a huge sense of relief from the nail biting tension upon confirmation of the successful soft landing following many years of hard work and intense planning.

The Chang’e-3 mission entails the first soft landing on the Moon by anyone since the Soviet Union’s unmanned Luna 24 sample return vehicle touched down back in 1976.

Artists concept of the rocket assisted landing of China’s lunar probe Chang'e-3.
Artists concept of the rocket assisted landing of China’s lunar probe Chang’e-3.

China now joins an elite club of three, including the United States, who have mastered the critical technology required to successfully touch down on Earth’s nearest neighbor.

China’s space vision also stands in total contrast to the utter lack of vision emanating from so called political leaders in Washington, DC who stymie NASA and US science at every opportunity!

‘Yutu’ could very well serve as a forerunner for testing the key technologies required for a Chinese manned lunar landing in the next decade.

In one of its first acts from the surface, the landers life giving solar panels were deployed as planned within minutes of touchdown

The Chang’e-3 mission is comprised of China’s ‘Yutu’ lunar lander riding piggyback atop a much larger four legged landing vehicle.

The Chang’e-3 lander transmitted its first images of the moon in real time during its approach to the lunar surface during the final stages of the ongoing landing operation carried live by CCTV.

A total of 59 images were received instead of the 10 expected, said a CCTV commentator.

The voyage from the Earth to the Moon began 12 days ago with the flawless launch of Chang’e-3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

Chang’e-3 made a rocket powered descent to the Moon’s surface today by firing the landing thrusters starting at the altitude of 15 km (9 mi) for a soft landing targeted to a preselected area on the Bay of Rainbows.

The powered descent was autonomous and took about 12 minutes.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons. It was the biggest ever used by China in space said a commentator on CCTV.

The variable thrust engine enabled Chang’e-3 to reduce its deceleration as it approached the moon.

The descent was preprogrammed and controlled by the probe itself, not from the ground.

A descent camera was mounted on the lander’s belly

The 1200 kg lander is equipped with unprecedented terrain recognition equipment and software to hover above the landing site and confirm it was safe. This enabled the craft to avoid rock and boulder fields that could spell catastrophe even in the final seconds before touchdown if the vehicle were to land directly on top of them.

The descent engine fired until the lander was about hovering 100 meters above the lunar surface.

After determining it was safe to proceed, the lander descended further to about 3 meters. The engine then cut off and the lander free fell the remaining distance. The impact was cushioned by shock absorbers.

The solar panels soon unfurled. They are the most efficient Chinese solar panels available, said a CCTV commentator.

The Bay of Rainbows, or Sinus Iridum region, is located in the upper left portion of the moon as seen from Earth. You can see the landing site with your own eyes.

It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter – and is shown in graphics herein.

The Yutu rover is also unfurling its solar panels and mast today.

Yutu, which translates as Jade Rabbit, stands 150 centimeters high, or nearly 5 feet – human height.

It weighs approximately 120 kilograms and sports a robotic arm equipped with advanced science instruments.

On Sunday, the six-wheeled ‘Yutu’ rover with a rocker bogie suspension similar to NASA’s Mars rovers will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain for at least three months.

In what promises to be a space spectacular, the lander and rover are expected to photograph one another soon after Yutu rolls onto the Bay of Rainbows.

They will work independently.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

The Chang’e-3 lander is powered by a combination of solar arrays and a nuclear battery said CCTV, in order to survive the two week long lunar nights.

Chinese space officials expect the lander will function a minimum of 1 year.

ESA’s network of tracking stations are providing crucial support to China for Chang’e-3 from launch to landing.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

China's lunar probe Chang'e-3 is expected to land on Sinus Iridum (Bay of Rainbows) of the moon in mid-December 2013. Credit: Xinhua
China’s lunar probe Chang’e-3 landed on Sinus Iridum (Bay of Rainbows) of the moon on 14 December 2013. Credit: Xinhua

China’s Chang’e-3 Moon Rover Descends to Lower Orbit Sets Up Historic Soft Landing

China's lunar probe Chang'e-3 is expected to land on Sinus Iridum (Bay of Rainbows) of the moon in mid-December 2013. Credit: Xinhua

All systems appear to be “GO” for the world’s first attempt to soft land a space probe on the Moon in nearly four decades.

