Has life ever existed on Mars? Or anywhere beyond Earth?
Answering that question is one of the most profound scientific inquiries of our time.
Europe and Russia have teamed up for a bold venture named ExoMars that’s set to blast off in search of Martian life in about two and a half years.
Determining if life ever originated on the Red Planet is the primary goal of the audacious two pronged ExoMars missions set to launch in 2016 & 2018 in a partnership between the European and Russian space agencies, ESA and Roscosmos.
In a major milestone announced today (June 17) at the Paris Air Show, ESA signed the implementing contract with Thales Alenia Space, the industrial prime contractor, to start the final construction phase for the 2016 Mars mission.
“The award of this contract provides continuity to the work of the industrial team members of Thales Alenia Space on this complex mission, and will ensure that it remains on track for launch in January 2016,” noted Alvaro Giménez, ESA’s Director of Science and Robotic Exploration.
The ambitious 2016 ExoMars mission comprises of both an orbiter and a lander- namely the methane sniffing Trace Gas Orbiter (TGO) and the piggybacked Entry, Descent and Landing Demonstrator Module (EDM).
ExoMars 2016 will be Europe’s first spacecraft dispatched to the Red Planet since the 2003 blast off of the phenomenally successful Mars Express mission – which just celebrated its 10th anniversary since launch.
Methane (CH4) gas is the simplest organic molecule and very low levels have reportedly been detected in the thin Martian atmosphere. But the data are not certain and its origin is not clear cut.
Methane could be a marker either for active living organisms today or it could originate from non life geologic processes. On Earth more than 90% of the methane originates from biological sources.
The ExoMars 2016 orbiter will investigate the source and precisely measure the quantity of the methane.
The 2016 lander will carry an international suite of science instruments and test European landing technologies for the 2nd ExoMars mission slated for 2018.
The 2018 ExoMars mission will deliver an advanced rover to the Red Planet’s surface. It is equipped with the first ever deep driller that can collect samples to depths of 2 meters where the environment is shielded from the harsh conditions on the surface – namely the constant bombardment of cosmic radiation and the presence of strong oxidants like perchlorates that can destroy organic molecules.
Thereafter Russia agreed to take NASA’s place and provide the much needed funding and rockets for the pair of planetary launches scheduled for January 2016 and May 2018.
NASA does not have the funds to launch another Mars rover until 2020 at the earliest – and continuing budget cuts threaten even the 2020 launch date.
NASA will still have a small role in the ExoMars project by funding several science instruments.
…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations
June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM
50 Years ago today, Soviet Cosmonaut Valentina Tereshkova made history and became the first woman ever fly in space, when she launched aboard the Vostok-6 capsule on June 16, 1963.
Her mission was far longer, lasting nearly 3 days (70 hours 50 minutes) for a total of 48 orbits of Earth at altitudes ranging from 180 to 230 kilometers (110 x 144 mi). She conducted biomedical & science experiments to learn about the effects of space on the human body, took photographs that helped identify aerosols in the atmosphere and manually piloted the ship.
“Hey, sky! Take off your hat, I’m coming!” she said in the seconds prior to liftoff.
Vostok-6 was her only space mission.
But today at age 76, Tereshkova is ready to forget retirement and sign up for a truly grand space adventure – a trip to Mars.
“I am ready [to go to Mars],” she said in remarks on the occasion of the 50th anniversary of her June 16, 1963 blastoff, according to Roscosmos, the Russian Federal Space Agency. Apparently Mars is her favorite planet!
“Of course, it’s a dream to go to Mars and find out whether there was life there or not,” Tereshkova said. “If there was, then why did it die out? What sort of catastrophe happened?”
Tereshkova’s landmark flight on Vostok-6 was made ever more historic in that it was actually a joint space mission with Vostok-5; which blasted off barely two days earlier on June 14 with fellow Soviet cosmonaut Valery Bykovsky.
