Boeing Commercial Space Taxi and Atlas V Launcher Move Closer to Blastoff

Shown is the integrated CST-100 crew capsule and Atlas V launcher model at NASA's Ames Research Center. The model is a 7 percent model of the Boeing CST-100 spacecraft, launch vehicle adaptor and launch vehicle. Credit: Boeing

The next time that American astronauts launch to space from American soil it will surely be aboard one of the new commercially built “space taxis” currently under development by a trio of American aerospace firms – Boeing, SpaceX and Sierra Nevada Corp – enabled by seed money from NASA’s Commercial Crew Program (CCP).

Boeing has moved considerably closer towards regaining America’s lost capability to launch humans to space when the firm’s privately built CST-100 crew capsule achieved two key new milestones on the path to blastoff from Florida’s Space Coast.

The CST-100 capsule is designed to carry a crew of up to 7 astronauts on missions to low-Earth orbit (LEO) and the International Space Station (ISS) around the middle of this decade.

Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing

Boeing’s crew transporter will fly to space atop the venerable Atlas V rocket built by United Launch Alliance (ULA) from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The Boeing and ULA teams recently completed the first wind tunnel tests of a 7 percent scale model of the integrated capsule and Atlas V rocket (photo above) as well as thrust tests of the modified Centaur upper stage.

The work is being done under the auspices of NASA’s Commercial Crew Integrated Capability (CCiCap) initiative, intended to make commercial human spaceflight services available for both US government and commercial customers, such as the proposed Bigelow Aerospace mini space station.

Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com

Since its maiden liftoff in 2002, the ULA Atlas V rocket has flawlessly launched numerous multi-billion dollar NASA planetary science missions like the Curiosity Mars rover, Juno Jupiter orbiter and New Horizons mission to Pluto as well as a plethora of top secret Air Force spy satellites.

But the two stage Atlas V has never before been used to launch humans to space – therefore necessitating rigorous testing and upgrades to qualify the entire vehicle and both stages to meet stringent human rating requirements.

“The Centaur has a long and storied past of launching the agency’s most successful spacecraft to other worlds,” said Ed Mango, NASA’s CCP manager at the agency’s Kennedy Space Center in Florida. “Because it has never been used for human spaceflight before, these tests are critical to ensuring a smooth and safe performance for the crew members who will be riding atop the human-rated Atlas V.”

The combined scale model CST-100 capsule and complete Atlas V rocket were evaluated for two months of testing this spring inside an 11- foot diameter transonic wind tunnel at NASA’s Ames Research Center in Moffett Field, Calif.

“The CST-100 and Atlas V, connected with the launch vehicle adaptor, performed exactly as expected and confirmed our expectations of how they will perform together in flight,” said John Mulholland, Boeing vice president and program manager for Commercial Programs.

Testing of the Centaur stage centered on characterizing the flow of liquid oxygen from the oxygen tank through the liquid oxygen-feed duct line into the pair of RL-10 engines where the propellant is mixed with liquid hydrogen and burned to create thrust to propel the CST-100 into orbit.

Boeing is aiming for an initial three day manned orbital test flight of the CST-100 during 2016, says Mulholland.

Artist's concept shows Boeing's CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing
Artist’s concept shows Boeing’s CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing

But that date is dependent on funding from NASA and could easily be delayed by the ongoing sequester which has slashed NASA’s and all Federal budgets.

Chris Ferguson, the commander of the final shuttle flight (STS-135) by Atlantis, is leading Boeing’s flight test effort.

Boeing has leased one of NASA’s Orbiter Processing Facility hangers (OPF-3) at the Kennedy Space Center (KSC) for the manufacturing and assembly of its CST-100 spacecraft.

Mulholland told me previously that Boeing will ‘cut metal’ soon. “Our first piece of flight design hardware will be delivered to KSC and OPF-3 around mid 2013.”

NASA’s CCP program is fostering the development of the CST-100 as well as the SpaceX Dragon and Sierra Nevada Dream Chaser to replace the crew capability of NASA’s space shuttle orbiters.

The Atlas V will also serve as the launcher for the Sierra Nevada Dream Chaser space taxi.

Since the forced retirement of NASA’s shuttle fleet in 2011, US and partner astronauts have been 100% reliant on the Russians to hitch a ride to the ISS aboard the Soyuz capsules – at a price tag exceeding $60 Million per seat.

Simultaneously on a parallel track NASA is developing the Orion crew capsule and SLS heavy lift booster to send humans to the Moon and deep space destinations including Asteroids and Mars.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

NASA’s Curiosity Mars Science Laboratory  (MSL) rover blasts off for Mars atop a stunningly beautiful Atlas V  rocket on Nov. 26, 2011 at 10:02 a.m. EST from Cape Canaveral, Florida.   United Launch Alliance (ULA) is now upgrading the Atlas V to launch humans aboard the Boeing CST-100 and Sierra Nevada Dream Chaser space taxis. Credit: Ken Kremer - kenkremer.com
NASA’s Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop a stunningly beautiful Atlas V rocket on Nov. 26, 2011 at 10:02 a.m. EST from Cape Canaveral, Florida. United Launch Alliance (ULA) is now upgrading the Atlas V to launch humans aboard the Boeing CST-100 and Sierra Nevada Dream Chaser space taxis. Credit: Ken Kremer – kenkremer.com
The CST-100 spacecraft awaits liftoff aboard an Atlas V launch vehicle in this artist's concept. Credit: Boeing
The CST-100 spacecraft awaits liftoff aboard an Atlas V launch vehicle in this artist’s concept. Credit: Boeing

How to Make Your New Space Roomate Feel at Home: Shave Your Head

Italian astronaut Luca Parmitano, right, reacts to NASA astronaut Chris Cassidy's shaved head, a welcome present for the bald Parmitano. Via NASA TV.