China’s maiden moon landing probe – Chang’e-3 – is slated to attempt the history making landing this weekend on a lava plain in the Bay of Rainbows, or Sinus Iridum region.

Chinese space engineers at the Beijing Aerospace Control Center (BACC) paved the way for the historic touchdown by successfully commanding Chang’e-3 to descend from the 100 km-high lunar circular orbit it reached just one week ago on Dec. 6, to “an elliptical orbit with its nearest point about 15 km away from the moon’s surface”, according to a statement from China’s State Administration of Science, Technology and Industry for National Defense (SASTIND).

UPDATE: CCTV is providing live landing coverage

The first pictures taken from the alien lunar surface in some 37 years are expected to be transmitted within days or hours of touchdown planned as early as Saturday, Dec. 14, at 9:40 p.m. Beijing local time, 8:40 a.m. EST.

CCTV, China’s state run network, carried the launch live. It remains to be seen whether they will have live coverage of the landing since there have been no programming announcements.

SASTIND said the orbit lowering thruster firing was “conducted above the dark side of the moon at 9:20 p.m.” on Dec. 10, Beijing local time.

Confirmation of the Chang’e-3 probes new, lower orbit was received four minutes later.

China's lunar probe Chang'e-3 entered an orbit closer to the moon on Dec. 10, 2013. (Xinhua)
China’s lunar probe Chang’e-3 entered an orbit closer to the moon on Dec. 10, 2013. Credit: Xinhua

If successful, the Chang’e-3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed back in 1976.

China would join an elite club of three, including the United States, who have mastered the critical technology to successfully touch down on Earth’s nearest neighbor.

The Chang’e-3 mission is comprised of China’s ‘Yutu’ lunar lander riding piggyback atop a much larger four legged landing probe.

Artists concept of the Chinese Chang'e 3 lander and rover on the lunar surface.  Credit: Beijing Institute of Spacecraft System Engineering
Artists concept of the Chinese Chang’e-3 lander and rover on the lunar surface. Credit: Beijing Institute of Spacecraft System Engineering

The voyage from the Earth to the Moon began 12 days ago with the flawless launch of Chang’e-3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

Chang’e-3 will make a powered descent to the Moon’s surface on Dec. 14 by firing the landing thrusters at the altitude of 15 km (9 mi) for a soft landing in a preselected area on the Bay of Rainbows.

The powered descent will take about 12 minutes.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons, according to Xinhua.

The Bay of Rainbows is located in the upper left portion of the moon as seen from Earth. It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter.

The 1200 kg lander is equipped with terrain recognition equipment and software to avoid rock and boulder fields that could spell catastrophe even in the final seconds before touchdown if the vehicle were to land directly on top of them.

Chang’e-3 is powered by a combination of solar arrays and a nuclear device in order to survive the two week long lunar nights.

The six-wheeled ‘Yutu’ rover, with a rocker bogie suspension, will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain.

Yutu measures 150 centimeters high and weighs approximately 120 kilograms and sports a robotic arm equipped with science instruments.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

UPDATE: NASA Pushes Back Cygnus Launch Decision Due To Space Station Cooling Problem

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

The decision to launch a cargo flight to the International Space Station next week has been pushed back until Monday (Dec. 16) because of a cooling problem on station that forced the shutdown of redundant systems, according to a NASA update.

Orbital Sciences’ Cygnus commercial spacecraft is expected to blast off on Dec. 18 from the Wallops Flight Facility in Virginia. However, with some station systems offline, the launch does not now meet certain “commit criteria” to make its journey to space next week, said Kenny Todd, the space station’s mission integration and operations manager.

“We haven’t lost any primary functionality,” he said in a NASA Television update today (Dec. 12), emphasizing that the six-person Expedition 38 crew is fine. “There is some redundancy that we’re down right now, but that’s not something I would call critical to day-to-day station operations.”

While a spacewalk is a possibility to fix the problem, it’s too early to say what NASA and other space station partners will decide to do.