Vostok-5 and Vostok-6 flew within 5 kilometers (3 miles) of one other at one point. They spoke to each other by radio as well as with the legendary Soviet Premier Nikita Krushchev. Her call sign was “Seagull”. Bykovsky’s call sign was “Hawk”.
Sergei Korolyov, the father of the Soviet space program, called her “my little seagull.”
Korolev wanted to launch a woman to space to score another spectacular first for the Soviet Union at the height of the Cold War with the United States.
So she had been selected as a member of the cosmonaut corps just a year earlier in March 1962 along with four other female candidates. Teseshkova was the only member of that female group ever to achieve orbit.
Tereshkova, a textile factory worker, was chosen in part because she was an expert parachute jumper – a key requirement at that time since the Vostok capsule itself could not land safely. So the cosmonauts had to eject in the last moments of the descent from orbit at about 7,000 m (23,000 ft) and descend separately via parachute.
It would take nearly two decades before another woman – also Soviet- would fly to space; Svetlana Savitskaya in 1982.
The first American female space flyer – Sally Ride – finally reached orbit a year later in 1983 aboard the Space Shuttle.
To date, woman comprise about 10% of the people who have flown to space-57 out of 534.
Today, June 16, there are two women orbiting Earth out of 9 humans total – NASA Astronaut Karen Nyberg aboard the International Space Station and Chinese astronaut Wang Yaping aboard Shenzhou 10.
Vostok-6 was the last of the Vostok spacecraft series.
Bykovsky flew a total of 5 days and 82 orbits. He landed 3 hours after Tereshkova on June 19.
Tereshkova became an instant heroine upon landing, a ‘Hero of the Soviet Union’ and will forever be known as the ‘First Lady of Space.’
On June 14, Russian Television aired a special 50th anniversary program celebrating the flights of Vostok-5 and Vostok-6 – “Valentina Tereshkova – Seagull and the Hawk”
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations
June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM
On the morning of April 12, 1961, Soviet cosmonaut Yuri Gagarin lifted off aboard Vostok 1 to become the first human in space, spending 108 minutes in orbit before landing via parachute in the Saratov region of the USSR. The soft-spoken and well-mannered Gagarin, just 27 years old at the time, became an instant hero, representing the success of the Soviet space program (Alan Shepard’s shorter, suborbital flight happened less than a month later) to the entire world. Gagarin later went on to become a director for the Cosmonaut Training Center and was preparing for a second space flight. Tragically, he was killed when a MiG-15 aircraft he was piloting crashed on March 27, 1968.
Gagarin’s death has long been shrouded by confusion and controversy, with many theories proposed as to the actual cause. Now, 45 years later, details about what really happened to cause the death of the first man in space have come out — from the first man to go out on a spacewalk, no less.
According to an article published online today on Russia Today (RT.com) former cosmonaut Aleksey Leonov — who performed the first EVA on March 18, 1965 — has revealed details about the accident that killed both Yuri Gagarin and his flight instructor Vladimir Seryogin in March 1968.
Officially the cause of the crash was said to be the ill-fated result of an attempt to avoid a foreign object during flight training in their MiG-15UTI, a two-seated, dual-controlled training version of the widely-produced Soviet aircraft. “Foreign objects” could be anything, from balloons to flocks of birds to airborne debris to… well, you see where one could go with that. (And over the years many have.)
The maneuver led to the aircraft going into a tailspin and crashing, killing both men. But experienced pilots like Gagarin and Seryogin shouldn’t have lost control of their plane like that — not according to Leonov, who has been trying to release details of the event for the past 20 years… if only that the pilots’ families might know the truth.
Now, a declassified report, which Leonov has been permitted to share, shows what actually happened during the training flight: an “unauthorized Su-15 fighter” flew too close to Gagarin’s MiG, disrupting its flight and sending it into a spin.
