Proof! – Frogs Jump at Chance to Board Rockets to Space from NASA Wallops during Antares booster Rollout

NASA Photographer discovers living proof that Frogs are leaping towards the on ramp for rocket ships bound for Earth orbit and beyond at NASA’s Wallops Island, VA, launch pads during rollout of the Antares rocket on Sept 13, 2013. Credit: Ken Kremer (kenkremer.com)

WALLOPS ISLAND, VA – Have you seen the NASA frog? The one that became famous worldwide last week following the historic Moon Shot of the LADEE mission from NASA Wallops Island in Virginia?

The one that the inexplicably appeared in a single photograph from a NASA Wallops remote camera when the pressure wave from the Minotaur rockets exhaust sent it hurtling skywards?

Perhaps you are an unbeliever? And think the frog photo was photoshopped?

Well after a thorough investigation, Universe Today has uncovered undeniable proof that NASA’s resident frogs are indeed jumping at the chance to make history again and leap aboard the next rocket headed to space from NASA Wallops on Sept 18.

How do I know this?

Well on Friday the 13th of September, I was on site at NASA Wallops for a photo shoot of the lengthy rollout of the Orbital Sciences Antares rocket to Launch Pad 0A – and the famous frog was a topic of endless conversation in between our gorgeous views of Antares moving along the road to the launch pad atop the Transporter Erector vehicle.

See my frog and rollout photo gallery herein.

Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)
Antares rocket arrives at on ramp to launch pad with cool new signs directing traffic to launch pads for trips to the Moon and the International Space Station. Credit: Ken Kremer (kenkremer.com)

Nary a frog was to be found anywhere all day and night along the 1 mile rollout route.

Finally, after much delay the Antares rocket was raised and erected firmly atop the launch mount.

And then at last the great frog discovery was made.

Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard.    Credit: Ken Kremer (kenkremer.com)
Close up of frog hiding near the Antares launch pad and apparently eager to jump aboard. Credit: Ken Kremer (kenkremer.com)

And of course it took a woman, a NASA photographer named Jamie, to do a man’s job – finding and corralling that frog and fearlessly holding the critter in front of all the guys, including me.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

My photos are the proof that the mysterious origin of NASA’s apparently space loving resident frogs has been solved.

Jamie discovered the frog lurking inside a telescope dome used to protect NASA’s launch pad cameras during liftoff.

Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins rollout atop transporter erector to Launch Pad 0A at NASA Wallops Island Facility, VA., on Sept. 13, 2013. Credit: Ken Kremer (kenkremer.com)

She found the frog hiding inside the dome to evade the ever present security patrols on the lookout for intruders. Where is the NSA when you need them?

And quite clearly these are intelligent frogs – eager to blast off to the High Frontier in pursuit of science.

Why?

Because for the past few weeks these space loving frogs have been reading the new pair of signs installed by the launch pad gates right in front of the on ramps directing traffic to the Minotaur and Antares rockets headed to the Moon and the International Space Station.

They were just waiting for the right moment to hop aboard.

Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket rolls up on on ramp at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Everything remains on target for the Sept. 18 blastoff of Orbital Sciences Antares commercial rocket carrying the first fully functional Cygnus commercial resupply vehicle to orbit from NASA’s Wallops Island Facility on a demonstration mission bound for the International Space Station (ISS).

“The weather forecast remains at 75% chance of “GO” with favorable conditions,” said NASA Wallops test director Sarah Daugherty at a news media briefing at Wallops today.

“The launch could be widely visible along the East Coast from New York City to South Carolina.” – Weather permitting

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Learn how and where to view the Antares launch by reading my “How to see the Antares Launch” story.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Stay tuned to Universe Today for complete coverage of the Antares/Cygnus Orb-D1 mission to the ISS and my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)

How to See the Historic Antares/Cygnus Launch to Space Station on Sept. 18

Top of the Rock - New York City. Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT - weather permitting - after blastoff from NASA Wallops, VA. Credit: Orbital Sciences See more Antares launch trajectory viewing graphics below

Top of the Rock – New York City
Antares rocket and Cygnus cargo spacecraft approximate launch trajectory view as should be seen from atop Rockefeller Center, NYC, on Sept. 18, 2013 at 10:50 a.m. EDT – weather permitting – after blastoff from NASA Wallops, VA. Credit: Orbital Sciences
See more Antares launch trajectory viewing graphics below[/caption]

WALLOPS ISLAND, VA – “All Systems Are GO” for the Sept. 18 launch of Orbital Sciences Antares commercial rocket carrying the first ever fully functional Cygnus commercial resupply vehicle to orbit on the history making first flight blasting off from NASA’s Wallops Island Facility– along the eastern shore of Virginia and bound for the International Space Station (ISS).

Here’s our guide on “How to See the Antares/Cygnus Launch” – complete with viewing maps and trajectory graphics from a variety of prime viewing locations courtesy of Orbital Sciences, the private company that developed both the Antares rocket and Cygnus spaceship aimed at keeping the ISS fully operational for science research.

And although the launch is slated for late morning it should still be visible to millions of spectators along a lengthy swath of the US East Coast from North Carolina to Connecticut – weather permitting – who may have never before witnessed such a mighty rocket launch.

The daylight liftoff of the powerful two stage Antares rocket is scheduled for Wednesday, Sept 18 at 10:50 a.m. EDT from Launch Pad 0A at the Mid-Atlantic Regional Spaceport at NASA Wallops Island, Virginia. The launch window extends 15 minutes to 11:05 a.m.

Up top is the view as anticipated from “The Top of the Rock” or Rockefeller Center in New York City. See below the extraordinary image of LADEE’s launch from “Top of the Rock” by Ben Cooper to compare the day and night time sighting delights.

In anticipation of liftoff, the Antares rocket was rolled out to Pad 0A on Friday morning Sept. 13 and I was on hand for the entire event – see my rollout photos here and upcoming.

Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore  on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT Credit: Ken Kremer (kenkremer.com)
Seaside panoramic view of Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops at the Virginia Eastern Shore on Sept. 13, 2013. Blastoff for the ISS is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares.
Credit: Ken Kremer (kenkremer.com)

Here’s a hi res version of the viewing map courtesy of NASA Wallops Flight Facility:

Antares/Cygnus Launch - Hi Res Visibility map The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA.  will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station.  Credit: NASA Wallops Flight Facility
Antares/Cygnus Launch – Hi Res Visibility map
The Antares/Cygnus daylight rocket launch on Sept. 18, 2013 at 10:50 a.m. EDT from NASA Wallops, VA. will potentially be visible to millions of spectators along the Eastern US coast from Connecticut to North Carolina -weather permitting. This high resolution map shows the regions of visibility over time in the seconds after the rocket launch on a demonstration cargo resupply mission to the International Space Station. Credit: NASA Wallops Flight Facility

The Antares launch follows closely on the heels of the spectacularly bright Sept. 6 nighttime Moon shot blastoff of the Minotaur V rocket that successfully injected NASA’s LADEE lunar orbiter into its translunar trajectory.

And just as was the case with the Minotaur V and LADEE, you don’t have to be watching locally to join in and experience all the fun and excitement. As with any NASA launch, you can also follow along with up to the minute play by play by watching the NASA TV webcast online or on smartphones, iPods or laptops.

Atlantic City
Atlantic City

It’s hard to say exactly how long and how bright the rockets flames and exhaust trail will be visible since it depends on the constantly changing lighting, prevailing clouds and overall weather conditions.

But one thing is for sure. If you don’t go outside and watch you’re giving up a great opportunity.

And keep in mind that Antares will be moving significantly slower than the Minotaur V.

Herein are a series of graphics showing the Antares trajectory and what you should see during firings of both stages from the perspective of standing on the ground or skyscrapers at a variety of popular destinations including Annapolis, the US Capitol, Lincoln Memorial, National Air and Space Museum, Atlantic City, NJ, New York City and more.

Capitol East-Front Steps
Capitol East-Front Steps
Goddard Space Flight Center - GSFC
Goddard Space Flight Center – GSFC
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT.  LADEE launch pad 0B stands adjacent to right of Antares.  Credit: Ken Kremer (kenkremer.com)
Antares rocket and Cygnus spacecraft after rollout to Launch Pad 0A at NASA Wallops Flight Facility Facility, VA.,on Sept. 13, 2013. Blastoff is slated for Sept. 18, 2013 at 10:50 a.m. EDT. LADEE launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer (kenkremer.com)

The goal of the mission is to demonstrate the safe and successful launch, rendezvous and docking of the privately developed Cygnus cargo carrier with the International Space Station (ISS) and delivery of 1300 pounds of essential supplies, food, clothing, spare parts and science gear to the six person resident human crews – currently Expedition 37.

Although it’s the 2nd launch of Antares following the maiden flight in April, this is the first flight of the Cygnus commercial delivery system. The demonstration and testing will be the same as what SpaceX accomplished in 2012 with their competing Falcon 9/Dragon architecture.

The mission is designated Orb-D1 and is funded with seed money by NASA’s COTS program to replace the cargo delivery duties of NASA’s now retired Space Shuttle orbiters.

Lincoln Memorial
Lincoln Memorial
Richmond
Richmond

For those who are traveling to witness the launch locally in the Chincoteague, Va., area, there will be two public viewing sites said Jeremy Eggers, NASA Wallops Public Affairs Officer in an interview with Universe Today.

“There will be are two local sites open to the public,” Eggers told me. “Folks can watch at either the NASA Wallops Flight facility Visitors Center (http://sites.wff.nasa.gov/wvc) or the beach at Assateague National Seashore (http://www.nps.gov/asis/index.htm).”

“There will be loudspeakers to follow the progress of the countdown, but no TV screens as done with the LADEE launch.”

National Air & Space Udvar-Hazy Museum
National Air & Space Udvar-Hazy Museum
Annapolis
Annapolis

So far the weather outlook is promising with a 75% chance of “GO” with favorable conditions at launch time.

NASA Television coverage of the Antares launch will begin at 10:15 a.m. on Sept 18 – (www.nasa.gov/ntv).

Be sure to watch for my continuing Antares and LADEE mission reports from on site at NASA’s Wallops Launch Pads in sunny Virginia – reporting for Universe Today.

Ken Kremer

…………….

Learn more about Cygnus, Antares, LADEE, Curiosity, Mars rovers, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Compare this actual launch view to the graphic calculated for Antares (above) as seen from the exact same location atop Rockefeller Center. Credit: Ben Cooper/Launchphotography.com

Curiosity Rolls into Intriguing ‘Darwin’ at ‘Waypoint 1’ on Long Trek to Mount Sharp

Curiosity’s views a rock outcrop after arriving for a short stay at ‘Waypoint 1’- dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech

Curiosity’s views a rock outcrop at ‘Darwin’ after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392) – dramatically back dropped by her primary destination, Mount Sharp. Front hazcam camera image from Sol 393 (Sept 13, 2013). Credit: NASA/JPL-Caltech
Story updated – see close up mosaic views of Darwin outcrop below[/caption]

NASA’s Curiosity Mars rover has just rolled into an intriguing site called ‘Darwin’ at ‘Waypoint 1’- having quickly picked up the driving pace since embarking at last on her epic trek to mysterious Mount Sharp more than two months ago. Did life giving water once flow here on the Red Planet?

Because the long journey to Mount Sharp – the robots primary destination – was certain to last nearly a year, the science team carefully choose a few stopping points for study along the way to help characterize the local terrain. And Curiosity has just pulled into the first of these so called ‘Waypoints’ on Sept 12 (Sol 392), the lead scientist confirmed to Universe Today.

Curiosity has arrived at Waypoint 1,” project scientist John Grotzinger, of the California Institute of Technology in Pasadena, told Universe Today.

“Darwin is named after a geologic formation of rocks from Antarctica.”

She has now driven nearly 20% of the way towards the base of the giant layered Martian mountain she will eventually scale in search of life’s ingredients.

Altogether, the team selected five ‘Waypoints’ to investigate for a few days each as Curiosity travels in a southwestward direction on the road from the first major science destination in the ‘Glenelg’ area to the foothills of Mount Sharp, says Grotzinger.

“We’ll stay just a couple of sols at Waypoint 1 and then we hit the road again,” Grotzinger told me.

Curiosity's Progress on Rapid Transit Route from 'Glenelg' to Mount Sharp.  Triangles indicate geologic ‘Waypoint’ stopping points along the way.  Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA
Curiosity’s Progress on Rapid Transit Route from ‘Glenelg’ (start at top) to Mount Sharp entry point (bottom). Triangles indicate geologic ‘Waypoint’ stopping points along the way. Curiosity arrived at Waypoint 1 on Sol 392 (Sept 12, 2013). Credit: NASA

‘Waypoint 1’ is an area of intriguing outcrops that was chosen based on high resolution orbital imagery taken by NASA’s Mars Reconnaissance Orbiter (MRO) circling some 200 miles overhead. See route map herein.

In fact the team is rather excited about ‘Waypoint 1’ that’s dominated by the tantalizing rocky outcrop discovered there nicknamed ‘Darwin’.

Although Curiosity will only stay a short time at each of the stops, the measurements collected at each ‘Waypoint’ will provide essential clues to the overall geologic and environmental history of the six wheeled rover’s touchdown zone.

“Waypoint 1 was chosen to help break up the drive,” Grotzinger explained to Universe Today.

“It’s a chance to study outcrops along the way.”

The images from MRO are invaluable in aiding the rover handlers planning activities, selecting Curiosity’s driving route and targeting of the most fruitful science forays during the long trek to Mount Sharp – besides being absolutely crucial for the selection of Gale Crater as the robots landing site in August 2012.

The ‘Darwin’ outcrop may provide more data on the flow of liquid water across the crater floor.

Evolving Excitement Over 'Darwin' Rock Outcrop at 'Waypoint 1'.   For at least a couple of days, the science team of NASA's Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called "Darwin."   This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems
Evolving Excitement Over ‘Darwin’ Rock Outcrop at ‘Waypoint 1’. For at least a couple of days, the science team of NASA’s Mars rover Curiosity is focused on a full-bore science campaign at a tantalizing, rocky site informally called “Darwin.” This view of Darwin was taken with the Mast Camera (Mastcam) on Sol 390 (Sept. 10, 2013). Credit: NASA/JPL-Caltech/Malin Space Science Systems

The scientists goal is to compare the floor of Gale Crater to the sedimentary layers of 3 mile high (5 kilometer high) Mount Sharp.

Waypoint 1 is just over 1 mile along the approximately 5.3-mile (8.6-kilometer) route from ‘Glenelg’ to the entry point at the base of Mount Sharp.

Curiosity spent over six months investigating the ‘Yellowknife Bay’ area inside Glenelg before departing on July 4, 2013.

What’s the origin of Darwin’s name?

“Darwin comes from a list of 100 names the team put together to designate rocks in the Mawson Quadrangle – Mawson is the name of a geologist who studied Antarctic geology,” Grotzinger told me.

“Recently we left the Yellowknife Quadrangle, so instead of naming rocks after geological formations in Canada’s north, we now turn to formation names of rocks from Antarctica, and Darwin is one of them.

“That will be the theme until we cross into the next quad,” Grotzinger explained.

Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013.   Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity investigates the ‘Darwin’ rock outcrop up close after arriving for a short stay at ‘Waypoint 1’ on Sept 12 (Sol 392). This photo mosaic was assembled from navcam images taken on Sept 12, 2013. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Inside Yellowknife Bay, Curiosity conducted the historic first interplanetary drilling into Red Planet rocks and subsequent sample analysis with her duo of state of the art chemistry labs – SAM and CheMin.

At Yellowknife Bay, the 1 ton robot discovered a habitable environment containing the chemical ingredients that could sustain Martian microbes- thereby already accomplishing the primary goal of NASA’s flagship mission to Mars.

“We want to know how the rocks at Yellowknife Bay are related to what we’ll see at Mount Sharp,” Grotzinger elaborated in a NASA statement. “That’s what we intend to get from the waypoints between them. We’ll use them to stitch together a timeline — which layers are older, which are younger.”

On Sept. 5, Curiosity set a new one-day distance driving record for the longest drive yet by advancing 464 feet (141.5 meters) on her 13th month on the Red Planet.

As Curiosity neared Waypoint 1 she stopped at a rise called ‘Panorama Point’ on Sept. 7, spotted an outcrop of light toned streaks informally dubbed ‘Darwin and used her MastCam telephoto camera to collect high resolution imagery.

Curiosity will use her cameras, spectrometers and robotic arm for contact science and a “full bore science campaign” involving in-depth mineral and chemical composition analysis of Darwin and Waypoint 1 for the next few Sols, or Martian days, before resuming the trek to Mount Sharp that dominates the center of Gale Crater.

Curiosity Spies Mount Sharp - her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years.  This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013. Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer
Curiosity Spies Mount Sharp – her primary destination. Curiosity will ascend mysterious Mount Sharp and investigate the sedimentary layers searching for clues to the history and habitability o the Red Planet of billions of years. This mosaic was assembled from Mastcam camera images taken on Sol 352 (Aug 2, 2013). Credit: NASA/JPL-Caltech/MSSS/ Marco Di Lorenzo/Ken Kremer

She will not conduct any drilling here or at the other waypoints, several team members have told me, unless there is some truly remarkable ‘Mars-shattering’ discovery.

Why is Curiosity now able to drive longer than ever before?

“We have put some new software – called autonav, or autonomous navigation – on the vehicle right after the conjunction period back in March 2013,” Jim Erickson, Curiosity Project Manager of NASA’s Jet Propulsion Laboratory (JPL), told Universe Today.

“This will increase our ability to drive. But how much it helps really depends on the terrain.”

And so far the terrain has cooperated.

“We are on a general heading of southwest to Mount Sharp,” said Erickson. See the NASA JPL route map.

“We have been going through various options of different planned routes.”

As of today (Sol 394), Curiosity remains healthy, has traveled 2.9 kilometers and snapped over 82,000 images.

If all goes well Curiosity could reach the entry point to Mount Sharp sometime during Spring 2014, at her current driving pace.

Ken Kremer

…………….

Learn more about Curiosity, Mars rovers,LADEE, Cygnus, Antares, MAVEN, Orion and more at Ken’s upcoming presentations

Sep 17/18: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

Astronaut Does A ‘Moon’ Walk In The Sea. Better Yet, It’s Just One Of Many Recent Underwater Missions

European Space Agency astronaut Jean-François Clervoy recreates the first moon landing mission underwater. Credit: Alexis Rosenfeld

The black-and-white tones of this photo evoke a famous Moon walk of 1969, but in reality it was taken in Mediterranean waters just a few days ago.

For the “Apollo 11 Under The Sea” project, European Space Agency astronaut Jean-François Clervoy (pictured above) and ESA astronaut instructor Hervé Stevenin took on the roles of Neil Armstrong and Buzz Aldrin, the first two men to walk on the moon during Apollo 11.

A major goal was to test the Comex-designed Gandolfi spacewalk training suit (based on the Russian Orlan spacesuits) during the sojourn. The mission was considered the first step (literally and figuratively) to figuring out how Europeans can train their astronauts for possible Moon, asteroid and Mars missions in the decades to come.

“The Gandolfi suit is bulky, has limited motion freedom, and requires some physical effort – just like actual space suits. I really felt like I was working and walking on the Moon,” Clervoy stated.

Even the photos come pretty darn close to the real thing. Compare this picture of Apollo 12 commander Pete Conrad during his Moon walk in 1969:

Apollo 12 commander Pete Conrad on the moon in 1969. The glow is due to the sun being at a low angle, NASA says. Credit: NASA
Apollo 12 commander Pete Conrad on the moon in 1969. The glow is due to the sun being at a low angle, NASA says. Credit: NASA

Water is considered a useful training tool for spacewalk simulations. NASA in fact has a ginormous pool called the Neutral Buoyancy Laboratory. Inside are duplicate International Space Station modules. Astronauts are fitted with weights and flotation devices to make them “float” similarly to how they would during spacewalks.

With trained divers hovering nearby, the astronauts practice the procedures they’ll need so that it’s second nature by the time they get into orbit. (NASA astronaut Mike Massimino once told Universe Today that one thing he wasn’t prepared for was how spectacular the view was during his spacewalk. Guess it beats the walls of a pool.)

The first tests for the Apollo 11 underwater simulations began at a pool run by Comex, a deep diving specialist in France, before the big show took place in the Mediterranean Sea off Marseille on Sept. 4. The crew members used tools similar to the Apollo 11 astronauts to pick up soil samples from the ground.

ESA astronaut Jean-François Clervoy collecting a rock sample underwater off the coast of Marseille, France. He was simulating the Apollo 11 mission underwater  to prepare for future missions to the Moon, Mars or an asteroid. Credit: Alexis Rosenfeld
ESA astronaut Jean-François Clervoy collecting a rock sample underwater off the coast of Marseille, France. He was simulating the Apollo 11 mission underwater to prepare for future missions to the Moon, Mars or an asteroid. Credit: Alexis Rosenfeld

“Comex will make me relive the underwater operations of [Neil] Armstrong on the moon, but with an ESA-Comex scuba suit and European flag,” Clervoy wrote in French on Twitter on June 4, several weeks ahead of the mission.

And ESA promises there is more to come: “Further development for planetary surface simulations in Europe will be co-financed by the EU [European Union] as part of the Moonwalk project,” the agency wrote.

Clervoy isn’t the only European astronaut working in water these days. Starting Tuesday (Sept. 9), Andreas Mogensen and Thomas Pesquet joined an underwater lab as part of a five-person crew. Called Space Environment Analog for Testing EVA Systems and Training (SEATEST), it also includes NASA astronauts Joe Acaba and Kate Rubins, as well as Japanese Aerospace Exploration Agency (JAXA) astronaut Soichi Noguchi.

JAXA astronaut Soichi Noguchi underwater during the September 2013 SEATEST mission in the Atlantic Ocean about seven miles from Key Largo, Fla. Credit: Soichi Noguchi (Twitter)
JAXA astronaut Soichi Noguchi underwater during the September 2013 SEATEST mission in the Atlantic Ocean about seven miles from Key Largo, Fla. Credit: Soichi Noguchi (Twitter)

“The crew will spend five days in Florida International University’s Aquarius Reef Base undersea research habitat, conducting proof-of-concept engineering demonstrations and refining techniques in team communication. Additional test objectives will look at just-in-time training applications and spacewalking tool designs,” NASA stated on Sept. 6.

“We made it to Aquarius n [sic] did our first “spacewalk” today. From the ocean floor to space: Aquanaut to Astronaut. It is quite the adventure,” Acaba wrote on Twitter on Sept. 10. He walked twice in space on shuttle mission STS-119 in March 2009.

You can follow the livestream here (it runs intermittently until Sept. 17).

And a few days ago, ESA astronauts Alexander Gerst and Reid Wiseman, both bound for the station in 2014, were doing underwater training in the Neutral Buoyancy Laboratory. “Worked with @astro_reid in the pool today, and guess who we met?”, Gerst said on Twitter Sept. 5 while posting this picture below.

"Worked with @astro_reid [ESA astronaut Reid Wiseman] in the pool today, and guess who we met?" joked ESA astronaut Alexander Gerst on Twitter on Sept. 5, 2013. Presumably the joke referred to the protagonist in WALL-E, a 2008 Pixar-animated film that features space exploration. Credit: Alexander Gerst/Twitter
“Worked with @astro_reid [ESA astronaut Reid Wiseman] in the pool today, and guess who we met?” joked ESA astronaut Alexander Gerst on Twitter on Sept. 5, 2013. Presumably the joke referred to the protagonist in WALL-E, a 2008 Pixar-animated film that features space exploration. Credit: Alexander Gerst/Twitter

Space Station Expedition 36 Crew Returns to Earth Safely

The Soyuz TMA-08M spacecraft with Expedition 36 lands in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. Credit: NASA/Bill Ingalls.

The Expedition 36 crew from the International Space Station have landed safely, touching down in their Soyuz TMA-08M spacecraft in Kazakhstan at 02:38 UTC on September 11 (10:58 p.m. EDT Sept. 10). This great overhead image by NASA photographer Bill Ingalls shows the Soyuz’s thrusters firing just before it slams into the ground, ending up on its side. On board were Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin of the Russian Federal Space Agency and NASA Flight Engineer Chris Cassidy. Vinigradov, age 60, is the oldest person to make the jarring landing in the venerable Soyuz craft.

You can see undocking and landing videos below:

The three completed 166 days in space since launching in late March. Remaining on the ISS are ESA astronaut Luca Parmitano, NASA astronaut Karen Nyberg and Russian cosmonaut Fyodor Yurchikhin, now comprising Expedition 37. They will be joined by the Oleg Kotov, Sergei Ryazansky and Michael Hopkins, set to launch on September 25.

NASA Science Probe Blazes Spectacular Trail to the Moon from Virginia

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com

This magnificent view of NASA’s LADEE lunar orbiter launched on Friday night Sept 6, on the maiden flight of the Minotaur V rocket from Virginia was captured by space photographer Ben Cooper perched atop Rockefeller Center in New York City. Credit: Ben Cooper/Launchphotography.com
Story updated[/caption]

WALLOPS ISLAND, VA – A NASA moon probe named LADEE thundered to space tonight, Sept. 6, blazing a spectacular trail to orbit from a beachside launch pad in Virginia that was easily visible to tens of millions of spectators along the eastern seaboard as a result of crystal clear skies and the night time liftoff – see magnificent photo shot from NYC above by Ben Cooper/Launchphotography.com.

The drama at the LADEE launch site on the eastern shore of Virginia at NASA’s Wallops Island facility was palpable due to the historic and experimental nature of the mission.

Hordes of tourists flooded into Virginia to be eyewitnesses to an unprecedented space spectacle that marked Americas ‘Return to the Moon’ and a chance to see the type of big and exciting rocket launches previously reserved for Florida and California.

Everyone I spoke too was absolutely overwhelmed with the amazing beauty of the Minotaur V blastoff carrying LADEE to orbit, whooping and hollering, far beyond our wildest expectations as the crackling fire pierced through the night and reverberated in our ears!

“It was a picture perfect launch,” said NASA Associate Administrator John Grunsfeld at a post launch media briefing at NASA Wallops.

“LADEE will help us unravel the mysteries of the lunar atmosphere.”

Blastoff of NASA’s dust exploring Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory marked the first space probe of any kind ever launched beyond Earth orbit from NASA Wallops, as well as being the first planetary science mission from Wallops.

LADEE's launch aboard a Minotaur V on Sept. 6, 2013. Credit: NASA Wallops/Chris Perry
LADEE’s launch aboard a Minotaur V on Sept. 6, 2013. Credit: NASA Wallops/Chris Perry

The Minotaur V rocket launched precisely on time at 11:27 p.m. EDT on the maiden flight of the powerful new Minotaur V rocket Launch Pad 0B on NASA’s Wallops Flight Facility.

“The spacecraft is healthy and power positive and separated from the fifth and last stage on time, approximately 23 minutes into the flight,” said Pete Worden to Universe Today after the liftoff. Worden is the Director of NASA’s Ames Research Center which designed and built LADEE using a revolutionary new design to reduce costs and increase science output.

Ignition of Minotaur V rocket launching NASA’s LADEE lunar orbiter on Sept. 6, at 11:27 p.m. EDT from NASA Wallops, Virginia, media viewing site 2 miles away. Credit: Ken Kremer/kenkremer.com
Ignition of Minotaur V rocket launching NASA’s LADEE lunar orbiter on Sept. 6, at 11:27 p.m. EDT from NASA Wallops, Virginia, media viewing site 2 miles away. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, media viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, media viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

The liftoff of LADEE (pronounced ‘laddie’ not ‘lady’) also marks the first launch of a five stage rocket and the first launch of a decommissioned Peacekeeper missile from Wallops. The Peacekeeper was a nuclear armed intercontinental ballistic missile ICBM built during the Cold War – now retired and refurbished by Orbital for peaceful uses.

The Minotaur V fifth stage boosted LADEE into a highly elliptical orbit. Over about the next 23 days, as LADEE orbits Earth 3.5 times, the Moon’s gravitational field will increase the apogee of its orbit. The spacecraft will fire its on-board braking thrusters to achieve lunar orbit.

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island.  Credit: Ken Kremer/kenkremer.com
Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The mission will fly in a very low science orbit of about 50 kilometers altitude above the moon that will require considerable fuel to maintain. The science mission duration is approximately 100 days.

The 844 pound (383 kg) robot explorer is the size of a couch and was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

It is equipped with a trio of science instruments whose purpose is to collect data that will inform scientists in unprecedented detail about the ultra thin lunar atmosphere, environmental influences on lunar dust and conditions near the surface.

The goal of the $280 Million mission is to gain a thorough understanding of long-standing unknowns about the tenuous atmosphere, dust and surface interactions that will help scientists understand other planetary bodies as well.

The LADEE satellite in lunar orbit.   The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine.  Credit: NASA
The LADEE satellite in lunar orbit. The revolutionary modular science probe is equipped with a Lunar Laser Communication Demonstration (LLCD) that will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine. Credit: NASA

The couch sized probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system. The overall mission cost is approximately $280 million.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Director Worden told Universe Today. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

The five stage Minotaur V rocket stands 80.6 feet (24.6 meters) tall, is 7.6 feet (2.3 m) in diameter and weighs 197,034 pounds (89,373 kilograms).

Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island.  Credit: Ken Kremer/kenkremer.com
Gantry doors open to expose Minotaur V rocket launching LADEE lunar orbiter to the Moon on Sept 6, 2013 from Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

The first three stages of the Minotaur V are based on the nuclear armed Peacekeeper ICBM intercontinental ballistic missile built during the Cold War – now retired and refurbished by Orbital Sciences for peaceful uses.

The upper 5th stage is a new addition and what makes this Minotaur a new rocket class. The additional thrust is what converts the Minotaur V into an interplanetary booster that enables shooting for the Moon.

“I dreamed all my life about launching a rocket to the moon. And now we are doing it,” Lou Amorosi, told Universe Today at the Minotuar launch pad. Amorosi is the Senior Vice President of Orbital’s Small Space Launch Vehicle business.

“This mission further demonstrates the capabilities of our well-established Minotaur rocket family and our commitment to providing reliable access to space,” Amorosi noted in a post launch statement.

Ken Kremer

…………….
Learn more about LADEE, Cygnus, Antares, MAVEN, Orion, Mars rovers and more at Ken’s upcoming presentations:

Sep 16/17: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Oct 8: “LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 8 PM

LADEE post launch news briefing at NASA Wallops, VA with  Air Force Col. Urban Gillespie, Minotaur mission director from the Space Development and Test Directorate, John Grunsfeld, Astronaut and    NASA Associate Administrator for Science, Pete Worden, Director of NASA’s Ames Research Center.   Credit: Ken Kremer/kenkremer.com
LADEE post launch news briefing at NASA Wallops, VA with Air Force Col. Urban Gillespie, Minotaur mission director from the Space Development and Test Directorate, John Grunsfeld, Astronaut and NASA Associate Administrator for Science, Pete Worden, Director of NASA’s Ames Research Center. Credit: Ken Kremer/kenkremer.com
Lou Amorosi, VP of Orbital Sciences Small Spacecraft Launch Vehicles and Ken Kremer of Universe Today with LADEE and Minotaur V rocket at Launch Pad.  Credit: Ken Kremer/kenkremer.com
Lou Amorosi, VP of Orbital Sciences Small Spacecraft Launch Vehicles and Ken Kremer of Universe Today with LADEE and Minotaur V rocket at Launch Pad 0B at NASA Wallops Island. Credit: Ken Kremer/kenkremer.com

LADEE_Poster_01

Ride Along With SpaceShipTwo: Tail Footage Video of Latest Test Flight

Virgin Galactic's SpaceShipTwo soars in a powered flight test on Sept. 5, 2013. Credit: MarsScientific.com and Clay Center Observatory

Yesterday, Virgin Galactic’s SpaceShipTwo successfully completed its second supersonic rocket-powered test flight. In our previous article, we were able to share a video view of the flight — as seen from the ground. But now Virgin Galactic has shared the flight footage from a camera mounted on the tail of the ship, allowing us all to ride along and see the views. I’m hoping for they’ll eventually show a cabin view video so that we can see what the ride inside will be like.

The ship went to 69,000 feet (21 km, 13 miles) but you can still see the blackness of space and the curvature of Earth in the video.

Virgin Galactic Founder Sir Richard Branson said yesterday that commercial flights with passengers should begin in 2014 … which is next year, meaning that perhaps space flight for the rest of us is not always 5-10 years off anymore.

Um, Being an Astronaut or Cosmonaut Isn’t Interesting?

Cosmonaut Yury Lonchakov.

In an unusual news item from Russia’s RiaNovosti news, cosmonaut Yuri Lonchakov, who was scheduled to fly to the International Space Station in 2015, has resigned for undisclosed reasons. But one of the heads the Russian Space Corporation Energia, former cosmonaut Sergei Krikalev, was quoted by Russian media as saying that Lonchakov had “found a more interesting job.”

The type of new job was not disclosed, but it has to be pretty good to beat flying in space … at least in our opinion.

It’s not that astronauts and cosmonauts haven’t ever quit or retired, but usually they don’t quit when they have a space flight scheduled. Lonchakov was set to fly to the ISS as the commander of Expedition 44 in May 2015 along with Russian cosmonaut Mikhail Korniyenko and NASA astronaut Scott Kelly; the latter two are going to be part of an experimental one-year mission on the ISS.

Lonchakov has flown in space three times: on space shuttle Endeavour in 2001 on a construction mission to the ISS, helping to deliver the Canadarm2 Arm, then was part of the Soyuz flight to the ISS in 2002, staying just ten days, and then was part of Expedition 18 to the International Space Station in 2008-2009.

RiaNovosti said Lonchakov will be formally discharged from his job on September 14.

Hat tip: Jeff Foust

SpaceShipTwo Feathers Wings During Second Powered Test Flight

Virgin Galactic's SpaceShipTwo soars in a powered flight test on Sept. 5, 2013. Credit: MarsScientific.com and Clay Center Observatory

Is that the smell of rocket fuel in the air, or customer excitement?

The reported 600+ customers waiting in line for a trip to space aboard SpaceShipTwo (nickname: Enterprise) surely must have been excited when the suborbital spaceship successfully sailed through another powered flight test today (Thursday).

“SS2 has successfully completed another supersonic rocket-powered test flight! Hit our planned duration, altitude, and speed,” Virgin Galactic wrote on Twitter.

Watch the video of the flight below:

SpaceShipTwo also tested a “feathering” system that it has on board to assist with controlled re-entry. It allows the entire tail of the spaceship to rotate up to about 65 degrees, which Virgin says allows fine control of the attitude as the spacecraft comes back to Earth. “The feather configuration is also highly stable, effectively giving the pilot a hands-free re-entry capability, something that has not been possible on spacecraft before,” Virgin said of the system on its website.

Virgin Galactic's SpaceShipTwo, aboard WhiteKnightTwo, takes off during a flight test Sept. 5, 2013. Credit: Virgin Galactic (Twitter)
Virgin Galactic’s SpaceShipTwo, aboard WhiteKnightTwo, takes off during a flight test Sept. 5, 2013. Credit: Virgin Galactic (Twitter)

The test, which started at about 8 a.m. Mojave time, saw the WhiteKnightTwo carrier aircraft take off from the Mojave Air and Space Port carrying SpaceShipTwo underneath. At 46,000 feet, pilots Mark Stucky and Clint Nichols released their spacecraft from the carrier and turned on the rocket motor for a 20-second burn. They climbed as high as 69,000 feet at a maximum speed of Mach 1.43, or 1.43 times the speed of sound.

“The main progress with this test is that we deployed the full expansion (up and down) of the feather mechanism at a high altitude, alongside testing the rocket motor performance,” wrote Virgin founder Richard Branson on his blog. “This feather mechanism was the key innovation that enabled us to get into the space program in the first place. It acts like a giant shuttlecock and slows the spaceship up as it comes back into the earth’s atmosphere.”

Branson also described Thursday’s test — the second powered flight for SpaceShipTwo, which did its first in April — as “the highest commercial winged vehicle [flight] in history.”

Reports say Branson and some members of his family will be on the first test flight. Should that go to plan, there is a parade of celebrities and ordinary citizens to come. Read more about SpaceShipTwo’s expected flight profile here.

The Scariest Part of “Gravity” is the Lack Thereof

I love science fiction films and I especially love it when the “science” part leans closer to fact than fiction. (Yes, I’m looking at you, Europa Report.) Now I’ve never seen an actual catastrophe in orbit (and I hope I never do) but I have to assume it’d look a whole lot like what’s happening in the upcoming film “Gravity,” opening in U.S. theaters on October 4. This full official trailer was released today.

A disaster film sure becomes a whole lot more interesting when everything is moving 18,000 miles an hour and there’s no up or down. And, of course, space. (!!!)

So what do you think? Will you be seeing Gravity? Share your thoughts in the comments…
Continue reading “The Scariest Part of “Gravity” is the Lack Thereof”