International Space Station astronaut Chris Cassidy surprised the new crew arriving at the station earlier today, welcoming them aboard with a new look: he shaved his head to match his new crewmate, Luca Parmitano, who always sports a bald noggin. You can watch the video below to see Parmitano’s reaction.

During a televised video conference with family after the crew came aboard, Parmitano said Cassidy looked awesome.

Parmitano, Russian Fyodor Yurchikhin, and NASA’s Karen Nyberg docked their Soyuz to the station’s Rassvet module at 02:16 UTC on May 29 (10:16 p.m. EDT on May 28).

During the video conference, Nyberg’s husband and fellow astronaut Doug Hurley said the crew looked good, but “there are way too many bald guys on space station right now. Have a great time up there.”

Now with a full crew compliment of six, Expedition 36 will operate full throttle the next five and a half months, and perform up to six spacewalks, and welcome four cargo ships, including the exciting maiden visit of the Cygnus commercial cargo craft built by Orbital Sciences Corporation (tentatively scheduled for sometime in June), as well as ESA’s “Albert Einstein” Automated Transfer Vehicle-4 in June, a Russian Progress cargo craft in July and the Japan Aerospace Exploration Agency’s H-II Transfer Vehicle-4 in August.

Five of the spacewalks will prepare for the installation of the Russian Multipurpose Laboratory Module in December, and a spacewalk scheduled for November 9, 2013 will bring an Olympic torch outside the ISS.

Among the scientific research the crew has on tap are the Hip Quantitative Computed Tomography (QCT) experiment, which will evaluate countermeasures to prevent the loss of bone density seen during long-duration space missions. The experiment, which uses 3-D analysis to collect detailed information on the quality of astronauts’ hip bones, also will increase understanding of osteoporosis on Earth.

The station’s crew will continue research into how plants grow, leading to more efficient crops on Earth and improving understanding of how future crews could grow their own food in space. The crew also will test a new portable gas monitor designed to help analyze the environment inside the spacecraft and continue fuel and combustion experiments that past crews have undertaken. Studying how fire behaves in space will have a direct impact on future spaceflight and could lead to cleaner, more efficient combustion engines on Earth.

The trio of Cassidy, Pavel Vinogradov and Alexander Misurkin will return to Earth aboard their Soyuz TMA-08M spacecraft in September. Their departure will mark the beginning of Expedition 37 under the command of Yurchikhin, who along with crewmates Nyberg and Parmitano will maintain the station as a three-person crew until the arrival of three additional flight engineers in late September. Yurchikhin, Nyberg and Parmitano are scheduled to return to Earth in November.

Soyuz Crew Sets Record for Fastest Trip to Space Station

Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.

The crew of Expedition 36 aboard the Soyuz TMA-09M set a record for the fastest trip ever to the International Space Station. From launch to docking, the trip took 5 hours and 39 minutes. That’s six minutes faster than the previous Soyuz that used the new “fast track” four-orbit rendezvous.

Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), NASA astronaut Karen Nyberg and European Space Agency (ESA) astronaut Luca Parmitano docked their Soyuz to the station’s Rassvet module at 02:16 UTC on May 29 (10:16 p.m. EDT on May 28).

“Thank you for the best spacecraft, finer than the best pocket watch!” Yurchikhin radioed to Mission Control in Moscow after docking.

Docking and hatch opening videos below:

Launch took place at 20:31 UTC (4:31 p.m. EDT) Tuesday (2:31 a.m. May 29, Baikonur time).

The new abbreviated rendezvous with the ISS uses a modified launch and docking profile for the Russian ships. It has been tried successfully with three Progress resupply vehicles, and this is the second Soyuz crew ship that has used it.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

After the hatches open at 11:55 p.m. EDT, the new trio will join Flight Engineer Chris Cassidy of NASA and Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin of Roscosmos who have been on board since March 28. All six crew members will then participate in a welcome ceremony with family members and mission officials gathered at the Russian Mission Control Center in Korolev near Moscow.

Watch Live: Soyuz Fast-Track Launch to the Space Station

Expedition 36/37 Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), top, Flight Engineers: Luca Parmitano of the European Space Agency, center, and Karen Nyberg of NASA, bottom, wave farewell as they board the Soyuz rocket ahead of their launch to the International Space Station, Wednesday, May 29, 2013, Baikonur, Kazakhstan. Credit: NASA/Bill Ingalls.

Three new International Space Station crew members are set to launch aboard the Soyuz TMA-09M spacecraft from the Baikonur Cosmodrome in Kazakhstan. Launch is scheduled for is 20:31 UTC (4:31 p.m. EDT) Tuesday (2:31 a.m. May 29, Baikonur time). The new Expedition 36 crew will take an accelerated four-orbit, 6-hour journey to Space Station. They will be docking at 02:17 UTC on May 29 (10:17 pm. EDT May 28). You can watch Live NASA TV coverage below, which begins an hour before launch (19:30 UTC, 3:30 p.m. EDT), and live coverage will return about 45 minutes before docking.

The new crew includes Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), NASA astronaut Karen Nyberg and European Space Agency (ESA) astronaut Luca Parmitano.
UPDATE: If you missed the launch live, you can watch a replay, below.



Live Video streaming by Ustream

The crew will dock their Soyuz to the station’s Rassvet module. After the hatches open, the new trio will join Flight Engineer Chris Cassidy of NASA and Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin of Roscosmos who docked with the orbital complex May 28. All six crew members will then participate in a welcome ceremony with family members and mission officials gathered at the Russian Mission Control Center in Korolev near Moscow.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

This is the second Soyuz crew vehicle to make the accelerated trip, and three Progress resupply ships have also taken the fast track to the ISS.

