Awesome Photo: Aurora, Airglow, City Lights and Shining Stars

Photo taken by ESA astronaut Luca Parmitano on Sept. 5, 2013 (ESA/NASA)

Italian astronaut Luca Parmitano shares a lot of fantastic photos taken from his privileged position 260 miles up aboard the Space Station, orbiting the planet 16 times a day. This is his latest, a stunning view of nighttime city lights spread out beneath a glowing dome of ghostly airglow and shimmering aurorae, with a backdrop of brightly shining stars. The dark silhouette of a solar array is in the foreground at right.

And in case you were wondering, yes, astronauts certainly can see stars while in space. A lot of them, in fact. (Except up there, they don’t twinkle… but they’re no less beautiful!)

“Every time we look into the sky and we admire the same stars, we share the same experience with all those who still know how to dream.”

– Luca Parmitano

Luca Parmitano is the first of ESA’s new generation of astronauts to fly into space. The current mission, Volare, is ESA’s fifth long-duration Space Station mission. During his six-month-long stay aboard the ISS, Luca has been conducting research for ESA and international partners as well as taken many photographs of our planet, sharing them on Twitter, Flickr, and the Volare mission blog.

See this and more photos taken by Luca on the Volare Flickr page here.

Image credit: ESA/NASA

LADEE Successfully Enters Lunar Orbit on Oct. 6 Amidst Government Shutdown

NASA’s LADEE lunar orbiter will firing its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA

NASA’s LADEE lunar orbiter will fire its main engine on Oct. 6 to enter lunar orbit in the midst of the US government shutdown. Credit: NASA
See the orbit insertion animation below[/caption]

Update Oct 6: LADEE fired its main engine this morning (Oct. 6) at 6:57 a.m. EDT and successfully achieved lunar orbit. Headline/story revised.

NASA’s trailblazing LADEE lunar spacecraft is set to ignite its main engine and enter lunar orbit on Sunday morning, Oct. 6 – if all goes well – following the spectacular Sept. 6 night launch from NASA’s Virginia spaceport.

And in a happenstance no one could have foreseen, the critical engine firing comes smack in the midst of the political chaos reigning in Washington D.C. that has shut down the US government, furloughed 97% of NASA’s employees, and temporarily threatened the upcoming launch of NASA’s next mission to Mars – the MAVEN orbiter.

However, orbital mechanics waits for no one!

A source indicated that LADEE (Lunar Atmosphere and Dust Environment Explorer) mission operations were continuing leading up to the engine burn.

But there will be virtually a complete news blackout and little public information released due to the legal requirements of the shutdown.

NASA websites, which are amongst the most heavily trafficked, as well as NASA TV have been shuttered during the shutdown and the press office is likewise furloughed.

So it was do or die for LADEE with the four minute long braking thruster firing set to start on Oct. 6 at 6:57 a.m. EDT (10:57 UTC), so that the couch sized spacecraft is captured by the Moon’s gravity.

Fortunately, LADEE was deemed “essential” and a small team of engineers is working right now at mission control at NASA’s Ames Research Center in California.

If the had burn failed, LADEE will swing by the moon with no hope of returning. And this is being accomplished with a skeleton crew thanks to the government shutdown.

Here’s a video animation of orbital capture at the moon:


Video caption: This video shows the LADEE lunar orbit capture scheduled to take place at 10:57 UTC on 6 Oct. 2013. The main view is an Earth centered perspective showing the effect of the Moon’s gravity on the orbit and then how a Lunar orbit looks from the Earth. The inset view shows the same trajectory from the perspective of the Moon.

Dubbed LOI-1 (Lunar Orbit Insertion burn 1),it is designed to begin with LADEE’s arrival at the Moon after three and a half orbits of the Earth. It will change the spacecrafts velocity by 329.8 meters/sec.

LOI-1 is the first of three main engine maneuvers and will place LADEE into a 24 hour retrograde orbit, with a periselene altitude of 590 km (369 mi).

LOI-2 follows on Oct. 9 to place LADEE into a 4 hour orbit with a 250 km (156 mi) periselene altitude.

Finally LOI-3 on Oct. 12 places LADEE into a roughly circular 250 km (156 mi) orbit that initiates a 30 day commissioning phase as well as experiments using the on-board Lunar Laser Communications Experiment (LLCD) before the start of the missions science phase.

LADEE thundered to space atop the maiden launch of the five stage Minotaur V rocket on Sept. 6, blazing a spectacular trail to orbit from a beachside launch pad at NASA’s Wallops Flight Facility in Virginia.

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com

The blastoff was easily visible to tens of millions of thrilled spectators up and down the eastern seaboard stretching from Maine to the Carolinas as a result of crystal clear skies and the night time liftoff.

The LADEE liftoff at 11:27 p.m. EDT marked the first space probe of any kind ever launched beyond Earth orbit from NASA Wallops, as well as being the first planetary science mission ever launched from Wallops.

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

Eventually the spacecraft will fly in a very low equatorial science orbit of about 50 kilometers (31 mi) altitude above the moon that will require considerable fuel to maintain. The science mission duration is approximately 100 days, limited by the amount of maneuvering fuel.

The 844 pound (383 kg) robot explorer was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

It is equipped with a trio of science instruments whose purpose is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface.

The goal of the $280 Million mission is to gain a thorough understanding of long-standing unknowns about the tenuous atmosphere, dust and surface interactions that will help scientists understand other planetary bodies as well.

The probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Pete Worden told Universe Today in an interview. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

Stay tuned here for continuing LADEE news.

Ken Kremer

…………….

Learn more about LADEE, MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, the Gov’t shutdown and more at Ken’s upcoming presentations

Oct 8: “NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”& “Curiosity and MAVEN updates”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

LADEE_Poster_01

NASA’s MAVEN Mars orbiter granted ‘Emergency Exemption’ to Resume Processing during Government Shutdown

Technicians resumed spacecraft preparations for NASA’s MAVEN orbiter today (Oct. 3) towards meeting the hoped for Nov. 18 launch to Mars after receiving an ‘emergency exemption’ from forced furloughs. The Oct. 1 US Government shutdown had stopped all work on MAVEN and other NASA missions. Credit: Ken Kremer/kenkremer.com

Technicians resumed spacecraft preparations for NASA’s MAVEN orbiter today (Oct. 3) aimed towards meeting the hoped for Nov. 18 launch to Mars after receiving an ‘emergency exemption’ from forced furloughs. The Oct. 1 US Government shutdown had stopped all work on MAVEN and various other NASA missions. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

Following a three day period of complete work stoppage due to the US Government Shutdown, technicians late today (Oct. 3) resumed critical launch preparations for NASA’s next mission to Mars, the MAVEN orbiter. And it’s not a moment too soon, because the consequences of a continued suspension would have been absolutely dire for the entire future of Mars exploration!

“We have already restarted spacecraft processing at the Kennedy Space Center (KSC) today,” Prof. Bruce Jakosky, MAVEN’s chief scientist told Universe Today in a special new mission update today.

Today, Oct 3, top NASA managers have “determined that MAVEN meets the requirements allowing an emergency exception relative to the Anti-Deficiency Act,” Jakosky told me.

MAVEN had been scheduled to blast off for the Red Planet on Nov.18 atop an Atlas V rocket from the Florida Space Coast until those plans were derailed by the start of the government shutdown that began at midnight, Tuesday (Oct. 1) due to senseless and endless political gridlock in Washington, DC.

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1.  Spacecraft preps had now resumed on Oct. 3. MAVEN  was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space.  Credit: Ken Kremer/kenkremer.com
The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1. Spacecraft preps had now resumed on Oct. 3. MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space. Credit: Ken Kremer/kenkremer.com

About 97% of NASA’s workforce had been immediately furloughed on Oct. 1 and ordered not to go to work – along with some 800,000 other Federal employees – when their work was deemed “non-essential” despite maintaining spacecraft valued at tens of billions of dollars.

This left only skeleton crews manning Mission Control’s for dozens and dozens of ongoing space missions and the International Space Station (ISS)

Despite the work hiatus, the team is still hoping to achieve an on time launch or soon thereafter.

“We are working toward being ready to launch on Nov. 18,” Jakosky told me, as MAVEN’s principal Investigator of the University of Colorado at Boulder.

“We will continue to work over the next couple of days to identify any changes in our schedule or plans that are necessary to stay on track.”

How realistic is the original Nov. 18 launch date, I asked?

“We think it’s very feasible,” Jakosky responded.

“With our having been shut down for only a few days, we should be back on track toward this date quickly.”

The processing team at KSC lost three days of the nine days of margin in the schedule.

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1.  Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN  was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space.  Credit: Ken Kremer/kenkremer.com
The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter was threatened by the US Federal Government shutdown when all launch processing work ceased on Oct. 1. Spacecraft preps had now resumed on Oct. 3 after receiving an emergency exemption. MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through space. Credit: Ken Kremer/kenkremer.com

Where does the team pick up with work?

“With the facility now back up and running, we more or less pick up right where we left off,” Jakosky explained

“We are reworking the schedule to make sure our activities are integrated together and that people don’t have to be in two places at once.”

Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Magnetometer science instrument boom juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The nominal launch window for NASA’s $650 Million MAVEN (Mars Atmosphere and Volatile EvolutioN Mission) mission to study the Red Planet’s atmosphere only extends about three weeks until Dec. 7.

And he said the team will do whatever necessary, including overtime, to launch MAVEN to the Red Planet by Dec. 7.

“The team is committed to getting to the launch pad at this opportunity, and is willing to work double shifts and seven days a week if necessary. That plus the existing margin gives us some flexibility. “

Interestingly, the ‘’emergency exemption” was granted because of MAVEN’s additional secondary role as a communications relay for NASA’s intrepid pair of surface rovers – Curiosity and Opportunity – and not because of its primary science mission.

“MAVEN is required as a communications relay in order to be assured of continued communications with the Curiosity and Opportunity rovers,” Jakosky explained.

NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

Although NASA has two functioning orbiters circling the Red Planet at this moment, they are getting old, are far beyond their original design lifetimes and suffer occasional glitches. And there is no guarantee of continued operation.

“The rovers are presently supported by Mars Odyssey launched in 2001 and Mars Reconnaissance Orbiter launched in 2005.”

“Launching MAVEN in 2013 protects the existing assets that are at Mars today,” Jakosky told me.

If Mars Odyssey and/or Mars Reconnaissance Orbiter were to fail, then the rovers mission operations would be severely curtailed and could even be terminated prematurely – in a worst case scenario.

And without MAVEN, there would be no point in launching NASA’s planned 2020 rover since there would be no way to transmit the science data back to Earth.

“There is no NASA relay orbiter at Mars planned post-MAVEN,” Jakosky noted.

If MAVEN has to launch later in December 2013 or is forced to be postponed to the next launch window opportunity in 2016, both the communications relay capability and the missions atmospheric science objectives would have been very badly impacted.

“A delay in the launch date by more than a week past the end of the nominal launch period, or a delay of launch to 2016, would require additional fuel to get into orbit.”

“This would have precluded having sufficient fuel for MAVEN to carry out its science mission and to operate as a relay for any significant time,” Jakosky elaborated.

“Our nominal launch period runs from 18 November through 7 December, and we can launch as late as about 15 December without a significant impact on our combined science and relay activities.”

From a purely science standpoint, 2013 is the best time to launch MAVEN to accomplish its science objectives.

“Although the exception for MAVEN is not being done for science reasons, the science of MAVEN clearly will benefit from this action.”

“Launching in 2013 allows us to observe at a good time in the eleven-year solar cycle.”

“MAVENS’s goal is determining the composition of the ancient Martian atmosphere and when it was lost, where did all the water go and how and when was it lost,” said Jakosky.

Stay tuned here for continuing MAVEN and government shutdown updates.

And watch for my articles about critical operations related to LADEE on Oct 6 and JUNO on Oct. 9. The government shutdown negatively impacts these missions and others as well.

Ken Kremer

…………….