“In this case, the pilot didn’t follow the book, descending to an altitude of 450 meters,” Leonov says in the RT.com article. “While afterburning the aircraft reduced its echelon at a distance of 10-15 meters in the clouds, passing close to Gagarin, turning his plane and thus sending it into a tailspin — a deep spiral, to be precise — at a speed of 750 kilometers per hour.”
The pilot of the Su-15 — who is still alive — was was not named, a condition of Leonov’s permission to share the information.
According to first woman in space Valentina Tereshkova, who was officially grounded by the government after Gagarin’s death to avoid a loss of another prominent cosmonaut, the details come as a bittersweet relief.
“The only regret here is that it took so long for the truth to be revealed,” Tereshkova said. “But we can finally rest easy.”
Recall how during a space shuttle mission, the astronauts were awoken each day with music radioed up from Mission Control? Now, ESA has started a tradition of creating a music video to celebrate various events, such as the docking of their Automated Transfer Vehicle. The ATV-4, named Albert Einstein, will dock with the International Space Station on Saturday, June 15 at 13:46 UTC (9:46 a.m. EDT, and here’s a little hip hop to get you in the mood.
ESA teamed up with hip hop group Ugly Duckling for a super space remix of the song “Elevation.”
The connection to the group and this ATV mission was perfect, as the long-time DJ for Ugly Duckling goes under the stage name DJ Young Einstein. ESA liked the group because they are known for their ‘old-school’ hip-hop with an upbeat message and non-violent lyrics.
TATV-4 is ferrying a record cargo of 6.6 tons to the ISS – food, fuel, water, oxygen, science experiments and undisclosed special treats for the six-member crew on the space station.
Ten months after her breathtaking touchdown on the Red Planet, NASA’s Curiosity rover is nearly set to embark on an epic drive like no other in space history to the slopes of mysterious Mount Sharp – looming supreme inside Gale Crater and the primary mission objective.
But not before the robot completes a few last critical science tasks to more fully illuminate the potential for the origin of Martian microbes in the habitable zone discovered at the work-site of her first penetrations into Mars water altered surface.
The rover science team has chosen a trio of final targets to investigate around the shallow basin of Yellowknife Bay, that resembles a dried out lakebed, where Curiosity has toiled for the past six months, drilled twice into the mudstone outcrops at ‘John Klein’ and ‘Cumberland’ and repeatedly fired her powerful science laser.
Curiosity will revisit a pair of intriguing outcrops named ‘Point Lake’ and ‘Shaler’ that the rover briefly investigated before arriving at ‘John Klein’, said Joy Crisp of JPL, Curiosity’s deputy project scientist, at a media briefing.
“Shaler might be a river deposit. Point Lake might be volcanic or sedimentary. A closer look at them could give us better understanding of how the rocks we sampled with the drill fit into the history of how the environment changed.”
Curiosity will employ nearly all her science instruments to study the outcrops – except the drill.
“It’s highly unlikely to drill at ‘Point Lake’ and ‘Shaler’ because we want to get driving,” Crisp told Universe Today.
“We might drill somewhere along the way to Mount Sharp depending on whether we find something compelling.”
Researchers will also use the DAN (Dynamic Albedo of Neutrons) instrument to look for traces of mineral bound water – in the form of hydrogen – at the boundary between bedrock areas of mudstone and sandstone.
Thereafter, Curiosity’s handlers will command the 1 ton behemoth to begin the drive to the lower reaches of Mount Sharp which lies about 6 miles (10 kilometers) distant – as the Martian crow flies.
Mount Sharp rises about 3.4 miles (5.5 km) from the center of Gale Crater. It’s taller than Mount Ranier in Washington State.
Billions of years of Mars geologic history are preserved in the sedimentary layers of Mount Sharp – along with potential signatures of the chemical ingredients of life.
“The drive will start in a few weeks,” said Curiosity Project Manager Jim Erickson of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. at the briefing.