The Service arms are raised into position around the Soyuz rocket, with the TMA-09M spacecraft, after arriving at the Baikonur Cosmodrome launch pad by train, Sunday, May 26, 2013, in Kazakhstan. Credit: NASA/Bill Ingalls.
The Service arms are raised into position around the Soyuz rocket, with the TMA-09M spacecraft, after arriving at the Baikonur Cosmodrome launch pad by train, Sunday, May 26, 2013, in Kazakhstan. Credit: NASA/Bill Ingalls.

You can see more images from the Expedition 36 launch and pre-launch activities at NASA HQ’s Flickr page.

Opportunity Discovers Clays Favorable to Martian Biology and Sets Sail for Motherlode of New Clues

Opportunity established a new American driving record for a vehicle on another world on May 15, 2013 (Sol 3309) and made history by driving ahead from this point at Cape York. This navcam mosaic shows the view forward to her next destinations of Solander Point and Cape Tribulation along the lengthy rim of huge Endeavour crater spanning 14 miles (22 km) in diameter. Opportunity discovered clay minerals at Cape York and stands as the most favorable location for Martian biology discovered during her entire nearly 10 year long mission to Mars. Credit: NASA/JPL/Cornell/Kenneth Kremer/Marco Di Lorenzo

NASA’s Opportunity Mars rover discovered clay minerals at Cape York ridge along the rim of Endeavour crater – seen in this photo mosaic – which stands as the most favorable location for Martian biology discovered during her entire nearly 10 year long mission to Mars. Opportunity also established a new American driving record for a vehicle on another world on May 15, 2013 (Sol 3309) and made history by driving ahead from this point at Cape York. This navcam photo mosaic shows the view forward to her next destinations of Solander Point and Cape Tribulation along the lengthy rim of huge Endeavour crater spanning 14 miles (22 km) in diameter.
Credit: NASA/JPL/Cornell/Ken Kremer (kenkremer.com)/Marco Di Lorenzo
Updated: Illustrated below with a collection of imagery, mosaics and route maps[/caption]

Now nearly a decade into her planned 3 month only expedition to Mars, NASA’s longest living rover Opportunity, struck gold and has just discovered the strongest evidence to date for an environment favorable to ancient Martian biology – and she has set sail hunting for a motherlode of new clues amongst fabulous looking terrain!!

Barely two weeks ago in mid-May 2013, Opportunity’s analysis of a new rock target named “Esperance” confirmed that it is composed of a “clay that had been intensely altered by relatively neutral pH water – representing the most favorable conditions for biology that Opportunity has yet seen in the rock histories it has encountered,” NASA said in a statement.

The finding of a fractured rock loaded with clay minerals and ravaged by flowing liquid water in which life could have thrived amounts to a scientific home run for the golf cart sized rover!

“Water that moved through fractures during this rock’s history would have provided more favorable conditions for biology than any other wet environment recorded in rocks Opportunity has seen,” said the mission’s principal investigator Prof. Steve Squyres of Cornell University, Ithaca, N.Y.

Opportunity accomplished the ground breaking new discovery by exposing the interior of Esperance with her still functioning Rock Abrasion Tool (RAT) and examining a pristine patch using the microscopic camera and X-Ray spectrometer on the end of her 3 foot long robotic arm.

The pale rock in the upper center of this image, about the size of a human forearm, includes a target called "Esperance," which was inspected by NASA's Mars Exploration Rover Opportunity. Data from the rover's alpha particle X-ray spectrometer (APXS) indicate that Esperance's composition is higher in aluminum and silica, and lower in calcium and iron, than other rocks Opportunity has examined in more than nine years on Mars. Preliminary interpretation points to clay mineral content due to intensive alteration by water. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ
The pale rock in the upper center of this image, about the size of a human forearm, includes a target called “Esperance,” which was inspected by NASA’s Mars Exploration Rover Opportunity. Data from the rover’s alpha particle X-ray spectrometer (APXS) indicate that Esperance’s composition is higher in aluminum and silica, and lower in calcium and iron, than other rocks Opportunity has examined in more than nine years on Mars. Preliminary interpretation points to clay mineral content due to intensive alteration by water. Credit: NASA/JPL-Caltech/Cornell/Arizona State Univ

The robot made the discovery at the conclusion of a 20 month long science expedition circling around a low ridge called “Cape York” – which she has just departed on a southerly heading trekking around the eroded rim of the huge crater named “Endeavour.”

“Esperance was so important, we committed several weeks to getting this one measurement of it, even though we knew the clock was ticking.”

Esperance stems from a time when the Red Planet was far warmer and wetter billions of years ago.

“What’s so special about Esperance is that there was enough water not only for reactions that produced clay minerals, but also enough to flush out ions set loose by those reactions, so that Opportunity can clearly see the alteration,” said Scott McLennan of the State University of New York, Stony Brook, a long-term planner for Opportunity’s science team.

Close-Up of 'Esperance' After Abrasion by Opportunity This mosaic of four frames shot by the microscopic imager on the robotic arm of NASA's Mars Exploration Rover Opportunity shows a rock target called "Esperance" after some of the rock's surface had been removed by Opportunity's rock abrasion tool, or RAT. The component images were taken on Sol 3305 on Mars (May 11, 2013). The area shown is about 2.4 inches (6 centimeters) across. Credit: NASA/JPL-Caltech/Cornell/USGS
Close-Up of ‘Esperance’ After Abrasion by Opportunity
This mosaic of four frames shot by the microscopic imager on the robotic arm of NASA’s Mars Exploration Rover Opportunity shows a rock target called “Esperance” after some of the rock’s surface had been removed by Opportunity’s rock abrasion tool, or RAT. The component images were taken on Sol 3305 on Mars (May 11, 2013). The area shown is about 2.4 inches (6 centimeters) across. Credit: NASA/JPL-Caltech/Cornell/USGS

Esperance is unlike any rock previously investigated by Opportunity; containing far more aluminum and silica which is indicative of clay minerals and lower levels of calcium and iron.