Learn more about MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, LADEE, the Gov’t shutdown and more at Ken’s upcoming presentations

Oct 8: “NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”& “Curiosity and MAVEN updates”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Best Ever Astronaut ‘Selfies’

Clay Anderson's shadow during a spacewalk he took in July 2007, while he was part of Expedition 15. Credit: NASA

“Talk about a selfie!” wrote former astronaut Clay Anderson on Twitter yesterday (Oct. 1). He posted that comment along with a favorite photo from Expedition 15, when he was standing in restraints on the robotic Canadarm2. Off in the distance, he saw his shadow against the solar array panels of a Soyuz spacecraft.

That got us thinking — what are the best astronaut selfies? Below are some of our favourites (some intentional, some not) from over the years. Any that we have missed? Let us know in the comments!

JAXA astronaut Aki Hoshide takes a self-portrait during Expedition 32 in September 2012. "Visible in this outworldly assemblage is the Sun, the Earth, two portions of a robotic arm, an astronaut's spacesuit, the deep darkness of space, and the unusual camera taking the picture," NASA wrote. Credit: NASA
JAXA astronaut Aki Hoshide takes a self-portrait during Expedition 32 in September 2012. “Visible in this outworldly assemblage is the Sun, the Earth, two portions of a robotic arm, an astronaut’s spacesuit, the deep darkness of space, and the unusual camera taking the picture,” NASA wrote. Credit: NASA

Apollo 12's Pete Conrad is visible in the helmet of crewmate Al Bean during their moon landing in November 1969. Credit: NASA
Apollo 12’s Pete Conrad is visible in the helmet of crewmate Al Bean during their moon landing in November 1969. Credit: NASA
Expedition 15 crewmember and NASA astronaut Clay Anderson nabbed this self-portrait during a spacewalk in August 2007. Credit: NASA
Expedition 15 crewmember and NASA astronaut Clay Anderson nabbed this self-portrait during a spacewalk in August 2007. Credit: NASA
Self-portrait of Expedition 36/37 European Space Agency astronaut Luca Parmitano during a July 2013 spacewalk. Credit: NASA
Self-portrait of Expedition 36/37 European Space Agency astronaut Luca Parmitano during a July 2013 spacewalk. Credit: NASA
Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA
Al Shepard raises the American flag during Apollo 14 in February 1971. Below is the shadow of his crewmate, Ed Mitchell. Credit: NASA
NASA astronaut Mike Fossum grabbed this self-portrait in July 2011, with space shuttle Atlantis visible in the background. Credit: NASA
NASA astronaut Mike Fossum grabbed this self-portrait in July 2011, with space shuttle Atlantis visible in the background. Credit: NASA
NASA astronaut Joe Tanner grabs a helmet shot during a spacewalk on STS-115 in September 2006. Credit: NASA
NASA astronaut Joe Tanner grabs a helmet shot during a spacewalk on STS-115 in September 2006. Credit: NASA
Gemini 12 astronaut Buzz Aldrin snaps a picture of himself during a spacewalk in November 1966. Credit: NASA
Gemini 12 astronaut Buzz Aldrin snaps a picture of himself during a spacewalk in November 1966. Credit: NASA
Mike Fossum, a mission specialist on STS-121, took this shot in July 2006. In the visor you can see space shuttle Discovery, part of the International Space Station and fellow crewmate Piers J. Sellers. Credit: NASA
Mike Fossum, a mission specialist on STS-121, took this shot in July 2006. In the visor you can see space shuttle Discovery, part of the International Space Station and fellow crewmate Piers J. Sellers. Credit: NASA
NASA astronaut Scott Parazynski takes a self-portrait during STS-120, which ran from October to November 2007. Credit: NASA
NASA astronaut Scott Parazynski takes a self-portrait during STS-120, which ran from October to November 2007. Credit: NASA
Gemini 10 astronaut Mike Collins in July 1966. Credit: NASA/Arizona State University
Gemini 10 astronaut Mike Collins in July 1966. Credit: NASA/Arizona State University
Expedition 6's Don Pettit takes a portrait in January 2003. Also visible in the picture (upper right) is his crewmate, Ken Bowersox. Credit: NASA
Expedition 6’s Don Pettit takes a portrait in January 2003. Also visible in the picture (upper right) is his crewmate, Ken Bowersox. Credit: NASA
A teensy-tiny Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA
A teensy-tiny Neil Armstrong is visible in the helmet of Buzz Aldrin during the Apollo 11 landing in July 1969. Credit: NASA

Is Iran REALLY Planning on Sending a Cat Into Space?

Space Cat

“I’m going where?”

No, this isn’t The Onion… as a concerned consumer of all that is space news, you have indeed arrived at the cyber-doorstep of Universe Today.

I’ll admit though, that we did do a double take about a week back when a peculiar claim came our way via the Iranian Space Agency. Yes, there is an Iranian Space Agency, and it’s kind of frightening that they remain open for business while NASA is largely shutdown.

In mid-September, senior Iranian space program official Mohammad Ebrahimi issued a statement that Iran will attempt another bio-capsule launch “within 45 days”. The unwilling occupant: a Persian cat.

Apparently, a rabbit, a mouse, and another “Space Monkey” were also in the running. Iran’s space program is shrouded in secrecy, and most launches are only announced after they’ve been conducted. This is a convenient political strategy for hiding launch failures that harkens back to the early days of the Cold War. You’re right in guessing that the Iranian Space Agency probably won’t hold a Tweetup for this one. Many western analysts see the Iran’s space effort as a thinly veiled attempt to develop its long range ballistic missile technology. Along with Israel, Iran remains the only Middle Eastern country with the proven technology to conduct indigenous satellite launches.

Iran has stated that it hopes to put an astronaut in orbit by 2019.  The Pishgam (or “Pioneer” in Farsi) 2 bio-capsule launch could occur from a mobile launcher at Semnan Space Center as early as October 15th.  Satellite sleuths are also expecting activity at Semnan to pick up this month, with the possible launch of SharifSat atop a Safir 1-B rocket, and Iran’s Toulou satellite aboard a rumored new launch vehicle.

Iran successfully became a space-faring nation with the launch of its 27 kilogram Omid satellite on February 2nd, 2009. It isn’t immediately clear if the upcoming launch will be an orbital launch or a sub-orbital ballistic shot. If Pisgam-2 achieves orbit, said “Space Cat” would become the first feline to circle the Earth. If recovery is attempted —again, Iran is always nebulous as to their intentions— it would also be the first time they’ve achieved a return from orbit.

But is “Space Cat” even a reality?

Iran has been caught red-handed before playing a shell game with the media in terms of its space program. Earlier this year, “Monkey-gate” erupted, as before-and-after images from the Pisgam-1 bio-capsule suborbital launch clearly showed two different monkeys before and after the flight:

Monkey business? Iran displayed a decidedly different looking monkey before, during, and after launch earlier this year! (Credit: Iran News Agency).
Monkey business? Iran displayed a decidedly different looking monkey before, during, and after launch earlier this year! (Credit: Iran News Agency).

Clearly, Iran and other ‘Axis of Evil’ countries definitely need to sharpen their Photoshop, or at least their monkey-switching skills. Either said monkey launch never actually occurred, or (more likely), the unwilling Iranian space primate never survived the flight.

Perhaps this is why Iran decided on a feline occupant this time around, for possible ease of replacement?

PETA, the People for the Ethical Treatment of Animals, have also issued a statement concerning the impending launch of “Space Cat” by Iran, calling the action an “archaic experiment, a throwback to the primitive techniques of the 1950’s.”

NASA did entertain the idea of "Catronauts" early in the space program. (Credit: NASA).
NASA did entertain the idea of “Catronauts” early in the space program. (Credit: NASA).

The U.S. and the Soviet Union launched animals into space as a prelude to human spaceflight. On November 3rd, 1957, Laika the dog became the first animal to orbit the Earth. Laika perished is space due to overheating, as did several unfortunate monkeys that were launched on the first US ballistic tests.

Russia still conducts the occasional launch of animals into space, including the Bion-1M “Space Zoo” mission earlier this year. The Bion missions allow for scientists to dissect the specimens afterwards to study the effects of a month in zero-g, something you can’t do with humans.

And the U.S. did once fly cats in zero-g aboard its Convair C-131 “Vomit Comet” aircraft, as can be seen in this bizarre video:

But the first cat in space was actually launched by France atop a Veronique AGI sub-orbital rocket 50 years ago this month on October 18th, 1963. It would be ironic if Iran conducted it launch this month on the anniversary! The story goes the Felix, the original cat slated for the flight, escaped just prior to launch from the Sahara desert Hammaguir test site in Algeria, and was replaced by the “backup crew,” a female cat named Felicette. Felicette survived the 15 minute flight, reaching an apogee of 217 kilometres. A follow-up launch of a second cat six days later wasn’t so lucky.

Felicette (left) and Felix in publicity shots prior to launch.  Note the cranial electrode (!) implants.
Felicette (left) and Felix in publicity shots prior to launch. Note the cranial electrode (!) implants. (Credit: Marjorie-art Voila.net)

As always, Iran’s intentions for the future of its space program remain hidden. Their current launch capabilities remain limited, and are a far cry from being able to hoist a human into orbit anytime soon. If the launch of “Space Cat” does come to pass this month, it’ll be over protests from animal rights groups and the general public. Hey, didn’t the former Iranian president Mahmoud Ahmadinejad  say earlier this year after “Monkey-Gate” that he was willing to be “The first Iranian to be sacrificed by the scientists of my country and go into space” as the first Iranian astronaut? Is he really going to let Space Cat upstage him?

Felix and Felicette where also commemorated on several African postage stamps. (Credit:
Felix and Felicette where also commemorated on several African postage stamps. (Credit: Majorie-art.voila.net).

Read a great synopsis of the history of felines in space from Heather Archulletta @Pillownaut.

Government Shutdown Stops MAVEN Work; Threatens NASA Mars Launch!

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter is threatened by the today’s US Federal Government shutdown. Launch processing work has now ceased! Spacecraft preps had been in full swing when MAVEN was unveiled to the media, including Universe Today, inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. Credit: Ken Kremer/kenkremer.com

The upcoming Nov. 18 blastoff of NASA’s new MAVEN Mars orbiter is threatened by today’s US Federal Government shutdown. Launch processing work has now ceased! Spacecraft preps had been in full swing when MAVEN was unveiled to the media, including Universe Today, inside the clean room at the Kennedy Space Center on Sept. 27, 2013. With solar panels unfurled, this is exactly how MAVEN looks when flying through interplanetary space and orbiting Mars.
Credit: Ken Kremer/kenkremer.com[/caption]

KENNEDY SPACE CENTER, FL – The upcoming Nov. 18 blastoff of NASA’s next mission to Mars – the “breathtakingly beautiful” MAVEN orbiter – is threatened by today’s (Oct. 1) shutdown of the US Federal Government. And the team is very “concerned”, although not yet “panicked.”

MAVEN’s on time launch is endangered by the endless political infighting in Washington DC. And the bitter gridlock could cost taxpayers tens of millions of dollars or more on this mission alone!

Why? Because launch preparations at NASA’s Kennedy Space Center (KSC) have ceased today when workers were ordered to stay home, said the missions top scientist in an exclusive to Universe Today.

“MAVEN is shut down right now!” Prof. Bruce Jakosky, MAVEN’s principal Investigator, of the University of Colorado at Boulder, told Universe Today in an exclusive post shutdown update today.

“Which means that civil servants and work at government facilities [including KSC] have been undergoing an orderly shutdown,” Jakosky told me.

The nominal interplanetary launch window for NASA’s $650 Million MAVEN (Mars Atmosphere and Volatile EvolutioN Mission) mission to study the Red Planet’s upper atmosphere only extends about three weeks until Dec. 7.

If MAVEN misses the window of opportunity this year, liftoff atop the Atlas V rocket would have to be postponed until early 2016 because the Earth and Mars only align favorably for launches every 26 months.

Any launch delay could potentially add upwards of tens to hundreds of millions of dollars in unbudgeted costs to maintain the spacecraft and rocket – and that’s money that NASA absolutely does not have in these fiscally austere times.

MAVEN spacecraft preps for Nov. 18 launch to Mars were on schedule when it was unveiled to the media inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. The Oct. 1 US Government shutdown has stopped all work. Credit: Ken Kremer/kenkremer.com
MAVEN spacecraft preps for Nov. 18 launch to Mars were on schedule when it was unveiled to the media inside the clean room at the Kennedy Space Center on Sept. 27, 2013. The Oct. 1 US Government shutdown has stopped all work. Credit: Ken Kremer/kenkremer.com

MAVEN and much of NASA are not considered “essential” – despite having responsibility for hundreds of ongoing mission operations costing tens of billions of dollars that benefit society here on Earth. So about 97% of NASA employees were furloughed today.

What’s happening with the spacecraft right now?

“The hardware is being safed, meaning that it will be put into a known, stable, and safe state,” Jakosky elaborated.

Team members say there are about nine days of margin built into the processing schedule, which still includes fueling the spacecraft.

“We’ll turn back on when told that we can. We have some margin days built into our schedule,” Jakosky told me.

“We’re just inside of 7 weeks to launch, and every day is precious, so we’re certainly as anxious as possible to get back to work as quickly as possible.

And he said the team will do whatever necessary, including overtime, to launch MAVEN to the Red Planet by Dec. 7.

“The team is committed to getting to the launch pad at this opportunity, and is willing to work double shifts and seven days a week if necessary. That plus the existing margin gives us some flexibility. “

“That’s why I’m concerned but not yet panicked at this point.”

But a lengthy delay would by problematical.

“If we’re shut down for a week or more, the situation gets much more serious,” Jakosky stated.

Until today, all of the spacecraft and launch preparations had been in full swing and on target – since it arrived on Aug. 2 after a cross country flight from the Colorado assembly facility of prime contractor Lockheed Martin.

Indeed it was all smiles and thumbs up when I was privileged to personally inspect MAVEN inside the clean room at KSC a few days ago on Friday, Sept 27 during a media photo opportunity day held for fellow journalists.

Until now, “MAVEN was on schedule and under budget” said Jakosky in an interview as we stood a few feet from the nearly fully assembled spacecraft.

See my MAVEN clean room photos herein.

NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the cleanroom at the Kennedy Space Center on sept 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the clean room at the Kennedy Space Center on sept 27, 2013. MAVEN was due to launch to Mars on Nov. 18, 2013 from Florida – before the Oct. 1 government shutdown derailed plans. Credit: Ken Kremer/kenkremer.com

And in an ultra rare viewing opportunity, the solar panels were fully unfurled.

“The solar panels look exactly as they will be when MAVEN is flying in space and around Mars.”

“To be here with MAVEN is breathtaking,” Jakosky told me. “

“Its laid out in a way that was spectacular to see!”

Magnetometer science instrument juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Magnetometer science instrument juts out from MAVEN solar panel during launch processing inside the clean room at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

If absolutely necessary it might be possible to extend the launch window a little bit beyond Dec. 7, but its uncertain and would require precise new calculations of fuel margins.

“The nominal 20-day launch period doesn’t take into account the fact that our actual mass is less than the maximum allowable mass,” Jakosky explained.

“The last day we can launch has some uncertainty, because it also requires enough fuel to get into orbit before our mission would begin to be degraded.”

MAVEN team members, including chief scientist Bruce Jakosky (2nd from left)  pose with spacecraft inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. Credit: Ken Kremer/kenkremer.com
MAVEN team members, including chief scientist Bruce Jakosky (2nd from left) pose with spacecraft inside the clean room at the Kennedy Space Center on Sept. 27, 2013. Credit: Ken Kremer/kenkremer.com

It sure was breathtaking for me and all the media to stand beside America’s next Mission to Mars. And to contemplate it’s never before attempted science purpose.

“MAVENS’s goal is determining the composition of the ancient Martian atmosphere and when it was lost, where did all the water go and how and when was it lost,” said Jakosky.

That’s the key to understanding when and for how long Mars was much more Earth-like compared to today’s desiccated Red Planet.

Following a 10 month interplanetary voyage, MAVEN would fire thrusters and brake into Mars orbit in September 2014, joining NASA’s Red Planet armada comprising Curiosity, Opportunity, Mars Odyssey and Mars Reconnaissance Orbiter.

Lets all hope and pray for a short government shutdown – but the outlook is not promising at this time.

Stay tuned.

Ken Kremer

…………….

Learn more about MAVEN, Curiosity, Mars rovers, Cygnus, Antares, SpaceX, Orion, LADEE, the Govt shutdown and more at Ken’s upcoming presentations

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Navigating the Cosmos by Quasar

A quasar resides in the hub of the nearby galaxy NGC 4438. Credit: NASA/ESA, Jeffrey Kenney (Yale University), Elizabeth Yale (Yale University)

50 million light-years away a quasar resides in the hub of galaxy NGC 4438, an incredibly bright source of light and radiation that’s the result of a supermassive black hole actively feeding on nearby gas and dust (and pretty much anything else that ventures too closely.) Shining with the energy of 1,000 Milky Ways, this quasar — and others like it — are the brightest objects in the visible Universe… so bright, in fact, that they are used as beacons for interplanetary navigation by various exploration spacecraft.

“I must go down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by.”
– John Masefield, “Sea Fever”

Deep-space missions require precise navigation, especially when approaching bodies such as Mars, Venus, or comets. It’s often necessary to pinpoint a spacecraft traveling 100 million km from Earth to within just 1 km. To achieve this level of accuracy, experts use quasars – the most luminous objects known in the Universe – as beacons in a technique known as Delta-Differential One-Way Ranging, or delta-DOR.

How delta-DOR works (ESA)
How delta-DOR works (ESA)

Delta-DOR uses two antennas in distant locations on Earth (such as Goldstone in California and Canberra in Australia) to simultaneously track a transmitting spacecraft in order to measure the time difference (delay) between signals arriving at the two stations.

Unfortunately the delay can be affected by several sources of error, such as the radio waves traveling through the troposphere, ionosphere, and solar plasma, as well as clock instabilities at the ground stations.

Delta-DOR corrects these errors by tracking a quasar that is located near the spacecraft for calibration — usually within ten degrees. The chosen quasar’s direction is already known extremely well through astronomical measurements, typically to closer than 50 billionths of a degree (one nanoradian, or 0.208533 milliarcsecond). The delay time of the quasar is subtracted from that of the spacecraft’s, providing the delta-DOR measurement and allowing for amazingly high-precision navigation across long distances.

“Quasar locations define a reference system. They enable engineers to improve the precision of the measurements taken by ground stations and improve the accuracy of the direction to the spacecraft to an order of a millionth of a degree.”

– Frank Budnik, ESA flight dynamics expert

So even though the quasar in NGC 4438 is located 50 million light-years from Earth, it can help engineers position a spacecraft located 100 million kilometers away to an accuracy of several hundred meters. Now that’s a star to steer her by!

Read more about Delta-DOR here and here.

Source: ESA Operations

Opportunity Scaling Solander Mountain Searching for Science and Sun

Opportunity starts scaling Solander Point See the tilted terrain and rover tracks in this look-back mosaic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Moasic assembled from navcam raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer - kenkremer.com

Opportunity starts scaling Solander Point – her 1st mountain climbing goal
See the tilted terrain and rover tracks in this look-back mosaic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com). See the complete panoramic view below[/caption]

NASA’s intrepid Opportunity rover has begun an exciting new phase in her epic journey – the ascent of Solander Point, the first mountain she will ever climb, after roving the Red Planet for nearly a decade. See the rovers tilted look-back view in our Sol 3431 mosaic above.

Furthermore, ground breaking discoveries providing new clues in search of the chemical ingredients required to sustain life are sure to follow as the rover investigates intriguing stratographic deposits distributed amongst Solander’s hills layers.

Why ? Because NASA’s powerful Mars Reconnaissance Orbiter (MRO) circling overhead has also recently succeeded in collecting “really interesting” new high resolution survey scans of Solander Point! Read my prior pre-survey account – here.

So says Ray Arvidson, the mission’s deputy principal scientific investigator, in an exclusive Opportunity news update to Universe Today. The new MRO data are crucial for targeting the rover’s driving in coming months.

After gaining approval from NASA, engineers successfully aimed the CRISM mineral mapping spectrometer aboard MRO at Solander Point and captured reams of new high resolution measurements that will inform the scientists about the mineralogical make up of Solander.

“CRISM data were collected,” Arvidson told Universe Today.

“They show really interesting spectral features in the [Endeavour Crater] rim materials.”

Opportunity starts scaling Solander Point - her 1st mountain climbing goal. See the tilted terrain and rover tracks in this panoramic view from Solander Point peering across the vast expanse of huge Endeavour Crater.  Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment.  This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com).
Opportunity starts scaling Solander Point – her 1st mountain climbing goal
See the tilted terrain and rover tracks in this look-back panoramic view from Solander Point peering across the vast expanse of huge Endeavour Crater. Opportunity will ascend the mountain looking for clues indicative of a Martian habitable environment. This navcam camera mosaic was assembled from raw images taken on Sol 3431 (Sept.18, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com).

Solander Point is an eroded ridge located along the western rim of huge Endeavour Crater where Opportunity is currently located.

“Opportunity is on the bench at the tip of Solander Point,” Ray Arvidson told Universe Today exclusively. Arvidson is the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.

At the bench, the long lived rover has begun scaling Solander in search of science and life giving sun.

“The CRISM data are being discussed by the MER [Mars Exploration Rover] Team this week,” Arvidson told me.

And it will take some time to review and interpret the bountiful new spectral data and decide on a course of action.

“For the CRISM data analysis we will have the MER Team see the results and agree.”

Expect that analysis to take a “couple of weeks” said Arvidson.

The new CRISM survey from Mars orbit will vastly improve the spectral resolution – from 18 meters per pixel down to 5 meters per pixel.

Above is the Pancam panorama acquired on sol 3375 when Opportunity was still approaching Solander Point. On it I have plotted the subsequent drives along the east side of the point, and the location on the contact as of September 18. The approximate places where we need to be by later this fall are shown here for anyone following along. It's a new unexplored land with new scenes. Caption and Credit: NASA/JPL/Larry Crumpler
Above is the Pancam panorama acquired on sol 3375 when Opportunity was still approaching Solander Point. On it I have plotted the subsequent drives along the east side of the point, and the location on the contact as of September 18. The approximate places where we need to be by later this fall are shown here for anyone following along. It’s a new unexplored land with new scenes. Caption and Credit: NASA/JPL/Larry Crumpler

Another important point about ‘Solander Point’ is that it also offers northerly tilted slopes that will maximize the power generation during Opportunity’s upcoming 6th Martian winter.

In order to survive those Antarctic like, ‘bone chilling” winter temperatures on the Red Planet and continue with her epic mission, the engineers must drive the rover so that the solar wings are pointed favorably towards the sun.

And don’t forget that winter’s last six full months – that’s twice as long on Mars as compared to Earth.

The daily solar power output has been declining as Mars southern hemisphere enters late fall.

In the above Navcam panorama acquired on mid-morning on September 18 (sol 3431), you can see the contact between the younger Burns Formation sulfate-rich sands on the right and the older rocks of Endeavour crater on the left. We will probably follow this contact for ways to the south before starting the climb next week. Caption and Credit: NASA/JPL/Larry Crumpler
In the above Navcam panorama acquired on mid-morning on September 18 (sol 3431), you can see the contact between the younger Burns Formation sulfate-rich sands on the right and the older rocks of Endeavour crater on the left. We will probably follow this contact for ways to the south before starting the climb next week. Caption and Credit: NASA/JPL/Larry Crumpler

After traversing several months across the crater floor from the Cape York rim segment to Solander, Opportunity arrived at the foothills of Solander Point.

Solander and Cape York are part of a long chain of eroded segments of the crater wall of Endeavour crater which spans a humongous 14 miles (22 kilometers) wide.

Solander Point may harbor deposits of phyllosilicate clay minerals – which form in neutral pH water – in a thick layer of rock stacks indicative of a past Martian habitable zone.

The science team is looking at the new CRISM measurements, hunting for signatures of phyllosilicate clay minerals and other minerals and features of interest.

“Opportunity is on the bench on the northwest side of the tip of Solander Point,” Arvidson explained.

Since pulling up to Solander, the robot has spent over a month investigating the bench surrounding the mountain to put it the entire alien Martian terrain in context for a better understanding of Mars geologic history over billions of years.

Eons ago, Mars was far warmer and wetter and more hospitable to life.

“The rover is finishing up work on defining the stratigraphy, structure, and composition of the bench materials.”

“We are working our way counterclockwise on the bench to reach the steep slopes associated with the Noachian outcrops that are part of the Endeavour rim,” Arvidson elaborated.

“Opportunity is slightly tipped to the north to catch the sun.”

“Probably this week we will direct the rover to head south along the western boundary between the bench and the rim materials, keeping on northerly tilts,” Arvidson told me.

How does the bench at Solander compare to other areas investigated at Endeavour crater, I asked.

“The Solander Bench looks like the bench we saw around Cape York and around Sutherland Point and Nobbys Head,” replied Arvidson.

Opportunity scans Solander Point from a slope at the northern tip as she circles around the surrounding bench.  This navcam camera mosaic was assembled from raw images taken on Sol 3423 (Sept. 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer
Opportunity scans Solander Point from a slope at the northern tip as she circles around the surrounding bench. This navcam camera mosaic was assembled from raw images taken on Sol 3423 (Sept. 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer

The rover recently investigated an outcrop target called ‘Poverty Bush’. She deployed her 3 foot long (1 meter) robotic arm and collected photos with the Microscopic Imager (MI) and collected several days of spectral measurements with the Alpha Particle X-ray Spectrometer (APXS).

Thereafter she resumed driving to the west/northwest around Solander.

“On September 13, Opportunity finally landed on the bed rock of Solander Point,” wrote Larry Crumpler, a science team member from the New Mexico Museum of Natural History & Science, in his latest field report about the MER mission.

“The terrain right here is awesome,” according to Crumpler.

“There are several geologic units that are overlapping here. And Opportunity is sitting on the contact.”

“On the east side of the contact are rocks maybe a billion years older than those on the west side of the contact. This sort of age progression is what geologists look for when trying to understand the past by reading the rocks.”

“Opportunity is allowing us for the first time to do not only fundamental geographic exploration, but it is enabling on the ground geologic study of past climatic history on Mars,” notes Crumpler.

Today marks Opportunity’s 3441st Sol or Martian Day roving Mars – for what was expected to be only a 90 Sol mission.

Traverse Map for NASA’s Opportunity rover from 2004 to 2013.  This map shows the entire path the rover has driven during more than 9 years and over 3431 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location at foothills of Solander Point at the western rim of Endeavour Crater.  Rover is now ascending Solander.  Opportunity discovered clay minerals at Esperance - indicative of a habitable zone.  Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013
This map shows the entire path the rover has driven during more than 9 years and over 3431 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location at foothills of Solander Point at the western rim of Endeavour Crater. Rover is now ascending Solander. Opportunity discovered clay minerals at Esperance – indicative of a habitable zone. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer

So far she has snapped over 184,500 amazing images on the first overland expedition across the Red Planet.

Her total odometry stands at over 23.82 miles (38.34 kilometers) since touchdown on Jan. 24, 2004 at Meridiani Planum.

Meanwhile on the opposite side of Mars, Opportunity’s younger sister rover Curiosity is trekking towards gigantic Mount Sharp and just discovered water altered pebbles at the intriguing ‘Darwin’ outcrop.

And NASA is in the final stages of processing of MAVEN, the agencies next orbiter, scheduled to blast off from Cape Canaveral on Nov.18 – see my upcoming up close article.

Ken Kremer

…………….

Learn more about Curiosity, Mars rovers, MAVEN, Orion, Cygnus, Antares, LADEE and more at Ken’s upcoming presentations

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the cleanroom at the Kennedy Space Center on sept 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com
NASA’s MAVEN Mars orbiter, chief scientist Prof. Bruce Jakosky of CU-Boulder and Ken Kremer of Universe Today inside the cleanroom at the Kennedy Space Center on Sept. 27, 2013. MAVEN launches to Mars on Nov. 18, 2013 from Florida. Credit: Ken Kremer/kenkremer.com

Curiosity Discovers Patch of Pebbles Formed by Flowing Martian Water on Mount Sharp Trek

NASA's Mars rover Curiosity used a new technique, with added autonomy for the rover, in placement of the tool-bearing turret on its robotic arm during the 399th Martian day, or sol, of the mission. This image from the rover's front Hazard Avoidance Camera (Hazcam) on that sol shows the position of the turret during that process, with the Alpha Particle X-ray Spectrometer (APXS) instrument placed close to the target rock. Credit: NASA/JPL-Caltech

NASA’s Curiosity rover has discovered a new patch of pebbles formed and rounded eons ago by flowing liquid water on the Red Planet’s surface along the route she is trekking across to reach the base of Mount Sharp – the primary destination of her landmark mission.

Curiosity made the new finding at a sandstone outcrop called ‘Darwin’ during a brief science stopover spot called ‘Waypoint 1’.

Before arriving at Waypoint 1, the question was- “Did life giving water once flow here on the Red Planet?

The answer now is clearly ‘Yes!’ – And it demonstrates the teams wisdom in pausing to inspect ‘Darwin’.

The discovery at Darwin is significant because it significantly broadens the area here that was altered by flowing liquid water.

This mosaic of nine images, taken by the Mars Hand Lens Imager (MAHLI) camera on NASA's Mars rover Curiosity, shows detailed texture in a conglomerate rock bearing small pebbles and sand-size particles. Credit: NASA/JPL-Caltech/MSSS
This mosaic of nine images, taken by the Mars Hand Lens Imager (MAHLI) camera on NASA’s Mars rover Curiosity, shows detailed texture in a conglomerate rock bearing small pebbles and sand-size particles. Credit: NASA/JPL-Caltech/MSSS

The presence of water is an essential prerequisite for the formation and evolution of life.

Curiosity has arrived at Waypoint 1,” project scientist John Grotzinger, of the California Institute of Technology in Pasadena, told Universe Today at the time.

The robot pulled into ‘Waypoint 1’ on Sept. 12 (Sol 392).

“It’s a chance to study outcrops along the way,” Grotzinger told me.

This mosaic of four images taken by the Mars Hand Lens Imager (MAHLI) camera on NASA's Mars rover Curiosity shows detailed texture in a ridge that stands higher than surrounding rock. The rock is at a location called "Darwin," inside Gale Crater. Exposed outcrop at this location, visible in images from the High Resolution Imaging Science Experment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter, prompted Curiosity's science team to select it as the mission's first waypoint for several days during the mission's long trek from the "Glenelg" area to Mount Sharp. Image Credit: NASA/JPL-Caltech/MSSS
This mosaic of four images taken by the Mars Hand Lens Imager (MAHLI) camera on NASA’s Mars rover Curiosity shows detailed texture in a ridge that stands higher than surrounding rock. The rock is at a location called “Darwin,” inside Gale Crater. Exposed outcrop at this location, visible in images from the High Resolution Imaging Science Experment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter, prompted Curiosity’s science team to select it as the mission’s first waypoint for several days during the mission’s long trek from the “Glenelg” area to Mount Sharp. Image Credit: NASA/JPL-Caltech/MSSS

The six wheeled rover is in the initial stages of what is sure to be an epic trek across the floor of her landing site inside the nearly 100 mile wide Gale Crater – that is dominated by humongous Mount Sharp that reaches over 3 miles (5 Kilometers) into the red Martian Sky.

“We examined pebbly sandstone deposited by water flowing over the surface, and veins or fractures in the rock,” said Dawn Sumner of University of California, Davis, a Curiosity science team member with a leadership role in planning the stop, in a NASA statement about Darwin and Waypoint 1.

“We know the veins are younger than the sandstone because they cut through it, but they appear to be filled with grains like the sandstone.”

Curiosity deploys robot arm to investigate the ‘Darwin’ rock outcrop up close at ‘Waypoint 1’ on Sept 20 (Sol 399). This photo mosaic was assembled from navcam images taken on Sept 20, 2013.   Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity deploys robot arm to investigate the ‘Darwin’ rock outcrop up close at ‘Waypoint 1’ on Sept 20 (Sol 399). This photo mosaic was assembled from navcam images taken on Sept 20, 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Waypoint 1 is the first of up to five waypoint stops planned along the roving route that stretches about 5.3 miles (8.6 kilometers) between the “Glenelg” area, where Curiosity worked for more than six months through the first half of 2013, and the currently planned entry point at the base of Mount Sharp.

To date, the robot has now driven nearly 20% of the way towards the base of the giant layered Martian mountain she will eventually scale in search of life’s ingredients.

“Darwin is named after a geologic formation of rocks from Antarctica,” Grotzinger informed Universe Today.

‘Waypoint 1’ was an area of intriguing outcrops that was chosen based on high resolution orbital imagery taken by NASA’s Mars Reconnaissance Orbiter (MRO) circling some 200 miles overhead.

Investigation of the conglomerate rock outcrop dubbed ‘Darwin’ was the top priority of the Waypoint 1 stop.

The finding of a cache of watery mineral veins was a big added science bonus that actually indicates a more complicated story in Mars past – to the delight of the science team.

“We want to understand the history of water in Gale Crater,” Sumner said.

“Did the water flow that deposited the pebbly sandstone at Waypoint 1 occur at about the same time as the water flow at Yellowknife Bay? If the same fluid flow produced the veins here and the veins at Yellowknife Bay, you would expect the veins to have the same composition.’

“We see that the veins are different, so we know the history is complicated. We use these observations to piece together the long-term history.”

The Rover inspected Darwin from two different positions over 4 days, or Martian Sols and conducted ‘contact science’ by deploying the robotic arm and engaging the science instrument camera and spectrometer mounted on the turret at the arms terminus.

The Alpha Particle X-ray Spectrometer (APXS) collected spectral measurements of the elemental chemistry and the Mars Hand Lens Imager is a camera showing the outcrops textures, shapes and colors.

Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013.   Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

What’s the origin of Darwin’s name?

“Darwin comes from a list of 100 names the team put together to designate rocks in the Mawson Quadrangle – Mawson is the name of a geologist who studied Antarctic geology,” Grotzinger told me.

“We’ll stay just a couple of sols at Waypoint 1 and then we hit the road again,” Grotzinger told me.

And indeed on Sept. 22, the rover departed Darwin and Waypoint 1 on a westward heading to resume the many months long journey to Mount Sharp.

Ken Kremer

…………….

Learn more about Curiosity, Mars rovers, MAVEN, Orion, Cygnus, Antares, LADEE and more at Ken’s upcoming presentations

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: NASA’s Historic LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Soyuz Launches Expedition 37/38 to the International Space Station

The Soyuz TMA-10M rocket launches from the Baikonur Cosmodrome in Kazakhstan carrying the Expedition 37 crew to orbit. Credit: NASA/Carla Cioffi.

The next crew of the International Space Station is on their way to orbit. Three members of the Expedition 37 crew members blasted off in a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan at 20:58 UTC (4:58 p.m. EDT) Wednesday, Sept. 25, and will take a fast-track six-hour flight to the Space Station.

Update: The crew has now docked safely to the ISS, at 10:45 pm EDT (02:45 UTC).

Watch a video of the launch, below.

Michael Hopkins of NASA and Oleg Kotov and Sergey Ryazanskiy of the Russian Federal Space Agency (Roscosmos) are scheduled to dock their Soyuz spacecraft to the Poisk module on the Russian segment of the at 02:48 UTC on Sept. 26 (10:48 p.m. EDT, Sept. 25) All the action of the launch and docking will be on NASA TV.

The crew is scheduled to open the hatches between the Soyuz spacecraft and the space station about two hours later.
Hopkins, Kotov and Ryazanskiy will be greeted by three Expedition 37 crew members who have been aboard the space station since late May: Commander Fyodor Yurchikin of Rosmosmos and Flight Engineers Karen Nyberg of NASA and Luca Parmitano of the European Space Agency.

The new crew will remain aboard the station until mid-March. Yurchikhin, Nyberg and Parmitano will return to Earth Nov. 11.

NASA says the new crew will take part in several new science investigations that will focus on human health and human physiology. The crew will examine the effects of long-term exposure to microgravity on the immune system, provide metabolic profiles of the astronauts and collect data to help scientists understand how the human body changes shape in space. The crew also will conduct 11 investigations from the Student Spaceflight Experiments Program on antibacterial resistance, hydroponics, cellular division, microgravity oxidation, seed germination, photosynthesis and the food making process in microgravity.