NASA controllers spent the night examining a control valve blamed for causing an ammonia pump to shut down yesterday (Dec. 12). The space station uses liquid ammonia to maintain its temperature, pumping the ammonia through external radiators to bleed off heat. Astronauts have made periodic spacewalks to repair parts of the ammonia system, most recently in May when Expedition 35 replaced a pump controller box on the P6 (far port) truss just days before some crew members went home.

Expedition 35 Flight Engineers Chris Cassidy (left) and Tom Marshburn on a spacewalk on May 11 to inspect and replace a pump controller box on the International Space Station’s far port truss (P6) leaking ammonia coolant. Credit: NASA.
Expedition 35 Flight Engineers Chris Cassidy (left) and Tom Marshburn on a spacewalk on May 11 to inspect and replace a pump controller box on the International Space Station’s far port truss (P6) leaking ammonia coolant. Credit: NASA.

“The pump module on one of ISS two external cooling loops automatically shut down today when it got too cold,” stated the NASA Johnson Space Center Twitter feed yesterday (Dec. 11).

“The pump was brought back online, but they think a valve may not be working correctly inside it. Some of the station’s internal electrical systems were moved over to the second loop, and some noncritical things were powered down. The crew was always safe and will work with the ground teams as they figure out what caused the issue.”

Non-critical systems were powered down in the Harmony node, Columbus Laboratory and Japanese Kibo laboratory. After confirming that the new configuration was stable, controllers began this morning (EST) to move the troublesome valve to several positions and monitor the effect on cooling temperatures, according to a NASA TV update.

The Japanese Kibo module on the International Space Station as photographed by a member of the Expedition 38 crew in 2013. Credit: NASA
The Japanese Kibo module on the International Space Station as photographed by a member of the Expedition 38 crew in 2013. Credit: NASA

The crew is going about their activities as much as possible, although they’re on a “reduced timeline” because some of the experiments aren’t running as usual. (Science collected up to now is “not at risk”, Todd said.)

Responding to questions on social media, NASA astronaut Douglas Wheelock — who led three unplanned spacewalks in 2010 to replace a broken ammonia pump module on the S1 truss in the same cooling loop — said he is working with Mission Control to see what needs to be done next.

Of note, NASA has suspended spacewalks after a water leak in one of its spacesuits forced Italian astronaut Luca Parmitano back to the airlock during work in July. (Crewmate Chris Cassidy, who was on the spacewalk at the same time, later said he felt Parmitano was in no immediate danger, but felt the prudent thing to do was stop.)

NASA astronaut Douglas Wheelock during a contingency spacewalk Nov. 16, 2010 after an ammonia cooling pump failed aboard the International Space Station. During this spacewalk, Wheelock and fellow Expedition 24 crew member Tracy Caldwell installed a spare ammonia pump module on the S1 Truss on the space station. The duo did three contingency spacewalks during the mission to address the problem. Credit: NASA
NASA astronaut Douglas Wheelock during a contingency spacewalk Nov. 16, 2010 after an ammonia cooling pump failed aboard the International Space Station. During this spacewalk, Wheelock and fellow Expedition 24 crew member Tracy Caldwell installed a spare ammonia pump module on the S1 Truss on the space station. The duo did three contingency spacewalks during the mission to address the problem. Credit: NASA

Astronauts have been troubleshooting the suit periodically on board station, but NASA is planning to send it back on the next SpaceX Dragon flight to Earth for further investigation. SpaceX isn’t planning to get to the station again until late February, media reports say. Russian spacewalks can still continue as they use a separate suit; the most recent one took place in November with the Olympic torch.

While Todd didn’t quite say the ban on spacewalks has been lifted, he added that NASA has new procedures in place to guard against another crew member facing the same water issue. He did not elaborate on what those procedures are.

The current launch window for Cygnus extends as far as Dec. 21 and “possibly” the 22nd, Todd said, but emphasized more time is needed to come to a decision. “At this point, for lack of a better term, we’re going to kick the can a little bit and let the team work a little bit more,” he said.

Updates will follow as the situation and fix progresses.