Most, but not all of the rocks inspected to date by Opportunity were formed in an environment of highly acidic water that is extremely harsh to most life forms.

Clay minerals typically form in potentially drinkable, neutral water that is not extremely acidic or basic.

Previously at Cape York, Opportunity had found another outcrop containing a small amount of clay minerals formed by exposure to water called “Whitewater Lake.”

“There appears to have been extensive, but weak, alteration of Whitewater Lake, but intense alteration of Esperance along fractures that provided conduits for fluid flow,” said Squyres.

Opportunity rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013, coinciding with her 9th anniversary on Mars.  “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. This panoramic view was snapped from ‘Matijevic Hill’ on Cape York ridge at Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer
Opportunity rover discovered phyllosilicate clay minerals and calcium sulfate veins at the bright outcrops of ‘Whitewater Lake’, at right, imaged by the Navcam camera on Sol 3197 (Jan. 20, 2013, coinciding with her 9th anniversary on Mars. “Copper Cliff” is the dark outcrop, at top center. Darker “Kirkwood” outcrop, at left, is site of mysterious “newberries” concretions. This panoramic view was snapped from ‘Matijevic Hill’ on Cape York ridge at Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell/Marco Di Lorenzo/Ken Kremer

Cape York is a hilly segment of the rim of Endeavour crater which spans 14 miles (22 km) across – where the robot arrived in mid-2011 and will spend her remaining life.

Opportunity has now set sail for her next crater rim destination named “Solander Point”, an area about 1.4 miles (2.2 kilometers) away – due south from “Cape York.”

“Our next destination will be Solander Point,” Squyres told Universe Today.

Along the way, Opportunity will soon cross “Botany Bay” and “Sutherland Point”, last seen when Opportunity first arrived at Cape York.

Eventually she will continue further south to a rim segment named ‘Cape Tribulation’ which holds huge caches of clay minerals.

The rover must arrive at “Solander Point” before the onset of her 6th Martian winter so that she can be advantageously tilted along north facing slopes to soak up the maximum amount of sun by her power generating solar wings. She might pull up around August.

On the other side of Mars, Opportunity’s new sister rover Curiosity also recently discovered clay minerals on the floor of her landing site inside Gale Crater.

Curiosity found the clay minerals – and a habitat that could support life – after analyzing powdery drill tailings from the Yellowknife Bay basin worksite with her on board state-of-the-art chemistry labs.

Just a week ago on May 15 (Sol 3309), Opportunity broke through the 40 year old American distance driving record set back in December 1972 by Apollo 17 astronauts Eugene Cernan and Harrison Schmitt.

But she is not sitting still resting on her laurels!

This past week the robots handlers’ back on Earth put the pedal to the metal and pushed her forward another quarter mile during 5 additional drives over 7 Sols, or Martian days. Thus her total odometry since landing on 24 January 2004 now stands at 22.45 miles (36.14 kilometers).

Opportunity will blast through the world record milestone of 23 miles (37 kilometers) held by the Lunokhod 2 lunar rover (from the Soviet Union), somewhere along the path to “Solander Point” in the coming months.

Opportunity captures the eerie Martian scenery looking south across Botany Bay from the southern tip of Cape York to her next destination - Solander Point,  about 1 mile (1.6 km) away. This navcam photo mosaic was taken on Sol 3317, May  23, 2013.    Credit: NASA/JPL/Cornell//Marco Di Lorenzo/Ken Kremer (kenkremer.com)
Opportunity captures the eerie Martian scenery looking south across Botany Bay from the southern tip of Cape York to her next destination – Solander Point, about 1 mile (1.6 km) away. This navcam photo mosaic was taken on Sol 3317, May 23, 2013. Credit: NASA/JPL/Cornell//Marco Di Lorenzo/Ken Kremer (kenkremer.com)

Endeavour Crater features terrain with older rocks than previously inspected and unlike anything studied before by Opportunity. It’s a place no one ever dared dream of reaching prior to Opportunity’s launch in the summer of 2003 and landing on the Meridiani Planum region in 2004.

Signatures of clay minerals, or phyllosilicates, were detected at several spots at Endeavour’s western rim by observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard NASA’s Mars Reconnaissance Orbiter (MRO).

“The motherlode of clay minerals is on Cape Tribulation. The exposure extends all the way to the top, mainly on the inboard side,” says Ray Arvidson, the rover’s deputy principal investigator at Washington University in St. Louis.

Stay tuned for the continuing breathtaking adventures of NASA’s sister rovers Opportunity and Curiosity!

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 8 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3318 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south to Solander Point from  Cape York ridge at the western rim of Endeavour Crater.  On May 15, 2013 Opportunity drove 263 feet (80 meters) southward - achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) - and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Traverse Map for NASA’s Opportunity rover from 2004 to 2013 to Record Setting Drive on May 15. This map shows the entire path the rover has driven during more than 9 years and over 3318 Sols, or Martian days, since landing inside Eagle Crater on Jan 24, 2004 to current location heading south to Solander Point from Cape York ridge at the western rim of Endeavour Crater. On May 15, 2013 Opportunity drove 263 feet (80 meters) southward – achieving a total traverse distance on Mars of 22.22 miles (35.76 kilometers) – and broke the driving record by any NASA vehicle that was previously held by the astronaut-driven Apollo 17 Lunar Rover in 1972. Credit: NASA/JPL/Cornell/ASU/Marco Di Lorenzo/Ken Kremer
Opportunity Heads Toward Next Destination, 'Solander Point' This map of a portion of the western rim of Endeavour Crater on Mars shows the area where NASA's Mars Exploration Rover Opportunity worked for 20 months, "Cape York," in relation to the area where the rover team plans for Opportunity to spend its sixth Martian winter, "Solander Point." Credit: NASA/JPL-Caltech/Univ. of Arizona
Opportunity Heads Toward Next Destination, ‘Solander Point’
-This map of a portion of the western rim of Endeavour Crater on Mars shows the area where NASA’s Mars Exploration Rover Opportunity worked for 20 months, “Cape York,” in relation to the area where the rover team plans for Opportunity to spend its sixth Martian winter, “Solander Point.” Credit: NASA/JPL-Caltech/Univ. of Arizona

What path will lead American humans to Mars?

How long does it take to get to Mars
A new proposal for sending craft to Mars could save money and offer more flexible launch windows. Credit: NASA

Is it just us, or has there been a lot — a LOT — of talk about getting humans to Mars lately?

Here’s Apollo astronaut Buzz Aldrin promoting a book about Mars exploration. Over here is Mars One, currently accepting applications for a one-way trip to the Red Planet in 2023 — an opportunity that thousands of people applied for so far. Don’t forget the Inspiration Mars people, either.

Even as our robotic emissaries break otherworldly driving records and search for Mars’ missing atmosphere, it’s not enough for our exploratory horizons. The stunning pictures robots beam back from Mars only fuel the fire for human hopes to get there.

President Barack Obama has said he wants to get to Mars by the 2030s, but his is the latest in a series of plans to get there. Every president seems to have a new idea of Mars exploration.

A Congressional committee this week tried to cut through the noise to get some clear messages about what to do. (Context: NASA’s fiscal 2014 budget is up for discussion, so this has budgetary relevance.)

An artist's concept of how the spacecraft for the Inspiration Mars Foundation's "Mission for America" might be configured. Credit: Inspiration Mars.
An artist’s concept of how the spacecraft for the Inspiration Mars Foundation’s “Mission for America” might be configured. Credit: Inspiration Mars.

So. We had four witnesses with maybe 150 to 200 years of combined space experience appearing before the subcommittee on space on Tuesday (May 21), each with a plan.  To wit, here is a very brief summary of their individual positions:

Louis Friedman, executive director emeritus of The Planetary Society (who co-led the co-leader of the Keck Institute for Space Studies Asteroid Retrieval Mission Study): Do the asteroid mission proposed by NASA. It will launch four to five years from now. If done properly, it would be a great opportunity for humans to explore as well as for commercial opportunities in mining.

Paul Spudis,  senior staff scientist at the NASA-funded Lunar and Planetary Institute: Return to the moon. It’s close, so close to Earth that we can operate rovers by remote control. It’s a good spot to learn more about the solar system, and it provides practice for us in living off the resources of the land as it has water — a tool for life support and energy.

– Steve Squyres, Cornell University planetary scientist renowned for his Mars rover research: Go to cislunar space, the area close to the moon. It’s an easily accessible spot in a restricted budget environment. Thinking beyond that is not realistic in the current budget environment.

Douglas Cooke, NASA’s former associate administrator for the exploration systems mission directorate: Re-establish lunar exploration. The asteroid mission would not connect well with the long-term strategy, but the lunar surface would as (like Mars) it is a hostile environment suitable for testing planetary exploration technologies.

Artist impression of an astronaut on Mars (NASA)
Artist impression of an astronaut on Mars (NASA)

Representatives then peppered the space experts with tons of questions, such as:

– How best to bring in international partners?

– Should we be concerned about other countries talking about going to the moon themselves, such as Russia and China?

– Should we take away from other NASA programs, such as astronomy or debris retrieval in orbit, to focus on Mars exploration? (Recall that Mars science was slashed in 2012, including the loss of participation in ExoMars.)

– How do we interest the public in the mission? The asteroid retrieval (which many committee members heavily criticized as one released with little outside consultation) doesn’t seem to spark with the person on the street.

– Should we even attempt to go given the sequestration environment right now?

Take a listen of the experts’ answers in full in the archived webcast (available here).

But also — what’s your take? Is it worth going to Mars in the first place, and if so, how do we best achieve that? Please leave your thoughts in the comments.

NASA Looks at 3-D Food Printer for Star Trek-like Replicator

The RepRap self-replicating printer 'Mendel". (Credit: CharlesC under a Creative Commons Attribution-Share Alike 3.0 Unported license).

The International Space Station may soon have its very own Star Trek food replicator.

Earlier this week, NASA awarded a $125,000 six month grant to the Systems & Materials Research Cooperation to design a 3D printer capable of printing a pizza from 30-year shelf stable foodstuffs.

Founded by Anjan Contractor, SMRC built a basic food printer from a chocolate printer to win NASA’s Small Business Innovation Research Program in a trial video. The design is based on an open-source RepRap 3D printer.

Contractor and SMRC will begin construction on the pizza-printing prototype in two weeks. Pizza has been one item missing from astronauts menu for years. The 3D printer would “build-up” a pizza serving by first layering out the dough onto a heated plate then adding tomato sauce and toppings.

But this isn’t your mother’s pizza, as the proteins would be provided by cartridge injectors filled with organic base powders derived from algae, insects and grass.

Yummy stuff, to be sure!

Of course, one can see an immediate application of 3D food printing technology for long duration space missions. Contractor and SMRC envisions 3D food printing as the wave of the future, with the capacity to solve world hunger for a burgeoning human population.

Could a 3D food printer be coming to a kitchen near you?

Curiously, printing confectioneries and pet food pellets would be the simplest application of said technology. Printing a soufflé and crowned rack of lamb will be tougher. 3D printing technology has made great strides as of late, and RepRap has made a printer which is capable of printing itself. Those who fear the rise of Von Neumann’s self-replicating robots should take note…

Should we welcome or fear our self-replicating, pizza-bearing overlords?

The International Space Station is due for the delivery of its first 3D printer in 2014. This will give astros the capability to fabricate simple parts and tools onsite without requiring machining. Of course, the first question on our minds is: How will a 3D printer function in zero-g? Will one have tomato paste an insect parts flying about? Recent flights aboard a Boeing 727 by Made in Space Inc have been testing 3D printers in micro-gravity environments.

Made in Space demonstrates 3D Printing technology headed to the ISS next year. (Credit: Made in Space Inc./NASA).
Made in Space demonstrates 3D Printing technology headed to the ISS next year. (Credit: Made in Space Inc./NASA).

Further afield, 3D replicators may arrive on the Moon or Mars ahead of humans, building a prefab colony with raw materials available for colonists to follow.

Artist's conception of a lunar base constructed with 3D printing technology. (Credit: NASA Lunar Science Institute).
Artist’s conception of a lunar base constructed with 3D printing technology. (Credit: NASA Lunar Science Institute).

Will 3D food replicators pioneered by SMRC be a permanent fixture on crewed long duration space missions? Plans such as Dennis Tito’s Mars 2018 flyby and the one way Mars One proposal will definitely have to address the dietary dilemmas of hungry astronauts. Biosphere 2 demonstrated that animal husbandry will be impractical  on long term missions. Future Martian colonists will definitely eat much farther down the food chain to survive. SpaceX head Elon Musk has recently said in a Twitter response to PETA that he won’t be the “Kale Eating Overlord of Mars,” and perhaps “micro-ranching” of insects will be the only viable alternative to filet mignon on the Red Planet. Hey, it beats Soylent Green… and the good news is, you can still brew beer from algae!

Diagram of a proposed 3D food printer based on ReRap. (Credit: SMRC).
Diagram of a proposed 3D food printer based on ReRap. (Credit: SMRC).

Would YOU take a one way journey to Mars? Would you eat a bug to do it? It’ll be interesting to watch these 3D printers in action as they take to space and print America’s favorite delivery fast food. But it’s yet to be seen if home replicators will put Dominos Pizza out of business anytime soon. Perhaps they’ll only be viable if they can print a pizza in less than “30 minutes!”

Dream Chaser Readies, Gets Set For Flight Testing

The Dream Chaser space plane atop a United Launch Alliance Atlas V rocket. Image Credit: SNC

It was surely one of those moments where NASA could hardly wait to tear off the shrink wrap. Sierra Nevada Corp.’s privately constructed Dream Chaser spacecraft engineering test article arrived at the Dryden Flight Research Center last week — wrapped in plastic for shipping protection — ahead of some flight and runway tests in the next few months.

“Tests at Dryden will include tow, captive-carry and free-flight tests of the Dream Chaser. A truck will tow the craft down a runway to validate performance of the nose strut, brakes and tires,” NASA stated.

“The captive-carry flights will further examine the loads it will encounter during flight as it is carried by an Erickson Skycrane helicopter. The free flight later this year will test Dream Chaser’s aerodynamics through landing.”

The ultimate goal is to get the United States bringing its own astronauts into space again.

A Sierra Nevada employee removes plastic wrapping from Dream Chaser after it arrives at NASA's Dryden Flight Research Center in southern California. Credit: NASA
A Sierra Nevada employee removes plastic wrapping from Dream Chaser after it arrives at NASA’s Dryden Flight Research Center in southern California. Credit: NASA

Sierra Nevada, Space Exploration Technologies (SpaceX) and the Boeing Co. are all receiving NASA funding under its Commercial Crew Integrated Capability (CCiCap) initiative that is intended to restart flights from American soil into low-Earth orbit.

For Sierra Nevada, the company aims to launch its mini shuttle aboard an Atlas V rocket and then, like the shuttle, come back to Earth on a runway. SpaceX and Boeing are taking a different path — making spacecraft capable of launching on the Falcon 9 and Atlas V rockets (respectively) and then coming home under a parachute.

There’s still some questions about when the program will start, though. In media reports, NASA administrator Charles Bolden has said funding threats for NASA’s 2014 request are imperiling the current commercial crew target of 2017.

NASA astronaut Jack Fischer and three others recently took part in approach and landing simulations of the Dream Chaser at Langley Research Center in Hampton. Check out the video below.

Revolutionary New Space-Diving Suit Will Rival Anything You’ve Ever Seen In The Movies

Sol-X CEO Blaze Sanders wearing a Final Frontier Design space suit. Credit: Solar System Express.

Editor’s note: This guest post was written by Ron Atkins, a life-long supporter of human space exploration and an ardent advocate of “NewSpace” and Commercial Spaceflight. He curates and maintains “The NewSpace Daily” on Scoop.it

Tony Stark has been to a lot of cool places in that Iron Man get-up of his. But low Earth orbit might still be a bit beyond his operational flight envelope. Not so for the developers of the revolutionary RL Mark VI Space Diving suit. A hi-tech ensemble consisting of augmented reality goggles, power gloves, control moment gyros, and a low-cost commercial space suit, the RL Mark VI will allow future thrill seekers and space tourists an experience that up until now could only be imagined in the boldest science fiction.

A joint collaboration between Solar System Express and Juxtopia LLC., two minority-owned hi-tech startups both based in Baltimore, Maryland, the RL MARK VI Space Diving configuration will allow the well-equipped space tourist of the near future the opportunity to actually return to Earth without his spaceship.

Space diving is the next big step beyond sky diving, and it is envisioned as a concept that would allow spaceflight participants a means of escape from a possibly disastrous on-orbit emergency, or perhaps just a new recreational activity for those no longer satisfied with merely jumping out of aircraft. The RL MARK VI would allow high-altitude jumps from near-space, suborbital space, and eventually low Earth orbit itself.

The first few flight tests of the MARK VI hardware will follow a profile very reminiscent to that of the recent record-breaking Red Bull Stratos dive of Felix Baumgartner, where the daring aerialist completed his plunge through the stratosphere with a soft parachute touchdown back on terra firma. But the ultimate goal of this futuristic project is far more radical than that. Eventually, through the use of modern “wing suit” skydiving technology and assisted by miniature aerospike engines attached to specially designed footwear, the space diver will end his spectacular glide through the heavens with a propulsive, power-assisted landing on two feet. No parachute. At all. Just like Tony Stark does it in the movies.

In addition to Hollywood, the RL Mark VI also draws upon history for its inspiration. Major Robert Lawrence, United States Air Force, was America’s first African-American astronaut. Major Lawrence was killed on December 8, 1967 in a test flight at Edwards Air Force Base in California before his dream of flying in space ever came to pass. In his honor the principal design team at Solar System Express chose to use his initials for the product code name of this revolutionary new concept.

On October 2, 2012, the birthday of Robert Lawrence, Blaze Sanders, Chief Technology Officer of Solar System Express, ratified a licensing agreement with Dr. Jayfus Doswell, president and CEO of Juxtopia, for the use of Juxtopia’s Augmented Reality (AR) head mounted display technology.

Similar in functionality to Google Glass, Juxtopia’s AR Goggles are primarily intended to provide the space diver with a continuous stream of vital information that will keep him on course and within safe life-support parameters throughout the duration of his jump. These visually displayed real-time dynamic analytics will tell the jumper his heart rate, respiration, internal space suit temperature, and his external temperature as well. They will provide data on GPS location, elevation, and rates of acceleration and deceleration. An FAA radar display of the local airspace will always indicate his current relative position.

Example of the graphical symbology that will be displayed by the Juxtopia AR Goggles during a typical RL MARK IV space dive. Credit: Blaze Sanders, solarsystemexpress.com
Example of the graphical symbology that will be displayed by the Juxtopia AR Goggles during a typical RL MARK IV space dive. Credit: Blaze Sanders, solarsystemexpress.com

Unlike Google Glass there will be no video mode for these goggles. Instead they will work on the principal of “Optical See-Through,” much like the Heads Up Display on a modern fighter jet, that overlays numerical information and other visual symbology over the pilot’s view of the outside world. In the words of Dr. Doswell, “Video mode works fine for Hollywood, but in real life if you lose video during the jump then you’re flying blind and unlike in the movies there is no quick reboot option.”

The goggles will respond to voice commands specifically addressed to the name that the diver has designated for the RL MARK VI‘s system computer. Special software algorithms will filter the diver’s voice and eliminate all “false positives” such as wind, air, engine sounds and any other noise that is not human speech. The final result of this filtered audio signal is referred to as “pure speech.” Such audio commands will be used to turn the RL MARK VI’s systems on and off, to eject various hardware components from the diver’s body at different altitudes, to control suit cams and various lighting options, and to control voice communications to a ground control station.

In addition to voice commands, according to Dr. Doswell, “other human-computer interface modalities are being investigated for control of the MARK VI during its high speed decent as well.” Interfaces such as the electrical activity in your muscles harnessed by gesture control systems from MYO, and a distance only radio frequency sensor developed by Dr. Kuhlman at the University of Maryland, College Park, MD.

Modern fighter aircraft also employ specific audio outputs in cases of emergency or imminent danger. The MARK VI will be no different. Juxtopia is developing a culturally-specific system of programmable user preferences that will allow the diver to select his own audio alarms for any possible in-flight emergency and any other critical decision points such as altitude level or diminishing fuel state. This approach will help to enhance the international marketability of the MARK VI as well as ensure safety throughout the space dive for potential users from a variety of different cultures.

This video provides a taste of what space diving will be like:

Falling through the vacuum of space will be quite different than a dive that begins in the relative thickness of Earth’s lower atmosphere. There will be no aerodynamic forces acting upon the diver’s body that will allow him to stabilize his jump. This problem will be solved by a pair of gyroscopic boots and the fingertip controls built into the gloves of the diver’s spacesuit. Commands so issued to the control momentum gyroscopes built into his footwear will establish proper attitude and help to steady his fall through the airless void.

As a safety precaution a flat spin compensator will automatically actuate after more than five seconds if the diver is unable to maintain adequate manual control. As the diver descends through the upper atmosphere, eventually the air will thicken to the point where aerodynamic forces will allow him to control the attitude of his body. Olav Zipser, word-renowned skydiver and lead jumper on the FreeFly Astronaut Project, has praised the new suit. “Your product would be a great way to stabilize my decent during the first 30 seconds of free fall, when there is virtually zero atmosphere,” he said.

CAD representation of the RL MARK VI’s gyroscopic boot prototype. Credit: Blaze Sanders, solarsystemexpress.com
CAD representation of the RL MARK VI’s gyroscopic boot prototype. Credit: Blaze Sanders, solarsystemexpress.com

The final function of the diver’s gyroscopic boots will kick in as he nears the surface of the Earth, and he fires off his miniature aerospike thrusters to smoothly lower himself to the ground for a two-point upright landing.

Two different landing scenarios are presently under consideration: “a feet-down” landing where the aerospikes fire into action from an altitude of hundred feet, gently lowering the diver down to earth; and the much more daring and challenging “wing suit flare up” where the diver swoops within ten feet of pay dirt before pulling up sharply and then lighting off his thrusters to initiate his controlled descent to the ground.

Solar System Express intends to first test this propulsive landing capability somewhere around 2016, with a production model of the RL MARK VI coming to market about a year later. Until then any live tests of the system will conclude with traditional parachute jumps. Data collected during these jumps, along with rigorous control system testing and computer simulated recreations of each space dive, will enable Blaze Sanders and his team to refine the parameters and the protocols required for a text book propulsive landing.

CAD representation of the RL MARK VI’s high-intensity LED chest piece prototype. Credit: Blaze Sanders, solarsystemexpress.com
CAD representation of the RL MARK VI’s high-intensity LED chest piece prototype. Credit: Blaze Sanders, solarsystemexpress.com

Mounted on the front of the jumper’s space suit will be a “high intensity LED chest piece” powered by energy-storing super capacitors and equipped with miniature stereo cameras which will collect much of the data necessary for recreating the jump in a 3D computer simulation. When finally transferred to video all of this collected 3D data should easily yield the kind of YouTube upload that one can point to with pride for years to come.

The Gravity Development Board, a proprietary piece of hardware designed by Solar System Express, will serve as the main interface between the MARK VI’s three major components as well as the device which controls all critical systems.

According to Mr. Sanders, “The GDB will be the first space-rated open hardware electronic prototyping board, enabling any type of person to create space qualified hardware. The GDB will replace the Arduino Uno® as the preferred high-level prototyping environment, by being up to forty times faster, seventy percent smaller, having integrated high power drivers (capable of handling one hundred times the current), with more flexible Input/Output configurations, and yet be still much easier to program via 12 Blocks™, the powerful, intuitive visual language used for robotic programming. Engineers, artists, and designers are thus enabled to create any project they can imagine. Our quick release breakout board, the ‘Ejection Seat™,’ allows for easy prototyping, yet keeps the GDB form factor small and robust enough to use in New Space start-up product releases.”

Final Frontier Design, of Brooklyn, New York, is working with Solar System Express on a customized version of their low-cost Intra-Vehicular Activity IVA 3G spacesuit, first introduced to the public last year and successfully crowd funded through an online kickstarter campaign. The entire RL MARK VI ensemble, along with the 3G spacesuit and a protective thermal outer covering, will be put through a rigorous testing regime beginning in June of 2014. Ground based testing will commence with a series of thermal and vacuum chamber tests, and vertical wind tunnel tests to be conducted at the Goddard Spaceflight Center in Greenbelt, Maryland.

The protective thermal covering will be fashioned from lightweight layers of aerogel and NASA Space Shuttle-like flexible insulation blankets formed into a garment that will serve as the spacesuit’s outermost layer. This is the material that will protect the space diver from the heat of reentry as he plunges through the earth’s upper atmosphere. Solar System Express has already started conversations with several wing suit manufacturers interested in employing this revolutionary thermal technology into their product line.

The first tests at altitude should begin around July of 2016. They will commence with two-kilometer parachute jumps from a helium balloon-tethered tower that will comprise the major test platform of The LiftPort Group’s Lunar Space Elevator Project. Eventually near-space jumps from as high as 40 kilometers will be conducted by Olav Zipser and his FreeFly Astronaut Project using a specially modified rocket designed and manufactured by InterOrbital Systems of Mojave, California.

No firm dates have been set for suborbital and orbital testing but initial plans call for the use of a human medical robot prototype supplied by Juxtopia to be used as the test subject for these first jumps before real live space divers eventually become involved.

Blaze Sanders estimates the total development costs to bring the RL MARK VI to market at around $2.2 million. He has already invested about $100,000 of his own time and money into the project. In the next three years he expects to generate another $1.1 million dollars in revenue through sales of his company’s Gravity Development Board. He expects to generate additional revenue from a wide variety of sources including ongoing consulting fees, government grants and loans, angel investment, kickstarter campaigns, and technical consulting fees from motion picture productions already interested in the use of his technology, as well as a video game simulation also based on his revolutionary hardware.

Should he ultimately succeed then, who knows, one day he may end up just as rich and successful as Tony Stark himself. He’s already got the suit. And he’s prepared to take it to dazzling new heights.

For more information please visit www.solarsystemexpress.com and www.juxtopia.com. Read their joint press release at http://www.solarsystemexpress.com/press-releases.html

Tributes Mount As Sally Ride’s 30th Anniversary In Space Approaches

NASA astronaut Sally Ride, who died in 2012. Credit: NASA

Sally Ride was only 32 years old when she flew into space for the first time 30 years ago, in June 1983. She died last year at 61, at an age that many considered very young. In that generation of time, however, the exploits of America’s first woman in space in flight and education touched countless Americans.

This week, the accolades are piling up for the two-time space flyer. Besides her astronaut exploits, she was a Rogers Commission investigator of the 1986 Challenger explosion and the founder of Sally Ride Science, which encourages children to pursue careers in science, technology, education and math (STEM).

In the past few days alone, Ride generated a bunch of posthumous tributes:

– She will receive the Presidential Medal of Freedom sometime later this year;

– NASA made a new internship program named after her;

– The EarthKAM science instrument (which includes participation from students) on the International Space Station will bear her name.

And that’s not all. There were also star-studded public ceremonies devoted to her memory.

Student dancers from the North Carolina School of the Arts perform during a  national tribute to Sally Ride at the John F. Kennedy Center for the Performing Arts on May 20, 2013. