Clouds on the ground !
The sky seems inverted for a moment ! Blastoff of India’s Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]
With India’s Mars Orbiter Mission (MOM) safely and flawlessly injected into her initial elliptical Earth parking orbit following Tuesday’s (Nov. 5) spectacular launch, the flight has quickly transitioned to the next stage – the crucial series of thruster firings to raise MOM’s orbit around Earth dubbed “Midnight Maneuvers” and achieve escape velocity.
Barely a day after blastoff, ISRO engineers successfully completed the first of six orbit raising “Midnight Maneuver” burns at 01:17 hrs IST today (Nov. 6) with MOM’s liquid fueled thruster – see graphic below.
The goal is to gradually maneuver MOM – India’s 1st mission to the Red Planet – into a hyperbolic trajectory so that the spacecraft will escape from the Earth’s Sphere of Influence (SOI) and eventually arrive at the Mars Sphere of Influence after a 10 month interplanetary cruise.
To do this involves a lot of complicated orbital mechanics calculations, as noted by ISRO’s chief during the launch webcast.
“The journey has only begun. The challenging phase is coming,” said Dr. K. Radhakrishnan, Chairman ISRO.
India’s PSLV rocket is not powerful enough to send MOM on a direct flight to Mars.
The launch “placed MOM very precisely into an initial elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”
So ISRO’s engineers devised a clever procedure to get the spacecraft to Mars on the least amount of fuel via six “Midnight Maneuver” engine burns over the next several weeks – and at an extremely low cost.
The 440 Newton engine fires when MOM is at its closest point in orbit above Earth. This increases the ships velocity and gradually widens the ellipse and raises the apogee of the six resulting elliptical orbits around Earth that eventually injects MOM onto the Trans-Mars trajectory.
The 1st firing lasted 416 seconds and raised the spacecraft’s apogee to 28,825 km and perigee to 252 km.
The remaining burns are planned for November 7, 8, 9, 11, and 16.
MOM is expected to achieve escape velocity on Dec. 1 and depart Earth’s sphere of influence tangentially to Earth’s orbit to begin the 300 day long voyage to the Red Planet.
She will follow a path that’s roughly half an ellipse around the sun.
MOM arrives in the vicinity of Mars on September 24, 2014 for the absolutely essential Mars orbital insertion firing by the 440 Newton liquid fueled main engine which slows the probe and places it into a 366 km x 80,000 km elliptical orbit.
If all continues to goes well, India will join an elite club of only four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).
MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.
Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.
The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.
Stay tuned here for continuing MOM and MAVEN news and Ken’s MAVEN launch reports from on site at the Kennedy Space Center press center.
Here’s a glorious gallery of launch images of the PSLV-25 rocket & Mars Orbiter Mission (MOM) on Nov. 5, 2013.
Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations
Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
Update: the crew has now arrived safely at the ISS. You can watch the arrival video below.
Three new crew members are on their way to the International Space Station. NASA astronaut Rick Mastracchio, Japan Aerospace Exploration Agency astronaut Koichi Wakata and Soyuz Commander Mikhail Tyurin of Roscosmos launched on a Soyuz TMA-11M spacecraft from the Baikonur Cosmodrome at 11:14 p.m. EST (04:14:00 UTC, 10:14 a.m. Thursday, Kazakh time). They’ll use the accelerated “fast-track” trajectory and arrive at the station in just a few hours, at 10:31 UTC (5:31 a.m. EST Thursday.)
You can watch the launch video below.
In an usual situation, when the new crew arrives, there will be nine crew members and three Soyuz vehicles at the ISS. The timing of crew exchange works to enable a complicated “relay race” of a special Olympic torch from the 2014 Sochi Winter Olympics in Russia. The new crew is bringing the unlit torch along, then, over the weekend Russian cosmonauts Oleg Kotov and Sergei Ryazanskiy, who are part of the space station’s current crew, will take the torch out on a spacewalk, with plans to take pictures and video (they’ll try to take pictures when the station flies over Russia and the southern resort of Sochi). The real reason for the spacewalk is to do some routine Russian maintenance outside the station.