Mars One Proposes First Privately Funded Robotic Mars Missions – 2018 Lander & Orbiter

Mars One proposes Phoenix-like lander for first privately funded mission to the Red Planet slated to blastoff in 2018. This film solar array experiment would provide additional power. Credit: Mars One

The Mars One non-profit foundation that aims to establish a permanent human settlement on the Red Planet in the mid-2020’s – with colonists volunteering for a one-way trip – took a major step forward today, Dec. 10, when they announced plans to launch the first ever privately funded space missions to Mars in 2018; as forerunners to gather critical measurements.

Bas Lansdorp, Mars One Co-founder and CEO announced plans to launch two missions to the Red Planet in 2018 – consisting of a robotic lander and an orbiting communications satellite; essential for transmitting the data collected on the Red Planet’s surface.

And he has partnered with a pair of prestigious space companies to get started.

Lansdorp made the announcement at a news media briefing held today at the National Press Club in Washington, DC.

“This will be the first private mission to Mars and the lander’s successful arrival and operation will be a historic accomplishment,” said Lansdorp.

Lansdorp stated that Mars One has signed contracts with Lockheed Martin and Surrey Satellite Technology Ltd. (SSTL) to develop mission concept studies – both are leading aerospace companies with vast experience in building spacecraft.

The 2018 Mars One lander would be a technology demonstrator and include a scoop, cameras and an exotic solar array to boost power and longevity.

The spacecraft structure would be based on NASA’s highly successful 2007 Phoenix Mars lander – built by Lockheed Martin – which discovered and dug into water ice buried just inches beneath the topsoil in the northern polar regions of the Red Planet.

3 Footpads of Phoenix Mars Lander atop Martian Ice.  Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars InSight mission will build a new Phoenix-like lander from scratch to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute
3 Footpads of Phoenix Mars Lander atop Martian Ice
Phoenix thrusters blasted away Martian soil and exposed water ice. Proposed Mars One 2018 mission will build a new Phoenix-like lander from scratch to test technologies for extracting water into a useable form for future human colonists. NASA’s InSight 2016 mission will build a new Phoenix-like lander to peer deep into the Red Planet and investigate the nature and size of the mysterious Martian core. Credit: Ken Kremer, Marco Di Lorenzo, Phoenix Mission, NASA/JPL/UA/Max Planck Institute

“We are excited to have been selected by Mars One for this ambitious project and we’re already working on the mission concept study, starting with the proven design of Phoenix,” said Ed Sedivy, Civil Space chief engineer at Lockheed Martin Space Systems. “Having managed the Phoenix spacecraft development, I can tell you, landing on Mars is challenging and a thrill and this is going to be a very exciting mission.”

Lockheed Martin engineers will work for the next 3 to 4 months to study mission concepts as well as how to stack the orbiter and lander on the launcher,” Sedivy said at the briefing.

“The lander will provide proof of concept for some of the technologies that are important for a permanent human settlement on Mars,” said Lansdorp.

Two examples involve experiments to extract water into a usable form and construction of a thin film solar array to provide additional power to the spacecraft and eventual human colonists.

It would include a Phoenix like scoop to collect soils for the water extraction experiment and cameras for continuous video recording transmitted by the accompanying orbiter.

Lockheed Martin is already under contract to build another Phoenix type lander for NASA that is slated to blastoff in 2016 on the InSight mission.

“They have a distinct legacy of participating in nearly every NASA mission to Mars,” said Lansdorp.

So if sufficient funding is found it seems apparent that lander construction should be accomplished in time.

However, building the science instruments from scratch to meet the tight timeline could be quite challenging.

Given that the lander is planned to launch in barely over four years, I asked Sedivy if that was sufficient time to select, design and develop the new science instruments planned for the 2018 mission.

“A typical life cycle for the Mars program provides three and a half years from commitment to design to launch. So we have about 1 year to commit to preliminary design for the 2018 launch, so that’s favorable,” Sedivy told Universe Today.

“Now as for having enough time for selecting the suite of science experiments that’s a little trickier. It depends on what’s actually selected and the maturity of those elements selected.”