But the team will be on the lookout for targets of opportunity along the way.
“We are on a mission of exploration. If we come across scientifically interesting areas, we are going to stop and examine them before continuing the journey,” Erikson added.
“If we pass something amazing and compelling we might turn around and drive back,” Crisp added.
It could take nearly a year to arrive at Mount Sharp. And Curiosity must pass through a potentially treacherous dune field to get there – see NASA JPL route map above.
“We are looking for the best path though,” said Erickson.
NASA chose Gale as the landing site specifically to dispatch Curiosity to investigate the sedimentary layers of Mount Sharp because it exhibited signatures of clay minerals that form in neutral water and that could possibly support the origin and evolution of simple Martian life forms, past or present.
“We have a real desire to get to Mount Sharp because there we see variations in the mineralogy as we go up from the base to higher levels and a change in the record of the environment,” said Crisp.
Analysis of the initial gray colored, powdery ‘John Klein’ sample by Curiosity’s pair of onboard chemistry labs – SAM & Chemin – revealed that this location on Mars was habitable in the past and possesses the key chemical ingredients – such as clay minerals – required to support microbial life forms- thereby successfully accomplishing the key science objective of the mission and making a historic discovery long before even arriving at destination Mount Sharp.
Besides the science measurements, researchers also learned lot about how to operate the complex drilling and sample delivery mechanisms much more efficiently for the second drilled rock sample.
The sieved and pulverized Cumberland sample was delivered in about a quarter of the time compared to the John Klein sample – accomplished at a deliberately measured and cautious pace.
Analysis of the “Cumberland” powder is currently in progress. The goal is to determine how it compares chemically and to confirm the results found at ‘John Klein.’
“No results from Cumberland are available yet,” said Crisp.
The robot used the powerful million watt ChemCam laser to blast into the Cumberland drill hole and gray tailings scattered on the surface to glean as much insight and measurements of the chemical composition and transformation by water as possible before departing.
Curiosity has just arrived at “Point Lake’. Stay tuned for my next Curiosity story.
Meanwhile, Curiosity’s older sister rover Opportunity has likewise discovered clay minerals and a habitable zone on the opposite side of the Red Planet – details here.
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations
June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM
Riding atop a fiery Long March rocket, three taikonauts blasted off from Earth today (June 11) to kick off an expected 15-day mission in space that will include the first Chinese “space class” from orbit.
Shenzhou 10 departed the Jiuquan Satellite Launch Center at 5:38 a.m. EDT (9:38 a.m. UTC), or 5:38 p.m. local time at the complex’s location in the Gobi desert. Aboard the spacecraft were one woman (Wang Yaping) and two men (Nie Haisheng and Zhang Xiaoguang). Their next destination is the Chinese Tiangong-1 station.
China has a young manned space program. The first spaceflight with people was just a decade ago, in October 2003, and this is the fifth crewed mission since that time.
While China’s government keeps its long-term ambitions fairly private, observers in the United States and China point to its robotic moon missions as evidence that China is considering a manned lunar mission in the coming decades.
Shenzhou 10’s ultimate destination, however, is the Earth-orbiting, nine-ton Tiangong-1. Like the early U.S. and Soviet space stations, the Chinese one is fairly small (a single module) and serves as an experimental testbed for space station work. Taikonauts also visited the space station during Shenzhou 9 in 2012.
– Launch crew and cargo aboard Shenzhou 10 and verify rendezvous and docking technology for the meeting with Tiangong-1;
– Further test Tiangong-1’s capabilities to support humans;
– Conduct several experiments (focusing on space adaptability, space operation ergonomics and unspecified space science work), perform maintenance and do a “space class” with students;
– To see how well the CMSE is performing on a systems basis.
“To further improve the safety, reliability and to be suitable for the specific requirements of this mission,” stated spokesperson Wu Ping, “partial technical alterations have been made in [the] Shenzhou 10 spaceship and Long March 2F Y10 rocket.