Then, on Sunday, three crew members will return home (Fyodor Yurchikhin, Luca Parmitano and Karen Nyberg) and they will bring the torch back home, with landing planned at about 9:50 p.m. EST on Nov 10 (02:50 UTC on Nov 11.) The torch then will be given back to Olympic officials and it will be used in the opening ceremonies of the February games.
After that crew departs, Expedition 38 will begin with Kotov as Commander.
There have not been nine crew members on the ISS since 2009. During the second half of the new crew’s Expedition, when it changes to Expedition 39, Wakata will make history by becoming the first Japanese commander of the International Space Station. You can read more about Wakata and Mastracchio and their upcoming mission in an interview they did with Elizabeth Howell during their training.
The new fast-track trajectory has the Soyuz rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station, in about 6 hours or four orbits.
Any road trip requires rest stops to refuel and rest. That’s especially true of planetary exploration, as it would take months between destinations. In that spirit, here is a new concept for “Mars truck stops” from the Space Development Steering Committee, which they call “Stairways to Mars.”
For those who aren’t aware, the committee is a coalition of space advocates. Included in the group are the heads of the National Space Society, the Space Frontier Foundation, and the Mars Society, SDSC said, as well as a list of past astronauts, high-ranking NASA employees and others. (The founder is Howard Bloom, who was a former visiting scholar at New York University’s graduate psychology department, among other positions.)
So how would a Mars truck stop work? In a nutshell, this is what SDSC proposes:
– Beams are constructed in space “just like a giant erector set”, according to a statement from John Strickland, SDSC chief analyst. This would be accomplished using “robots on rails” that could build the first part, then “extend … its own rails along the beam as it goes.”
– Solar panels are added on to the beam to provide power;
– Components are then added according to need. Pictures from SDSC show items such as fuel tanks on the truck stop. If ambitions soared even higher, the concept could even be built upon to make a larger space colony modelled on “O’Neill colonies”, as shown below.
It should be emphasized that this is a concept, with no funding or firm plans yet, but for what it’s worth the committee says it could move quickly. “These plans are budgeted to cost LESS than the current NASA program for our next step in space — the $40 billion Space Launch System and Orion Capsule. What’s more, the first steps of the Stairway to Mars are achievable in three years,” the committee writes.
One possible location for this kind of truck stop would be at the Earth-Moon L1 Lagrange point, or a spot in space where gravities from different bodies approximately equal each other out and allow an object to hover in place. Lagrange points are already used for several space missions, including the Planck telescope that was just decommissioned.
What do you think of the concept? Let us know in the comments.
WOW MOM !
Blastoff of the Indian developed Mars Orbiter Mission (MOM) on Nov. 5, 2013 from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota. Credit: ISRO[/caption]
India flawlessly launched its first ever mission to Mars today (Nov. 5) to begin a history making ten month long interplanetary voyage to the Red Planet that’s aimed at studying the Martian atmosphere and searching for methane after achieving orbit.
The Mars Orbiter Mission (MOM) thundered to space atop the nations four stage Polar Satellite Launch Vehicle (PSLV) precisely on time at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST) from the Indian Space Research Organization’s (ISRO) Satish Dhawan Space Centre SHAR, Sriharikota, off India’s east coast.
“Our journey to Mars begins now!” announced an elated ISRO Chairman K. Radhakrishnan at the ISRO spaceport during a live broadcast of MOM’s launch from the mission control center. “We achieved orbit and we can all be proud.”
This was the 25th launch of India’s highly reliable 44 meter (144 foot) tall PSLV booster.
The 700,000 pound thrust PSLV rocket launched in its most powerful, extended XL version with six strap on solid rocket motors.
“I’m extremely happy to announce that the PSLV-C25 vehicle has placed the Mars orbiter spacecraft very precisely into an elliptical orbit around Earth of 247 x 23556 kilometers with an inclination of 19.2 degrees,” Radhakrishnan said, after “much meticulous planning and hard work by everyone.”
ISRO announced that MOM separated from the PSLV 4th stage as planned some 44 minutes after liftoff and that the solar panels successfully deployed.
Confirmation of the 4th stage ignition and spacecraft separation was transmitted by ship-borne terminals aboard a pair of specially dispatched tracking ships – SCI Nalanda and SCI Yamuna – stationed by ISRO in the South Pacific Ocean.
MOM was designed and developed by the Indian Space Research Organization (ISRO) in near record time after receiving approval from the Indian Prime Minister Manmohan Singh in August 2012.
“No mission is beyond our capability”, said Radhakrishnan. “MOM is a huge step taking India beyond Earth’s influence for the first time.”
A series of six burns over the next month will raise the apogee and put MOM on a trajectory for Mars around December 1.
Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion firing by the main engine on September 24, 2014 will place MOM into an 366 km x 80,000 km elliptical orbit.
If all continues to goes well with MOM, India will join an elite club of four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).
MOM is the first of two new Mars orbiter science probes from Earth blasting off for the Red Planet this November. Half a globe away, NASA’s $671 Million MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.
The 1,350 kilogram (2,980 pound) MOM orbiter is also known as ‘Mangalyaan’ – which in Hindi means ‘Mars craft.’
Although the main objective is a demonstration of technological capabilities, the probe is equipped with five indigenous instruments to conduct meaningful science – including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.
MOM’s 15 kg (33 lb) science suite comprises:
MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos
LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process
TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy
MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition
MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.
Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMars Trace Gas Orbiter.
MOM and MAVEN will arrive nearly simultaneously in Mars orbit next September – joining Earth’s invasion fleet of five operational orbiters and intrepid surface rovers currently unveiling the mysteries of the Red Planet.
Both MAVEN and MOM’s goal is to study the Martian atmosphere , unlock the mysteries of its current atmosphere and determine how, why and when the atmosphere and liquid water was lost – and how this transformed Mars climate into its cold, desiccated state of today.
Although they were developed independently and have different suites of scientific instruments, the MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere and climate history, MAVEN’s top scientist told Universe Today.
“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.
“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.
The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for about six to ten months and hopefully much longer.
Stay tuned here for continuing MAVEN and MOM news and my MAVEN launch reports from on site at the Kennedy Space Center press center.
Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations
Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
It’ s a Mind-Blowing Midnight Marvel !
India’s fueled PSLV rocket and Mars Orbiter Mission (MOM) await Nov. 5 blastoff at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST). Credit: ISRO. Watch ISRO’s Live Webcast[/caption]
MOM is spending her last night on Earth – and she’s a Mind-Blowing Midnight Marvel !
The pride of all India, and everyone’s favorite MOM is healthy and set to embark on the nation’s first ever interplanetary voyage of exploration. She aims to conduct a detailed study of the Martian atmosphere and sniff for methane – a potential indicator for life.
The Mars Orbiter Mission (MOM) was designed and developed by the Indian Space Research Organization (ISRO) which is broadcasting a live webcast of the launch starting at 14:00 hrs IST, 3:30 a.m. EST at – http://isro.org/
“All vehicle systems have been switched ON,” as of now, says ISRO.
Now less than 8 hours from blastoff, the PSLV-C25 booster rocket is fully fueled and poised to streak from ISRO’s Satish Dhawan Space Centre SHAR, Sriharikota, located on India’s east coast in Andhra Pradesh state.
If all goes well with MOM, India joins an elite club of four who have launched probes that successfully investigated the Red Planet from orbit or the surface – following the Soviet Union, the United States and the European Space Agency (ESA).
Reaching Mars successfully is an enormous technological challenge. More than half of all Earth’s attempts have failed. But those who fail to ‘dare mighty things’ are doomed to timidity and ignominy.
ISRO reports that the weather outlook is favorable for an on time launch on Nov 05, 2013 at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST).
“Weather Forecast for launch day based on today’s image from Kalpana Meteorological Satellite: Early morning, cloudy and low probability of Rain, No severe weather expected. During launch window – partly cloudy weather and no rain is expected.”
“Looks like we are heading towards a bright and sunny day for the launch,” says ISRO.
Just hours ago the final loading of propellants into the rocket’s liquid fueled second stage (PS2) with highly toxic nitrogen tetroxide and hydrazine was satisfactorily completed.
The launch gantry has been retracted to a distance of 50 meters and the 44 meter (144 foot) tall four stage PSLV booster stands at the ready under the gaze of the starry night.
Two tracking ships – SCI Nalanda and SCI Yamuna – have been deployed to the Indian Ocean.
They are now in position to relay critical in flight telemetry during the ignition of the PSLV-C25 fourth stage and the spacecraft’s separation from the rocket at T plus 44 minutes.
“For about ten minutes between the separation of third stage of PSLV and ignition of fourth stage the vehicle will not be visible from any ground stations as will be evident in the Live telecast,” says ISRO.
And the launch team is leaving no stone unturned to ensure success!
“As the country gets embraced in deep sleep – don’t forget a few hundred tireless minds at ISRO – rock-steady on their consoles and keeping their strict vigil on the several health parameters of the rocket and the MoM spacecraft,” said ISRO in a statement.
And here’s a poetic tribute to MOM from ISRO
MOM is the first of two new Mars orbiter science probes from Earth set to blast off for the Red Planet this November. On the other side of Earth, NASA’s MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from Cape Canaveral, Florida.
The 1,350 kilogram (2,980 pound) MOM orbiter is also known as‘Mangalyaan’ – which in Hindi means ‘Mars craft.’
‘Mangalyaan’ is outfitted with an array of five indigenous science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both geological and biological sources – and could be a potential marker for the existence of Martian microbes.
The PSLV will inject MOM into an initially elliptical Earth parking orbit of 248 km x 23,500 km. A series of six orbit raising burns will eventually place MOM on a trajectory to Mars around December 1.
Following a 300 day interplanetary cruise phase, the do or die orbital insertion engine will fire on September 24, 2014 and place MOM into an 366 km x 80,000 km elliptical orbit.
MOM and MAVEN both arrive in Mars orbit within days of one another next September – joining Earth’s invasion fleet of five operational orbiters and intrepid surface rovers currently unveiling the mysteries of the Red Planet.
MAVEN’s goal is to study Mars atmosphere in unprecedented detail. The MAVEN and MOM science teams will “work together” to unlock the secrets of Mars atmosphere, MAVEN’s top scientist told Universe Today.
“We have had some discussions with their science team, and there are some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.
“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” Jakosky said.
From guitar playing to quilting, it’s clear that the astronauts aboard the International Space Station have excellence in other interests besides their core jobs. NASA astronaut Karen Nyberg, shortly finishing up her nearly half-year mission in space as part of Expedition 35/36, is an accomplished crafter. She’s found time to make a dinosaur from spare scraps and severalheadbandsto keep her long hairfrom flying in her face. And now she wants you to join with her work.
Despite her skill in crafting, however, Nyberg says working in microgravity is quite the challenge. She keeps all her supplies in a ziploc so they don’t go flying in all directions when she’s not using them. A pile felt board keeps everything secured while she is working on a piece.
But measuring and cutting when you can’t lay something down means working takes a long, long time. That’s what makes this single nine-inch-by-nine-inch quilting block below so precious.
Nyberg says her work is “far from being a masterpiece”, but is inviting other quilters to share the metaphorical stage with her creation. Quilters anywhere in the world can make star pieces of their own and send it to the International Quilting Festival organizers for display in fall 2014. If all goes well, Nyberg expects to make an appearance to view the creation herself.
Here’s a short summary of the requirements (which you can read officially on this page):
– Have a star theme;
– 9.5 inches (24 centimeters) square;
– One block per person, signed on the front with a permanent marker marking name and location;
– Mail by Aug. 1, 2014 to “Star Block Challenge, Attn: Rhianna Griffin, 7660 Woodway Ste. 550, Houston, TX 77063.”
By the way, the full video of Nyberg explaining her sewing challenges makes you sympathize with how hard microgravity can be. Although the backflip she does at the end likely makes up for at least some of it, right?
The countdown has commenced and the excitement is building for India’s Mars Orbiter Mission (MOM) – which will conduct a detailed study of the Martian atmosphere and is the nation’s first ever mission to the Red Planet.
The 56 hour 30 min countdown started at 6:06 a.m. IST today (Nov. 3), according to an official statement from the Indian Space Research Organization (ISRO) leading to liftoff on Tuesday, Nov 5, from a seaside launch pad in Sriharikota, India.
MOM is the first of two new Mars orbiter science probes from Earth set to blast off for the Red Planet this November. Half a globe away, NASA’s MAVEN orbiter remains on target to launch barely two weeks after MOM on Nov. 18 – from the Florida Space Coast.
ISRO will broadcast the momentous MOM launch live at – starting at 14:00 hrs IST.
“The Launch Authorisation Board has approved & cleared the PSLV-C25/Mars Orbiter Mission launch on Nov 05, 2013 at 14:38 hrs IST (9:08 UTC, 4:08 a.m. EST)” from the state-of-the-art Satish Dhawan Space Centre SHAR, Sriharikota, located on India’s east coast in Andhra Pradesh state.
MOM is on schedule to lift off atop the powerful, extended XL version of India’s highly reliable four stage Polar Satellite Launch Vehicle (PSLV-C25).
Fueling of the PSLV-C25/Mars Orbiter Mission rocket stages is now in progress following a completely successful dress rehearsal and launch countdown exercise completed on Oct. 31.
“The filling of propellants into the Roll Control Thrusters as well as the Fourth stage of the PSLV C25 rocket [with mixed nitrogen oxides and monomethylhydrazine] is completed,” ISRO declared a short while ago.
During the dress rehearsal the vehicle systems were powered, the health was normal and the spacecraft & launch vehicle integrated level checks were completed.
Two tracking ships have been deployed to the Indian Ocean to relay critical in flight telemetry.
The 44 meter (144 ft) PSLV will launch MOM into an initially elliptical Earth parking orbit of 248 km x 23,500 km. A series of six orbit raising burns will eventually dispatch MOM on a trajectory to Mars around December 1.
Following a 300 day interplanetary cruise phase, the do or die Mars orbital insertion engine will fire on September 21, 2014 and place MOM into an 366 km x 80,000 km elliptical orbit.
MOM arrives about the same time as NASA’s MAVEN orbiter. They will significantly bolster Earth’s armada of five operational orbiters and surface rovers currently investigating the Red Planet.
MAVEN and MOM will “work together” to help solve the mysteries of Mars atmosphere, the chief MAVEN scientist told Universe Today.
“We plan to collaborate on some overlapping objectives,” Bruce Jakosky told me. Jakosky is MAVEN’s principal Investigator from the University of Colorado at Boulder.
The 1,350 kilogram (2,980 pound) MOM orbiter, also known as ‘Mangalyaan’, is the brainchild of ISRO.
‘Mangalyaan’ is outfitted with an array of five indigenous science instruments including a multi color imager and a methane gas sniffer to study the Red Planet’s atmosphere, morphology, mineralogy and surface features. Methane on Earth originates from both biological and geological sources.
MOM’s 15 kg (33 lb) science suite comprises:
MCM: the tri color Mars Color Camera images the planet and its two tiny moons, Phobos and Deimos
LAP: the Lyman Alpha Photometer measures the abundance of hydrogen and deuterium to understand the planets water loss process
TIS: the Thermal Imaging Spectrometer will map surface composition and mineralogy
MENCA: the Mars Exospheric Neutral Composition Analyser is a quadrapole mass spectrometer to analyze atmospheric composition
MSM: the Methane Sensor for Mars measures traces of potential atmospheric methane down to the ppm level.
Scientists will be paying close attention to whether MOM detects any atmospheric methane to compare with measurements from NASA’s Curiosity rover – which found ground level methane to be essentially nonexistent – and Europe’s upcoming 2016 ExoMarsTrace Gas Orbiter.
Although there are no NASA instruments on board MOM, NASA is providing key communications and navigation support to ISRO and MOM through the agency’s trio of huge tracking antennas in the Deep Space Network (DSN).
“At the point where we [MAVEN and MOM] are both in orbit collecting data we do plan to collaborate and work together with the data jointly,” MAVEN’s PI Jakosky told me.
“We agreed on the value of collaboration and will hold real discussions at a later time,” he noted.
India would become only the 4th nation or entity from Earth to survey Mars up close with spacecraft, following the Soviet Union, the United States and the European Space Agency (ESA)- if all goes well.
Past attempts to reach the Red Planet from both China and Japan have unfortunately failed.
Some observers speculate that India’s MOM mission will ignite a new Asian Space Race.
The $69 Million ‘Mangalyaan’ mission is expected to continue gathering measurements at the Red Planet for at least six months and hopefully much longer.
Learn more about MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations
Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
Technicians work inside the Orion crew module being built at Kennedy Space Center to prepare it for its first power on. Turning the avionics system inside the capsule on for the first time marks a major milestone in Orion’s final year of preparations before its first mission, Exploration Flight Test 1. Credit: Lockheed Martin Story and imagery updated[/caption]
KENNEDY SPACE CENTER, FL – Orion, the first NASA spaceship that will ever carry Earthlings to deep space destinations, has at last been “powered on” for the first time at the manufacturing facility at the Kennedy Space Center (KSC) where it’s the centerpiece of a beehive humming 24/7 with hi tech processing activities in all directions.
“Power On” marks a major milestone ahead of the maiden space bound Orion test flight dubbed “EFT-1” – now at T-Minus 1 year and counting!
NASA and prime contractor Lockheed Martin recently granted Universe Today an exclusive in depth inspection tour of the impressive Orion EFT-1 crew module, service module and associated hardware destined for the crucial unmanned test flight slated for liftoff from Cape Canaveral in September 2014.
“We are moving fast!” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive interview with Universe Today as we spoke beside the Orion EFT-1 spacecraft inside the clean room.
“We are bringing Orion to life. Lots of flight hardware has now been installed.”
“We are working 24 hours a day, 7 days a week,” Schneider told me.
Some 200 people are actively employed on building Orion by Lockheed Martin at the Kennedy Space Center.
“There are many significant Orion assembly events ongoing this year,” said Larry Price, Orion deputy program manager at Lockheed Martin, in an interview with Universe Today at Lockheed Space Systems in Denver.
“This includes the heat shield construction and attachment, power on, installing the plumbing for the environmental and reaction control system, completely outfitting the crew module, attached the tiles, building the service module and finally mating the crew and service modules (CM & SM),” Price told me.
I have been very fortunate to periodically visit Orion up close over the past year and half to evaluate the testing and assembly progress inside the Operations and Checkout Building at KSC where the vehicle is now rapidly coming together, since the bare bones pressure vessel arrived to great fanfare in June 2012.
For the first time Orion looked to my eyes like a real spaceship, rather than the backbone shell outfitted with hundreds of important test harnesses, strain gauges and wiring to evaluate its physical and structural integrity.
Engineers and technicians at KSC have removed the initial pressure testing gear and are now installing all the flight systems and equipment – such as avionics, instrumentation, flight computers, thrusters, wiring, plumbing, heat shield and much more – required to transform the initial empty shell into a fully functioning spacecraft.
“The Orion skeleton was here before. Now we are putting in all of the other systems,” Schneider explained to me.
“We are really busy.”
“So far over 66,000 Orion parts have been shipped to KSC from over 40 US states,” Price explained.
The heat shield was due to arrive soon and technicians were drilling its attachment ring holes as I observed the work in progress.
“The propulsion, environmental control and life support systems are now about 90% in. The ammonia and propylene glycol loops for the thermal control system are in. Many of the flight harnesses are installed.”
“All of the reaction control thrusters are in – fueled by hydrazine – as well as the two hydrazine tanks and a helium tank. Altogether there are 12 hydrazine pods with two thrusters each,” Schneider elaborated.
The power distribution unit (PDU) – which basically functions as Orion’s computer brains – was installed just prior to my visit. All four PDU’s – which issue commands to the vehicle – were built by Honeywell.
Technicians were actively installing fiber optic and coaxial cables as I watched. They also were conducting leak tests on the environmental control coolant (ECLS) systems which had to be completed before the ‘power on’ testing could begin – in order to cool the avionics systems.
Thermal protection system (TPS) tiles were being bonded to the back panels which ring Orion. The TPS panels get attached early in 2014.
“This is real stuff,” said Schneider gleefully.
NASA says that “the preliminary data indicate Orion’s vehicle management computer, as well as its innovative power and data distribution system — which use state-of-the-art networking capabilities — performed as expected” during the initial crew module power on.
About two months or so of power on functional testing of various systems will follow.
Just like the configuration used in the Apollo era, the Orion crew module will sit atop a service module – and that work is likewise moving along at a rapid clip.
“The Orion service module (SM) is also almost complete,” Schneider said as he showed me the service module structure.
“Structurally the SM is 90% done. The active thermal control system is in and all the fluid systems are welded in and pressure tested.”
Orion EFT-1 will blastoff atop a mammoth United Launch Alliance Delta IV Heavy rocket – the most powerful booster in America’s arsenal since the shuttle’s retirement in 2011.
The crew module and service module (CM/SM) will be mated inside the O&C and then be placed onto a mission adapter that eventually attaches to the top of the Delta IV Heavy booster.
They will be mated at the exact same spot in the O&C Building where the Apollo era command and service modules were stacked four decades ago.
Currently, the schedule calls for the Orion CM/SM stack to roll out to Kennedy’s Payload Hazardous Services Facility (PHSF) for servicing and fueling late this year, said Larry Price.
After that the CM/SM stack is transported to the nearby Launch Abort System Facility (LASF) for mating to the emergency Launch Abort System (LAS).
All that work could be done around March 2014 so that ground operations preparing for launch can commence, according to Price.
“In March 2014 we’ll be ready for ground ops. The normal launch processing flow starts in June 2014 leading to Orion’s launch from pad 37 in September 2014.”
“It’s very exciting and a tribute to the NASA and contractor teams,” Price said.
The 2014 uncrewed flight will be loaded with a wide variety of instruments to evaluate how the spacecraft behaves during launch, in space and then through the searing heat of reentry.
The two-orbit, four- hour flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.
Although the mission will only last a few hours it will be high enough to send the vehicle plunging back into the atmosphere and a Pacific Ocean splashdown to test the craft and its heat shield at deep-space reentry speeds of 20,000 mph and endure temperatures of 4,000 degrees Fahrenheit – like those of the Apollo moon landing missions.
The EFT-1 mission will provide engineers with critical data about Orion’s heat shield, flight systems and capabilities to validate designs of the spacecraft, inform design decisions, validate existing computer models and guide new approaches to space systems development. All these measurements will aid in reducing the risks and costs of subsequent Orion flights before it begins carrying humans to new destinations in the solar system.
“The Orion hardware and the Delta IV Heavy booster for the EFT-1 launch are on target for launch in 2014,” Scott Wilson, NASA’s Orion Manager of Production Operations, told Universe Today in an interview.
Learn more about Orion, MAVEN, Mars rovers and more at Ken’s upcoming presentations
Nov 14-19: “MAVEN Mars Launch and Curiosity Explores Mars, Orion and NASA’s Future”, Kennedy Space Center Quality Inn, Titusville, FL, 8 PM
Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM
SpaceX — the maker and operator of the Dragon spacecraft that runs periodic cargo flights to the International Space Station — has signed a contract to research, develop and test Raptor methane rocket engines at the NASA Stennis Space Center in southern Mississippi.
The California-based company plans to use the E-2 test stand at Stennis, which is able to support both vertical and horizontal rocket engine tests. (Here are some more technical details from NASA on its capabilities.)
“We have been talking with SpaceX for many years about working at Stennis Space Center, and I am pleased to officially welcome them to our Mississippi family. I hope this is just the beginning of their endeavors in our state,” stated U.S. Senator Thad Cochran (R-Miss) in response to the news. A press release from his office said the presence of the private space company would boost jobs in the region.
There’s little information on SpaceX’s website about what the Raptor engine is or specific development plans, but Space News reports that it would be used for deep-space missions. SpaceX CEO Elon Musk has mentioned the engine previously when talking about Mars missions, according to multiple media reports.
“We are looking to test the whole engine at Stennis, but the first phase starts with the components,” SpaceX spokesperson Emily Shanklin said in the Space News report. “The E-2 stand at Stennis is big enough for components, but we would need a bigger stand for the whole Raptor.”
The two sides are reportedly hashing out a Space Act agreement to establish user fees and other parameters. Once that’s finished, the testing will begin, perhaps as early as next year. SpaceX currently does most of its rocket testing in Texas.
Other parties in the agreement — which was signed by Governor Phil Bryant — include the Mississippi Development Authority, the Harbor Commission and Hancock County Port.
Left landing gear tire visibly failed to deploy as private Dream Chaser spaceplane approaches runway at Edwards Air Force Base, Ca. during first free flight landing test on Oct. 26, 2013 – in this screenshot. Credit: Sierra Nevada Corp. Watch approach and landing test video below[/caption]
The privately built Dream Chaser ‘space taxi’ that was damaged after landing during its otherwise successful first ever free-flight glide test on Saturday, Oct 26, is repairable and the program will live on to see another day, says the developer Sierra Nevada Corp., (SNC).
The Dream Chaser engineering test vehicle skidded off the runway and landed sideways when its left landing gear failed to deploy at the last second during touchdown on runway 22L at Edwards Air Force Base, Calif., said Mark Sirangelo, corporate vice president for SNC Space Systems, at a media teleconference.
The primary goal of the Oct. 26 drop test was to see whether the Dream Chaser mini-shuttle would successfully fly free after being released by an Erickson Air-Crane from an altitude of over 12,000 feet and glide autonomously for about a minute to a touchdown on the Mojave desert landing strip.
“We had a very successful day with an unfortunate anomaly at the end of the day on one of the landing gears,” said Sirangelo.
Dream Chaser is one of three private sector manned spaceships being developed with funding from NASA’s commercial crew program known as Commercial Crew Integrated Capability (CCiCap) initiative to develop a next-generation crew transportation vehicle to ferry astronauts to and from the International Space Station – totally lost following the space shuttle retirement.
The unmanned approach and landing test (ALT) accomplished 99% of its objectives and was only marred by the mechanical failure of the left tire to drop down and deploy for a safe and smooth rollout.
SNC released a short 1 minute video of the test flight – see below – showing the helicopter drop, dive, glide and flare to touchdown. The failure of the landing gear to drop is clearly seen. But the video cuts away just prior to touchdown and does not show the aftermath of the skid or damage to the vehicle.
“The Dream Chaser spacecraft automated flight control system gently steered the vehicle to its intended glide slope. The vehicle adhered to the design flight trajectory throughout the flight profile. Less than a minute later, Dream Chaser smoothly flared and touched down on Edwards Air Force Base’s Runway 22L right on centerline,” said SNC in a statement with the video.
The vehicle is “repairable and flyable again,” Sirangelo noted.
More good news is that the ships interior was not damaged and the exterior can be fixed.
Dream Chaser measures about 29 feet long with a 23 foot wide wing span and is about one third the size of NASA’s space shuttle orbiters.
Since there was no pilot in the cockpit no one was injured. That also meant that no evasive action could be taken to drop the gear.
“We don’t think it’s actually going to set us back,” Sirangelo noted. “In some interesting way, it might actually accelerate it.
NASA’s commercial crew initiative aims at restoring America’s manned spaceflight access to low Earth orbit and the International Space Station (ISS) – perhaps by 2017 – following the forced shutdown of the Space Shuttle program in 2011.
Until an American commercial space taxi is ready for liftoff, NASA is completely dependent on the Russian Soyuz capsule for astronaut rides to the ISS at a cost of roughly $70 million per seat.
Because Congress continues to significantly cut NASA’s budget further delays can be expected – inevitably meaning more payments to Russia and no savings for the American tax payer.
SNC was awarded $227.5 million in the current round of NASA funding and must successfully complete specified milestones, including up to five ALT drop tests to check the aerodynamic handling in order to receive payment.
This particular vehicle had been intended to fly two test flights. Further drop tests were planned with a new test vehicle to be constructed.
The way forward is being evaluated.
“We don’t think there is going to be any significant delay to the program as a result of this. This was meant to be a test vehicle with a limited number of flights,” Sirangelo said.
SNC and NASA have assembled a team to investigate the cause of the anomaly.
“SNC cannot release any further video at this time,” said SNC.
Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the space shuttle.