“So we will provide Mars One with input as to where we see the development risks. And we’ll help guide the instrument selections to have a high probability that they will be ready in time for the 2018 launch window,” Sedivy told me.

Video caption: Mars One Crowdfunding Campaign 2018 Mars Mission

For the 2018 lander, Mars One also plans to include an experiment from a worldwide university challenge and items from several Science, Technology, Engineering and Math (STEM) challenge winners.

Surrey Satellite Technology Ltd. (SSTL) was selected to studying orbiter concepts that will provide a high bandwidth communications system in a Mars synchronous orbit and will be used to relay data and a live video feed from the lander on the surface of Mars back to Earth, according to Sir Martin Sweeting, Executive Chairman of SSTL.

There are still many unknowns at this stage including the sources for all the significant funding required by Mars One to transform their concepts into actual flight hardware.

“Crowdfunding and crowdsourcing activities are important means to do that,” said Lansdorp.

At the briefing, Lansdorp stated that Mars One has started an Indiegogo crowdfunding campaign. The goal is to raise $400,000 by Jan. 25, 2014.

Link to – Indiegogo Mars One campaign

Mars One is looking for sponsors and partners. They also plan a TV show to help select the winners of the first human crew to Mars from over 200,000 applicants from countries spread all across Earth.

The preliminary 2018 mission study contracts with Lockheed and Surrey are valued at $260,000 and $80,000 respectively.

Stay tuned here for Ken’s continuing Curiosity, Chang’e 3, LADEE, MAVEN and MOM news and his upcoming Antares launch reports from on site at NASA Wallops Flight Facility, VA.

Ken Kremer

…………….

Learn more about Mars, Curiosity, Orion, MAVEN, MOM, Mars rovers, Antares Launch, Chang’e 3, SpaceX and more at Ken’s upcoming presentations

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Dec 15-20: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA, evening

How Much Radiation Would You Get During A Mars Mission?

An artist's conception of future Mars astronauts. Credit: NASA/JPL-Caltech

While asking questions about habitability on Mars, one thing that scientists also need to consider is whether it’s safe enough for humans to even do exploration there. Radiation is definitely a big factor — in a press conference yesterday (Dec. 9) for the American Geophysical Union’s conference, scientists said the environment is unlike anything we are used to naturally on Earth.

Radiation on Mars comes from two sources: galactic cosmic rays (over the long term) and solar energetic particles (in short bursts of activity when the sun gets super-active). Of note, the sun has had a muted peak to its solar cycle, so that’s affecting the expected amount of particles on Mars. But the Mars Curiosity rover, in its first 300 Earth days of roaming, has plenty of data on galactic cosmic rays.

On the Martian surface, the average dose is about 0.67 millisieverts (mSv) per day, at least between the measurement period of August 2012 and June 2013. The journey to Mars had a dose of 1.8 mSv per day inside the spaceship. So what does that means for NASA’s human health consideration concerns?

NASA's Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left.  Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com
NASA’s Mars rover Curiosity took this self-portrait, composed of more than 50 images using its robotic arm-mounted MAHLI camera, on Feb. 3. The image shows Curiosity at the John Klein drill site. A drill hole is visible at bottom left. Credit: NASA / JPL / MSSS / Marco Di Lorenzo / Ken Kremer- kenkremer.com

With a 500-day trip on the surface and the journey to and from Mars (which would take 180 days each way), NASA is saying the total dosage for the mission would be about 1 Sv. Population studies over the long term have shown that increases the fatal cancer risk by 5%. Current NASA guidelines for low-Earth orbit don’t allow for a more than 3% increase, but 1 Sv is within the guidelines for several other space agencies.

But don’t rule out the trip to Mars yet, NASA states: “[NASA] does not currently have a limit for deep space missions, and is working with the National Academies Institute of Medicine to determine appropriate limits for deep space missions, such as a mission to Mars in the 2030s.”

Besides, other entities are thinking about going, such as Mars One.

Read more about the radiation findings in this Dec. 9 article on Science. The research was led by Don Hassler, a Southwest Research Institute program director and principal investigator of Curiosity’s radiation assessment detector (RAD).

Source: Southwest Research Institute