“During this mission,” she added, “taikonauts will change and repair some of the equipment and facilities in Tiangong-1 through on-orbit operations.”
In the first few hours after launch, the CMSE stated that all systems are performing normally.
“The Shenzhou 10 spaceship has accurately entered its orbit and the crew members [are] in good condition,” stated Zhang Youxia, chief commander of China’s manned space program.
The mission drew praise from China’s president, Xi Jinping, who sent the crew good wishes just before they left Earth.
“You have made Chinese people feel proud of ourselves,” Xi told the crew, according to a BBC report.
“You have trained and prepared yourselves carefully and thoroughly, so I am confident in your completing the mission successfully. I wish you success and look forward to your triumphant return.”
China ultimately plans to launch a larger space station sometime around 2020, which would include several modules.
The European Space Agency is considering working more closely with China around that time, the BBC added, and some astronauts have already starting Chinese language training.
On the cusp of the 10th anniversary since launching to the Red Planet, NASA’s long lived Opportunity rover has discovered a habitable zone on Mars that once coursed with ‘drinkable water’ and possesses the chemical ingredients necessary to support a path to potential Martian microbes.
At a rock called “Esperance”, Opportunity found a cache of phyllosilicate clay minerals that typically form in neutral, drinkable water that is not extremely acidic or basic.
The finding ranks as “One of my personal Top 5 discoveries of the mission,” said Steve Squyres of Cornell University, Ithaca, N.Y., principal investigator for NASA’s rover mission at a media briefing.
And despite her advancing age Opportunity remains healthy after surviving in excess of an incredible 3333 Sols, or days, trekking across the alien and ever harsh Martian crater plains.
Furthermore the intrepid robot just sat sail on a southerly course for a new destination called “Solander Point” where researches hope to find more even evidence of habitable environments since they already spotted deeper stakes of ancient rocks transformed by water eons ago. See our current photo mosaics showing Solander Point as Opportunity roves across the crater floor – above and below by Marco Di Lorenzo and Ken Kremer.
After weeks of trying, the rover deployed the robotic arm to drill at a sweet spot inside “Esperance” and collected convincing X-Ray spectroscopic data in the area she just investigated in May 2013 around the eroded rim of giant Endeavour Crater.
“Esperance is rich in clay minerals and shows powerful evidence of water alteration,” Squyres elaborated.
“This is the most powerful evidence we found for neutral pH water.”
“Clay minerals only tend to form at a more neutral pH. This is water you could drink,” Squyres gushed.
These finding represent the most favorable conditions for biology that Opportunity has yet seen in the rock histories it has encountered after nearly a decade roving the Red Planet.
“This is water that was much more favorable for things like pre-biotic chemistry – the kind of chemistry that could lead to the origin of life,” Squyres stated.
Esperance is unlike any rock previously investigated by Opportunity; rich in aluminum, which is strongly indicative of clay minerals, perhaps like montmorillonite.
Most rocks inspected to date by Opportunity were formed in an environment of highly acidic water that is extremely harsh to most life forms.
“If you look at all of the water-related discoveries that have been made by Opportunity, the vast majority of them point to water that was a very low pH – it was acid,” Squyres explained.
Esperance was found on ‘Cape York’, a hilly segment of the western rim of Endeavour crater which spans 14 miles (22 km) across. The robot arrived at the edge of Endeavour crater in mid-2011 and will spend her remaining life driving around the scientifically rich crater rim segments.
NASA’s new Curiosity rover also recently discovered clay minerals and a habitable environment at Gale Crater – on the other side of Mars – stemming from a time when Mars was warmer and wetter billions of years ago.
Over time Mars became the cold and dry place it is today. Scientists hope the rovers provide clues to Mars dramatic transformation.
The solar powered rover is now driving as quick as possible to reach the northerly tilled slopes of ‘Solander Point’ in August, before the onset of the next Martian winter.
‘Solander Point’ offers a much taller stack of geological layering than ‘Cape York.’ Both areas are raised segments of the western rim of Endeavour Crater.
“There’s a lot to explore there. In effect, it’s a whole new mission,” said Ray Arvidson, the mission’s deputy principal scientific investigator from Washington University in St. Louis, Mo.
Opportunity and her twin “Spirit” were launched to Mars on planned 90 day missions.
Both rovers have far exceeded everyone’s wildest expectations. Spirit endured more than 6 years inside Gusev Crater until succumbing to the bone chilling Martian winter in 2011.
Opportunity has lasted more than 37 times beyond the three month “warranty”.
“This is like your car not lasting 200,000 miles, or even a million miles. You’re talking about a car that lasts 2 million miles without an oil change,” Callas said. “At this point, how long Opportunity lasts is anyone’s guess.”
“Remember, the rover continues to operate in a very hostile environment, where we have extreme temperature changes every day, and the rover could have a catastrophic failure at anytime,” said John Callas, of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., project manager for the Mars Exploration Rover Project.
“So every day is a gift.”
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM
This week marks the 10th anniversary since the launch of the European Space Agencies’ (ESA) Mars Express orbiter from the Baikonur Cosmodrome in Russia on June 2, 2003 and a decade of ground breaking science discoveries at the Red Planet.
2003 was a great year for Mars exploration as it also saw the dual liftoffs of NASA’s now legendary rovers Spirit & Opportunity from Cape Canaveral in Florida.
The immense quantity and quality of science data returned from Mars Express -simultaneously with Spirit and Opportunity – has completely transformed our understanding of the history and evolution of the Red Planet.
All three spacecraft have functioned far beyond their original design lifetime.
Earth’s exploration fleet of orbiters, landers and rovers have fed insights to each other that vastly multiplied the science output compared to working solo during thousands and thousands of bonus Sols at Mars.
Mars Express derived its name from an innovative new way of working in planetary space science that sped up the development time and cut costs in the complex interactive relationships between the industrial partners, space agencies and scientists.
Indeed the lessons learned from building and operating Mars Express spawned a sister ship, Venus Express that also still operates in Venusian orbit.
Mars Express (MEX) achieved orbit in December 2003.
MEX began science operations in early 2004 with an array of seven instruments designed to study all aspects of the Red Planet, including its atmosphere and climate, and the mineralogy and geology of the surface and subsurface with high resolution cameras, spectrometers and radar.
The mission has been granted 5 mission extensions that will carry it to at least 2014.
The mission has been wildly successful except for the piggybacked lander known as Beagle 2, which was British built.
The ambitious British lander was released from the mothership on December 19, 2003, six days before MEX braked into orbit around Mars. Unfortunately the Beagle 2 was never heard from again as it plummeted to the surface and likely crashed.
The high resolution camera (HRSC) has transmitted thousands of dramatic 3D images all over Mars ranging from immense volcanoes, steep-walled canyons, dry river valleys, ancient impact craters of all sizes and shapes and the ever-changing polar ice caps.
It carried the first ever radar sounder (MARSIS) to orbit another planet and has discovered vast caches of subsurface water ice.
MEX also played a significant role as a data relay satellite for transmissions during the landings of NASA’s Phoenix lander and Curiosity rover. It also occasionally relays measurements from Spirit & Opportunity to NASA.
Here is a list of the Top 10 Discoveries from Mars Express from 2003 to 2013:
#1. First detection of hydrated minerals in the form of phyllosilicates and hydrated sulfates – evidence of long periods of flowing liquid water from the OMEGA visible and infrared spectrometer provided confirmation that Mars was once much wetter than it is today and may have been favorable for life to evolve.
#2. Possible detection of methane in the atmosphere from the Planetary Fourier Spectrometer (PFS) which could originate from biological or geological activity.
