The technology, which sounds straight out of a science-fiction movie, has enough reality to it for the United Kingdom government to offer $90.62 million (£60 million), in stages, to a company looking to develop the engine.
The money will go to Oxfordshire-based Reaction Engines, which we’ve seen on Universe Today before. They’re also developing an unpiloted and reusable spacecraft called Skylon, which is intended for low Earth orbit after leaving the planet from a conventional runway.
Skylon isn’t flight-ready yet, but so far the project did pass a United Kingdom Space Agency technical assessment. If completed, the UK Space Agency says Skylon is just one of many vehicles that could use this engine, which is called Sabre.
“The unique engine is designed to extract the oxygen it needs for low atmosphere flight from the air itself, paving the way for a new generation of spaceplanes which would be lighter, reusable and able to take off and launch from conventional airport runways,” the agency stated.
The money, stated Reaction Engines founder Alan Bond, will fund “the next phase in the development of its engine and heat management technology.” More specifically, this is what the company plans to use the funds for:
– Engine technical design work;
– Improving lightweight heat exchanger technology and manufacturing;
– Performing wind tunnel and flight testing of engine components;
– Doing a “ground demonstration” of the engine.
If all stays to schedule, Reaction Engines expects a Sabre prototype will be ready in 2017, with flight tests commencing in 2020.
The major goal of Sabre is to use hot air entering the engine to obtain the required oxygen for operations, rather than carrying the gas separately on board. The engine is supposed to switch to a “rocket mode” at 26,000 feet in altitude.
“This advantage enables a spaceplane to fly lighter from the outset and to make a single leap to orbit, rather than using and dumping propellant stages on the ascent – as is the case with current expendable rockets,” the UK Space Agency stated.
Reaction Engines promises Skylon would give “reliable access to space” through carrying payloads of up to 15 tonnes, but at only 2% of the cost of more conventional launch vehicles — namely, rockets. It remains to be seen if they will achieve that cost goal, but the funding is welcome news nonetheless for the company.
NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) Observatory has arrived at the launch site on the Eastern Shore of Virginia at NASA’s Wallops Flight Facility on Wallops Island and is now in the midst of weeks of performance testing to ensure it is ready for liftoff in early September.
The LADEE lunar orbiting probe will be the first planetary science mission ever launched from NASAWallops and the Mid-Atlantic Regional Spaceport (MARS). It will soar to space atop a solid fueled Minotaur V rocket on its maiden flight.
LADEE will blaze a brilliant trail to the Moon during a spectacular nighttime blastoff slated for Sept. 6, 2013 at 11:27 PM from Launch Pad 0B.
LADEE is equipped with three science instruments to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust.
“LADEE will investigate the moons tenuous exosphere, trace outgases like the sodium halo and lofted dust at the terminator,” said Jim Green, Planetary Science Division Director at NASA HQ, in an exclusive interview with Universe Today.
“The spacecraft has a mass spectrometer to identify the gases, a physical dust detector and an imager to look at scattered light from the dust. These processes also occur at asteroids.”
“And it will also test a laser communications system that is a technology demonstrator for future planetary science missions. It communicates at 650 megabits per second,” Green explained to me.
The couch sized 844 pound (383 kg) robotic explorer was assembled at NASA’s Ames Research Center, Moffett Field Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.
The spacecraft was then shipped cross country by a dedicated truck inside a specially-designed shipping container – blanketed with protective nitrogen – which insulated the spacecraft from temperature, moisture, bumps in the road and more than a few crazy drivers.
The first leg of LADEE’s trip to the Moon took 5 days. The trans lunar leg will take 30 days.
It’s standard practice that whenever space probes are moved by ground transportation that they are accompanied by a caravan that includes a lead scout vehicle to ensure safe road conditions and followed by engineers monitoring the health and environmental storage conditions.
Technicians are now engaged in a lengthy series of performance tests to confirm that LADEE was not damaged during the road trip and that all spacecraft systems are functioning properly.
“One important preparation about to begin is spin-balancing LADEE,” says Butler Hine, LADEE Project Manager. “During this procedure, the spacecraft is mounted to a spin table and rotated at a high-speed to make sure it is perfectly balanced for launch.”
After all spacecraft systems pass the performance tests, LADEE will be fueled, encapsulated and moved to the Wallops Island launch pad later this summer for mating with the five stage Minotaur V booster stack.
“I’m excited about the night launch because people up and down the Atlantic seacoast will be able to see it,” Green told me.
Sierra Nevada Corporation’s Dream Chaser successfully rolls through two tow tests at NASA’s Dryden Flight Research Center in California in preparation for future flight testing later this year. Watch way cool Dream Chaser assembly video below![/caption]
Sierra Nevada Corporation’s winged Dream Chaser engineering test article is moving forward with a series of ground tests at NASA’s Dryden Flight Research Center in California that will soon lead to dramatic aerial flight tests throughout 2013.
Pathfinding tow tests on Dryden’s concrete runway aim to validate the performance of the vehicles’ nose skid, brakes, tires and other systems to prove that it can safely land an astronaut crew after surviving the searing re-entry from Earth orbit.
The Dream Chaser is one of the three types of private sector ‘space taxis’ being developed with NASA seed money to restore America’s capability to blast humans to Earth orbit from American soil – a capability which was totally lost following the forced shutdown of NASA’s Space Shuttle program in 2011.
For the initial ground tests, the engineering test article was pulled by a tow truck at 10 and 20 MPH. Later this month tow speeds will be ramped up to 40 to 60 MPH.
Final assembly of the Dream Chaser test vehicle was completed at Dryden with installation of the wings and tail, following shipment from SNC’s Space Systems headquarters in Louisville, Colo.
Watch this exciting minute-long, time-lapse video showing attachment of the wings and tail:
In the next phase later this year, Sierra Nevada will conduct airborne captive carry tests using an Erickson Skycrane helicopter.
Atmospheric drop tests of the engineering test article in an autonomous free flight mode for Approach and Landing Tests (ALT) will follow to check the aerodynamic handling.
The engineering test article is a full sized vehicle.
Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the Space Shuttle.
“It’s not outfitted for orbital flight. It is outfitted for atmospheric flight tests,” said Marc Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman, to Universe Today.
“The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight,” Sirangelo told me.
Sierra Nevada Corp, along with Boeing and SpaceX are working with NASA in a public-private partnership using a combination of NASA seed money and company funds.
Each company was awarded contracts under NASA’s Commercial Crew Integrated Capability Initiative, or CCiCap, program, the third in a series of contracts aimed at kick starting the development of the private sector ‘space taxis’ to fly US and partner astronauts to and from low Earth orbit (LEO) and the International Space Station (ISS).
“We are the emotional successors to the shuttle,” says Sirangelo. “Our target was to repatriate that industry back to the United States, and that’s what we’re doing.”
The combined value of NASA’s Phase 1 CCiCap contracts is about $1.1 Billion and runs through March 2014.
Phase 2 contract awards will eventually lead to actual flight units after a down selection to one or more of the companies.
Everything depends on NASA’s approved budget, which seems headed for steep cuts in excess of a billion dollars if the Republican dominated US House has its way.
The Commercial Crew program’s goal is to ensure the nation has safe, reliable and affordable crew transportation systems to space.
“Unique public-private partnerships like the one between NASA and Sierra Nevada Corporation are creating an industry capable of building the next generation of rockets and spacecraft that will carry U.S. astronauts to the scientific proving ground of low-Earth orbit,” said William Gerstenmaier, NASA’s associate administrator for human exploration and operations in Washington, in a statement.
“NASA centers around the country paved the way for 50 years of American human spaceflight, and they’re actively working with our partners to test innovative commercial space systems that will continue to ensure American leadership in exploration and discovery.”
All three commercial vehicles – the Boeing CST-100; SpaceX Dragon and Sierra Nevada Dream Chaser – are designed to carry a crew of up to 7 astronauts and remain docked at the ISS for more than 6 months.
The first orbital flight test of the Dream Chaser is not expected before 2016 and could be further delayed if NASA’s commercial crew budget is again slashed by the Congress – as was done the past few years.
In the meantime, US astronauts are totally dependent on Russia’s Soyuz capsule for rides to the ISS. NASA must pay Russia upwards of $70 million per seat until the space taxis are ready for liftoff – perhaps in 2017.
“We have got to get Commercial Crew funded, or we’re going to be paying the Russians forever,” said NASA Administrator Charles Bolden at Dryden. “Without Commercial Crew, we probably won’t have exploration.”
Concurrently, NASA is developing the Orion Crew capsule for missions to the Moon, Asteroids and beyond to Mars and other destinations in our Solar System -details here.
NASA’s next Mars rover set for liftoff in 2020 should focus on three primary objectives; seeking signs of past life, collecting a cache of carefully chosen samples for eventual return to Earth and developing technologies that will help enable future human missions to the Red Planet some two decades from now.
The 2020 goals were laid out publicly today (July 9) by a panel of scientists on the ‘Science Definition Team’ and charged by NASA with defining the key science objectives for the new mission.
The science objectives and how to accomplish them are outlined in considerable detail in a newly issued 154 page report handed over to the space agency and discussed at today’s NASA briefing for the media.
Looking for signs of ancient life and preserved biosignatures on Mars at a place that was once habitable is the top priority of the 2020 mission. The SDT report states that the landing site should be chosen specifically to “explore the geology of a once habitable site.”
“We need a highly mobile rover that can make ‘in situ’ science measurements,” said Jack Mustard, chairman of the Science Definition Team and a professor at the Geological Sciences at Brown University in Providence, R.I., at the briefing.
“The rover would use its own instruments on Mars for visual, mineralogical and chemical analysis down to a microscopic scale to identify candidate features that may have been formed by past life,” states the SDT report.
“We can’t do this now with Curiosity,” explained Mustard. “We need higher resolution.”
Looking for ‘extant’ life, that is life surviving on Mars today, would be a by-product of the search for organic molecules and preserved biosignatures of life – past or present.
The Mars 2020 ‘Science Definition Team’ (SDT) is comprised of 19 scientists and engineers from academia and industry. They were appointed by NASA in January 2013 to thoroughly and quickly evaluate a wide range of options to accomplish the highest priority planetary science objectives and achieve President Obama’s challenge to send humans to Mars in the 2030s.
Retrieving soil and rock samples from Mars for analysis back on Earth by research teams worldwide using all the most advanced analytical instruments available to humankind with unprecedented capability has been the ‘Holy Grail’ of Mars exploration for several decades.
But the enormous cost and technical complexity of a Mars Sample Return (MSR) mission has caused it to be repeatedly postponed.
The 2020 rover will be designed to make real progress on sample return for the first time. It will be capable of coring into rocks and storing 31 highly compelling Martian samples for return by a follow on mission to the Red Planet.
“But the timing on actually returning those samples to Earth is yet to be determined,” said John Grunsfeld, NASA’s associate administrator for science in Washington.
Everything NASA does is budget driven and the fiscal climate is rather gloomy right now.
“Crafting the science and exploration goals is a crucial milestone in preparing for our next major Mars mission,” said John Grunsfeld, NASA’s associate administrator for science in Washington, in a statement.
Work on the new rover must begin soon in order to achieve the mandatory 2020 launch deadline. Launch opportunities to Mars only open every 26 months and delays could balloon the costs by several hundred million dollars.
“The objectives determined by NASA with the input from this team will become the basis later this year for soliciting proposals to provide instruments to be part of the science payload on this exciting step in Mars exploration,” adds Grunsfeld.
“The 2020 rover will take a major step in ‘seeking signs of life” said Jim Green, director of NASA’s Planetary Science Division in Washington, at the briefing. “NASA will issue a call for science instruments this fall.”
The new mission would build upon the demonstrated science accomplishments of earlier missions like Curiosity, Spirit, Opportunity and Phoenix while vastly advancing the capabilities of the robots research instruments.
“Here’s the bottom line. Questions drive science,” explained Lindy Elkins-Tanton, SDT member and director of the Carnegie Institution for Science’s Department of Terrestrial Magnetism, Washington.
“We should be seeking to answer the very biggest questions. And one of the very biggest questions for all of humankind is – ‘Are we alone?’ And that is the question we’re hoping to make really big advances with on with this Mars 2020 mission.”
Grunsfeld explained that NASA has budgeted “for a mission cost of $1.5 Billion plus the cost of the launcher.”
The 2020 rover chassis, with some modifications, will be based on the blueprints of the highly successful Curiosity rover to keep down the cost and minimize risks. But the science instruments will be completely new and updated.
NASA’s 1 ton Curiosity rover touched down nearly a year ago and has already discovered that the Red Planet has the chemical ingredients and environmental conditions for a habitable zone that could have supported living Martian microbes.
The next logical step is to look for the ancient signs of life that would be preserved in the rock record on Mars.
NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 – attached to European provided service module – on an ambitious mission to explore Deep Space some 40,000 miles beyond the Moon, where an asteroid could be relocated as early as 2021. Credit: NASA Story updated with further details[/caption]
NASA managers have announced a bold new plan to significantly alter and upgrade the goals and complexity of the 1st mission of the integrated Orion/Space Launch System (SLS) human exploration architecture – planned for blastoff in late 2017.
The ambitious first flight, called Exploration Mission 1 (EM-1), would be targeted to send an unpiloted Orion spacecraft to a point more than 40,000 miles (70,000 kilometers) beyond the Moon as a forerunner supporting NASA’s new Asteroid Redirect Initiative – recently approved by the Obama Administration.
The EM-1 flight will now serve as an elaborate harbinger to NASA’s likewise enhanced EM-2 mission, which would dispatch a crew of astronauts for up close investigation of a small Near Earth Asteroid relocated to the Moon’s vicinity.
Until recently NASA’s plan had been to launch the first crewed Orion atop the 2nd SLS rocket in 2021 to a high orbit around the moon on the EM-2 mission, said NASA Associate Administrator Lori Garver in an prior interview with me at the Kennedy Space Center.
The enhanced EM-1 flight would involve launching an unmanned Orion, fully integrated with the Block 1 SLS to a Deep Retrograde Orbit (DRO) near the moon, a stable orbit in the Earth-moon system where an asteroid could be moved to as early as 2021.
Orion’s mission duration would be nearly tripled to 25 days from the original 10 days.
“The EM-1 mission with include approximately nine days outbound, three to six days in deep retrograde orbit and nine days back,” Brandi Dean, NASA Johnson Space Center spokeswoman told Universe Today exclusively.
The proposed much more technologically difficult EM-1 mission would allow for an exceptionally more vigorous work out and evaluation of the design of all flight systems for both Orion and SLS before risking a flight with humans aboard.
A slew of additional thruster firings would exercise the engines to change orbital parameters outbound, around the moon and inbound for reentry.
The current Deep Retrograde Orbit (DRO) plan includes several thruster firings from the Orion service module, including a powered lunar flyby, an insertion at DRO, an extraction maneuver from the DRO and a powered flyby on return to Earth.
Orion would be outfitted with sensors to collect a wide variety of measurements to evaluate its operation in the harsh space environment.
“EM-1 will have a compliment of both operational flight instrumentation and development flight instrumentation. This instrumentation suite gives us the ability to measure many attributes of system functionality and performance, including thermal, stress, displacement, acceleration, pressure and radiation,” Dean told me.
The EM-1 flight has many years of planning and development ahead and further revisions prior to the 2017 liftoff are likely.
“Final flight test objectives and the exact set of instrumentation required to meet those objectives is currently under development,” Dean explained.
Orion is NASA’s next generation manned space vehicle following the retirement of NASA’s trio of Space Shuttles in 2011.
The SLS launcher will be the most powerful and capable rocket ever built by humans – exceeding the liftoff thrust of the Apollo era Moon landing booster, the mighty Saturn V.
“We sent Apollo around the moon before we landed on it and tested the space shuttle’s landing performance before it ever returned from space.” said Dan Dumbacher, NASA’s deputy associate administrator for exploration systems development, in a statement.
“We’ve always planned for EM-1 to serve as the first test of SLS and Orion together and as a critical step in preparing for crewed flights. This change still gives us that opportunity and also gives us a chance to test operations planning ahead of our mission to a relocated asteroid.”
Both Orion and SLS are under active and accelerating development by NASA and its industrial partners.
The 1st Orion capsule is slated to blast off on the unpiloted EFT-1 test flight in September 2014 atop a Delta IV Heavy rocket on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface.
It will then reenter Earth’s atmosphere at speeds of about 20,000 MPH (11 km/sec) and endure temperatures of 4,000 degrees Fahrenheit in a critical test designed to evaluate the performance of Orion’s heatshield and numerous spacecraft systems.
Orion EFT-1 is already under construction at the Kennedy Space Center (KSC) by prime contractor Lockheed Martin – read my earlier story here.
Integration and stacking tests with Orion’s emergency Launch Abort System are also in progress at KSC – details here.
NASA says the SLS is also in the midst of a extensive review process called the Preliminary Design Review (PDR) to ensure that all launch vehicle components and systems will achieve the specified performance targets and be completed in time to meet the 2017 launch date. The PDR will be completed later this summer.
NASA’s goal with Orion/SLS is to send humans to the Moon and other Deep Space destinations like Asteroids and Mars for the first time in over forty years since the final manned lunar landing by Apollo 17 back in 1972.
NASA Headquarters will make a final decision on upgrading the EM-1 mission after extensive technical reviews this summer.
NASA’s Curiosity rover has at last begun her epic trek to the layered slopes of mysterious Mount Sharp – the mission’s primary destination which looms supreme inside the Gale Crater landing site.
Scientists expect to discover signatures of the chemical ingredients that potentially are markers for a Martian habitable zone, while climbing up Mount Sharp.
On July 4 (Sol 324), the six wheeled robot started driving away from the Glenelg and Yellowknife Bay areas where she has worked more than half a year investigating the alien terrain and drilling into Martian rocks for the first time in history.
“We have started the long traverse to the base of Mt. Sharp (Aeolis Mons), the long-term goal of the mission!” announced science team member Ken Herkenhoff of the USGS.
So far the NASA rover already driven more than 190 feet (58 meters) over two excursions on July 4 and 7, away from her last science campaign at the Shaler outcrop of cross-bedded, sedimentary outcrops. Another drive is planned today.
Billions of years of Mars geologic history are preserved in the sedimentary layers of Mount Sharp- including the ancient time period when the Red Planet was far wetter and warmer than today, and thus more hospitable to the origin of life.
The huge mountain rises about 3.4 miles (5.5 km) from the center of Gale Crater. Its taller than Mount Ranier in Washington State.
The overland journey could take nearly a year or even longer into 2014 to arrive at the base of Mount Sharp, depending on what the 1 ton behemoth sees along the way.
And the scientists are eager to make as many discoveries as possible.
“The mission is discovery driven,” says John Grotznger of the California Institute of Technology in Pasadena, Calif., who leads NASA’s Curiosity Mars Science Laboratory mission. “We will go to where the science takes us.”
NASA chose Gale Crater as the landing site specifically to dispatch Curiosity to investigate the sedimentary layers of Mount Sharp because in surveys from Mars orbit it exhibited signatures of clay minerals that form in neutral water and that could possibly support the origin and evolution of simple Martian life forms, past or present.
“We have a real desire to get to Mount Sharp because there we see variations in the mineralogy as we go up from the base to higher levels and a change in the record of the environment,” explained Joy Crisp of JPL, Curiosity’s deputy project scientist.
“If we pass something amazing and compelling we might turn around and drive back,” Crisp added.
“The challenge for the science team will be to identify the most important targets along the way, and to study them without delaying drive progress too much,” notes Herkenoff.
Mount Sharp lies about 5 miles (8 kilometers) distant – as the Martian crow flies.
And Curiosity must also pass through a potentially treacherous dune field to get there.
“We are looking for the best path though,” said Curiosity Project Manager Jim Erickson of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. at a recent media briefing.
11 months ago on Aug. 6 , 2012, Curiosity made an unprecedented pinpoint touchdown inside Gale Crater using the never before used Sky crane descent thrusters.
Long before even arriving at destination Mount Sharp, Curiosity has already successfully accomplished the key science objective of the mission when she discovered that liquid water flowed at this spot on Mars, it possesses the key chemical ingredients required for life and was habitable in the past.
Drill samples from the ‘John Klein’ outcrop at Yellowknife Bay analyzed by Curiosity’s pair of onboard chemistry labs – SAM & Chemin – revealed that this location contains clay minerals required to support microbial life forms.
“We have found a habitable environment [at John Klein] which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” said Grotzinger.
Opportunity rover’s view across Botany Bay to Solander Point – her next destination – as NASA celebrates 10 Years since blastoff for Mars on July 7, 2003. The rover will climb up Solander Point because it which may harbor clay minerals indicative of a past Martian habitable environment. This pancam mosaic was assembled from raw images taken on Sol 3348 (June 24, 2013.
Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer (kenkremer.com)[/caption]
Today, NASA’sOpportunity rover marks a magical moment celebrating 10 years since launching to Mars on July 7, 2003 and with her impending Mountain destination filling the camera’s eye view.
The now legendary robot has vastly exceeded everyone’s expectations. Back in 2003 the science team promised us a mere 90 day ‘warranty’ following the suspenseful airbag landing on Jan. 24, 2004 at Meridiani Planum.
Today is Martian Day (or Sol) 3360. That amounts to a life expectancy and exploration ‘bonus’ of more than 37 times beyond the design lifetime.
Opportunity’s twin sister Spirit blasted off three weeks earlier in June 2003 and continued functioning until 2010.
“I never thought we’d achieve nine months!” Principal Investigator Prof. Steve Squyres of Cornell University told me recently on the occasion of the rovers 9th anniversary on Mars in January 2013.
As you read this, the now decade old rover Opportunity is blazing a trail toward’s the oldest geological deposits she has ever explored – at a place called Solander Point, a raised ridge along the eroded rim of huge Endeavour Crater.
Opportunity has surpassed the halfway point in the traverse from the rim segment she has explored the past 22 months at ‘Cape York’ to her next rim segment destination at Solander.
From tip to tip, Cape York and Solander Point lie 1.2-mile (2-kilometer) apart along the western rim of Endeavour Crater. Both are raised portions of 14-mile-wide (22-kilometer-wide) Endeavour.
The rover has less than half a mile (800 meters) to go to finish the Martian dash from one rim segment to the next across an area called ‘Botany Bay’.
“We are making very good progress crossing ‘Botany Bay,’ said John Callas of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., who is project manager for the mission now entering its 2nd decade.
The flat terrain of fractured, light-toned bedrock is devoid of treacherous dunes and is easy to drive across, almost like a highway, which simplifies the daily planning by the rovers Earthly handlers.
“The surface that Opportunity is driving across in Botany Bay is polygonally fractured outcrop that is remarkably good for driving,” said Brad Joliff, an Opportunity science team member and long-term planner at Washington University in St. Louis. “The plates of outcrop, like a tiled mosaic pavement, have a thin covering of soil, not enough to form the wind-blown ripples we’ve had to deal with during some other long treks. The outcrop plates are light-toned, and the cracks between them are filled with dark, basaltic soil and our old friends the ‘blueberries.”
The “blueberries” are hematite-rich, erosion-resistant concretions about the size of BB’s that Opportunity discovered when she first opened her eyes at her Eagle crater landing site. During the multi year crater hopping tour that ensued, the rover continued finding patches of blueberries all the way to Endeavour crater.
Opportunity is expected to arrive at Solander’s foothills sometime in August – before the onset of the next southern hemisphere Martian winter, her 6th altogether.
Opportunity will scale Solander to continue the science quest in search of additional evidence of habitable environments with the chemical ingredients necessary to sustain Martian microbial life.
“Right now the rover team is discussing the best way to approach and drive up Solander,” Ray Arvidson told Universe Today. Arvidson is the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.
‘Solander Point’ offers roughly about a 10 times taller stack of geological layering compared to ‘Cape York.’
Solander also offers north facing slopes where Opportunity’s solar wings can more effectively soak up the sun’s rays to generate life giving electrical power.
The robot remains in excellent health.
The total driving distance exceeds 23 miles (37 kilometers). She has snapped over 181,000 images.
Meanwhile on the opposite side of Mars at Gale Crater, Opportunity’s younger sister rover Curiosity also discovered a habitable environment originating from a time when the Red Planet was far warmer and wetter billions of years ago.
July 4 Morning Fireworks from NASA!
A NASA Black Brant V Sounding Rocket launches in support of the Daytime Dynamo Mission on July 4, 2013 from NASA Wallops Flight Facility, VA. Credit: NASA/J. Eggers[/caption]
WALLOPS ISLAND, VA – Today, July 4, NASA celebrated America’s Independence Day with a spectacular fireworks display of a dynamic duo of sounding rockets – blasting off barely 15 seconds apart this morning from the agencies NASA Wallops Island facility on the Eastern Shore of Virginia on a science experiment to study the ionosphere.
The goal of the two rocket salvo was an in depth investigation of the electrical currents in Earth’s ionosphere – called the Daytime Dynamo.
The Dynamo electrical current sweeps through the ionosphere, a layer of charged particles that extends from about 30 to 600 miles above Earth.
Disruptions in the ionosphere can scramble radio wave signals for critical communications and navigations transmissions that can impact our every day lives.
The launches suffered multiple delays over the past 2 weeks due to weather, winds, errant boats and unacceptable science conditions in the upper atmosphere.
At last, the Fourth of July was the irresistible charm.
The liftoff times were 10:31:25 a.m. for the Black Brant V and 10:31:40 a.m. (EDT) for the Terrier-Improved Orion.
The experiment involved launching two suborbital rockets and also dispatching a NASA King Air airplane to collect a stream of airborne science measurements.
Daytime Dynamo is a joint project between NASA and the Japanese Space Agency, or Japan Aerospace Exploration Agency, or JAXA, said Robert Pfaff to Universe Today in an exclusive interview inside Mission Control at Wallops. Pfaff is the principle investigator for the Dynamo sounding rocket at NASA’s Goddard Space Flight Center in Greenbelt, Md.
“The dynamo changes during the day and varies with the season,” Pfaff told me.
But they only have one chance to launch. So the science team has to pick the best time to meet the science objectives.
“We would launch every month if we could and had the funding, in order to even more fully characterize the Dynamo.”
The 35 foot tall single-stage Black Brant V launched first. It carried a 600 pound payload to collect the baseline data to characterize the neutral and charged ionospheric particles as it blasted skyward.
The 33 foot tall two-stage Terrier-Improved Orion took off just 15 seconds later in the wake of the exhaust of the Black Brant V.
The Terrier-Improved Orion successfully deployed a lengthy trail of lithium gas from a pressurized canister that created a chemical tracer to track how the upper atmospheric winds vary with altitude. These winds are believed to be the drivers of the dynamo currents.
Both rockets fly for about five minutes to an altitude of some 100 miles up in the ionosphere. They both splashed down in the ocean after about 15 minutes.
NASA’s King Air aircraft was essential to the mission. I toured the airplane on the Wallops runway for an up-close look inside. It is outfitted with a bank of precisely aimed analytical instruments peering through the aircraft windows to capture the critical science data – see my photos herein.
“The King Air launches about an hour before the scheduled liftoff time,” Pfaff told me.
“It uses special cameras and filters to collect visible and infrared spectroscopic data from the lithium tracer to characterize the daytime dynamo.”
The science instruments are newly developed technology to make the daytime measurements of the lithium tracer and were jointly created by NASA, JAXA and scientists at Clemson University.
“Everything worked as planned,” Pfaff announced from Wallops Mission Control soon after the magnificent Fourth of July fireworks show this morning.
That video above is perhaps the ultimate off-roading adventure: taking a rover out for a spin on the moon. Look past the cool factor for a minute, though, and observe the dust falling down around that astronaut.
The crew aboard Apollo 16 (as well as other Apollo missions) had a lot of problems with regolith. It got into everything. It was so abrasive that it wore away some equipment in days. It smelled funny and probably wasn’t all that good to breathe in, either. Many have said that when we return to the moon, dust must be dealt with for long-term survival.
Things could get worse at sunrise and sunset. One new study (not peer-reviewed yet) finds a “serious risk” that rovers “could be engulfed in dust.” That’s because lunar dust appears to have electrostatic properties that, somehow, is triggered by changes in sunlight. (NASA is already doing some serious investigation into this matter using its orbiting missions.)
What the researchers did, in conjunction with ONERA (The French Center of Aerospace Research) was conduct simulations for two types of lunar regions — the terminator (the day/night boundary) and an area experiencing full sunlight.
“Dust particles were introduced into the simulation over a period of time, when both the surface and the rover were in electrical equilibrium,” the Royal Astronomical Society stated.
“In both the test cases, dust particles travel upwards above the height of the rover, but results suggest that they move in different directions. On the day side, the particles are pushed outwards and on the terminator the dust travels upwards and inwards above the rover, regrouping in the vacuum above it. The terminator simulation began with a region void of dust which was later filled by lunar dust particles.”
The bottom line? A lunar rover could accumulate a significant amount of dust on the moon, especially if it’s sitting at or near the terminator. This could be addressed by using dome-shaped rovers that would see the dust fall off, added lead author Farideh Honary, a physicist at the University of Lancaster, in a statement.
The work was presented at the RAS National Astronomy Meeting today (July 3). A paper has been submitted to the Journal for Geophysical Research, so more details should be forthcoming if and when it is published.
Mars moon Phobos (above, center) rising in the night time Martian sky shortly after sunset in this still image from a movie taken by NASA’s Mars rover Curiosity on Sol 317, June 28, 2013. The apparent ring is an imaging artifact. Credit: NASA/JPL-Caltech See the complete ‘Phobos Rising’ movie below [/caption]
Every once in a while when the time is just right and no one is looking, Curiosity’s Earthly handlers allow her some night time Martian delights.
In this case a pair of rising and setting celestial events bookend another magnificent week in humankinds exploration of the Red Planet – courtesy of NASA.
This past week NASA’s Curiosity rover captured esthetically stunning imagery of Phobos rising and Our Sun setting on Mars.
Phobos is the larger of Mars pair of tiny moons. The other being Diemos.
On June 28, (Sol 317) Curiosity aimed her navigation camera straight overhead to captured a breathtaking series of 86 images as Phobos was ascending in the alien evening sky shortly after sunset.
NASA combined these raw images taken over about 27 minutes into a short movie clip, sped up from real time.
Video Caption: ‘Phobos Rising’ – This movie clip shows Phobos, the larger of the two moons of Mars, passing overhead, as observed by NASA’s Mars rover Curiosity in a series of images centered straight overhead starting shortly after sunset. Phobos first appears near the lower center of the view and moves toward the top of the view. The images were taken on June 28, 2013. The apparent ring is an imaging artifact. Credit: NASA/JPL-Caltech
The pockmarked and potato shaped moon measures about 26.8 × 22.4 × 18.4 kilometers.
Phobos orbits barely some 6,000 km (3,700 mi) above the Martian surface. One day far in the future, it will crash and burn.
On June 22, Curiosity snapped an evocative series of Martian sunset photos as Sol set behind the eroded rim of Gale Crater – see below.
In the 2030’s, Humans may visit Phobos first before setting foot on the much more technically challenging Red Planet.