#3. Identification of recent glacial landforms via images from the High Resolution Stereo Camera (HRSC) are stem from viscous flow features composed of ice-rich material derived from adjacent highlands.
#4. Probing the polar regions. OMEGA and MARSIS determined that the south pole consists of a mixture frozen water ice and carbon dioxide. If all the polar ice melted the planet would be covered by an ocean 11 meters deep.
#5. Recent and episodic volcanism perhaps as recently as 2 million years ago. Mars has the largest volcanoes in the solar system . They are a major factor in the evolution of the martian surface, atmosphere and climate.
#6. Estimation of the current rate of atmospheric escape, helps researchers explain how Mars changed from a warm, wet place to the cold, dry place it is today.
#8. A new, meteoric layer in the martian ionosphere created by fast-moving cosmic dust which burns up as it hits the atmosphere.
#9. Unambiguous detection of carbon dioxide clouds. The freezing and vaporisation of CO2 is one of the main climatic cycles of Mars, and it controls the seasonal variations in surface air pressure.
#10. Unprecedented probing of the Martian moon Phobos – which could be a target for future landers and human missions.
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
June 23: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM
Yesterday, June 5, the European Space Agency launched their ATV-4 Albert Einstein cargo vessel from their spaceport in French Guiana. Liftoff occurred at 5:52 p.m. EDT (2152 GMT), and in addition to over 7 tons of supplies for the ISS a special payload was also included: the DLR-developed STEREX experiment, which has four cameras attached to the Ariane 5ES rocket providing a continuous 3D view of the mission, from liftoff to separation to orbit and, eventually, docking to the Station on June 15.
The dramatic video above is the first-ever of an ATV vehicle going into free-flight orbit — check it out!
“The highlight of the STEREX deployment will be observing the settling of ATV-4 in orbit. STEREX for this event will include three-dimensional video sequences to study the dynamic behavior of the spacecraft during the separation phase. This opens up for the ATV project engineers an entirely new way to monitor the success of their work and also to gain important new experiences for the future.” – DLR blog (translated)
If you look along the horizon at around 5:20, you can make out the plume from the launch.
At 20,190 kg (44, 511 lbs) ATV Albert Einstein is the heaviest spacecraft ever launched by Ariane. Read more here.
New measurements of the energetic space radiation environment present in interplanetary space taken by NASA’s Curiosity rover confirm what has long been suspected – that lengthy years long voyages by astronauts to deep space destinations like Mars will expose the crews to high levels of radiation that – left unchecked – would be harmful to their health and increase their chances of developing fatal cancers.
Although the data confirm what scientists had suspected, it’s equally important to state that the space radiation data are not ‘show stoppers” for human deep space voyages to the Red Planet and other destinations because there are a multitude of counter measures- like increased shielding and more powerful propulsion – that NASA and the world’s space agencies can and must implement to reduce and mitigate the dangerous health effects of radiation on human travelers.
The new radiation data was released at a NASA media briefing on May 30 and published in the journal Science on May 31.
Indeed the new measurements collected by Curiosity’s Radiation Assessment Detector (RAD) instrument during her 253-day, 560-million- kilometer journey enroute to the Red Planet in 2011 and 2012 will provide important insights to allow NASA to start designing systems for safely conducting future human missions to Mars.
“NASA wants to send astronauts to Mars in the 2030’s,” Chris Moore, NASA’s deputy director of Advanced Exploration Systems NASA HQ, said to reporters at the media briefing.
“The Human Spaceflight and Planetary Science Divisions at NASA are working together to get the data needed for human astronauts. RAD is perfect to collect the data for that,” said Moore.
The RAD data indicate that astronauts would be exposed to radiation levels that would exceed the career limit levels set by NASA during a more than year long voyage to Mars and back using current propulsion systems, said Eddie Semones, spaceflight radiation health officer at the Johnson Space Center.
NASA’s Humans to Mars planning follows initiatives outlined by President Obama.
“As this nation strives to reach an asteroid and Mars in our lifetimes, we’re working to solve every puzzle nature poses to keep astronauts safe so they can explore the unknown and return home,” said William Gerstenmaier, NASA’s associate administrator for human exploration and operations in Washington, in a statement.
The International Space Station already in low Earth orbit and the Orion crew capsule under development will serve as very useful platforms to conduct real life experiments on resolving the health risks posed by long term exposure to space radiation.
“We learn more about the human body’s ability to adapt to space every day aboard the International Space Station, said Gerstenmaier. “As we build the Orion spacecraft and Space Launch System rocket to carry and shelter us in deep space, we’ll continue to make the advances we need in life sciences to reduce risks for our explorers. Curiosity’s RAD instrument is giving us critical data we need so that we humans, like the rover, can dare mighty things to reach the Red Planet.”
RAD was the first instrument to collect radiation measurements during the cruise phase to the Red Planet. It is mounted on the top deck of the Curiosity rover.
“Although RAD’s objective is to characterize the radiation environment on the surface of Mars, it’s also good for the cruise phase,” Don Hassler, RAD Principal Investigator at the Southwest Research Institute (SWRI) told reporters.
“Since Orion and MSL are similar sized RAD is ideal for collecting the data.”
Hassler explained that RAD measures two types of radiation that pose health risks to astronauts. First, the steady stream of low dose galactic cosmic rays (GCRs), and second the short-term and unpredictable exposures to solar energetic particles (SEPs) arising from solar flares and coronal mass ejections (CME’s).
Radiation exposure is known to increase a person’s risk of suffering fatal cancer.
Exposure is measured in units of Sievert (Sv) or milliSievert (one one-thousandth Sv). Being exposed to a dose of 1 Sievert (Sv) over time results in a five percent increased risk of developing cancer.
NASA’s current regulations limit the potential for increased cancer risk to 3 percent for astronauts currently working on the ISS in low-Earth orbit.
RAD determined that the Curiosity rover was exposed to an average of 1.8 milliSieverts per day during the 8.5 month cruise to Mars, due mostly to Galactic Cosmic Rays, said Cary Zeitlin, SWRI Principal Scientist for MSL,at the briefing. “Solar particles only accounted for about 3 to 5 percent of that.”
During a typical 6 month cruise to Mars the astronaut crews would be exposed to 330 millisieverts. That is more than 3 times the typical 6 month exposure of astronauts aboard the ISS which amounts to about 100 millisieverts. See graphic above.
“The 360 day interplanetary round trip exposure would be 660 millisieverts based on chemical propulsion methods,” Zeitlin told Universe Today. “A 500 day mission would increase that to 900 millisieverts.”
By comparison, the average annual exposure for a typical person in the US from all radiation sources is less than 10 millisieverts.
The Earth’s magnetic field provides partial radiation shielding for the ISS astronauts living in low-Earth orbit.
“In terms of accumulated dose, it’s like getting a whole-body CT scan once every five or six days,” says Zeitlin.
And that round trip dose of 660 millisieverts doesn’t even include the astronauts surface stay on Mars – which would significantly raise the total exposure count. But luckily for the crew the surface radiation is less.
“The radiation environment on the surface of Mars is about half that in deep space since its modified by the atmosphere,” Hassler told Universe Today. “We will publish the surface data in a few months.”
NASA will need to decide whether to reassess the acceptable career limits for astronauts exposure to radiation from galactic cosmic rays and solar particle events during long duration deep space journeys.
Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites – John Klein & Cumberland – targeted by NASA’s Curiosity Mars rover and the RAD radiation detector which took the first deep space measurements of harmful space radiation during the cruise phase to Mars in 2011 and 2012 . Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface. This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign on May 19, 2013 (Sol 279). Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo
And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013
…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations
June 4: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM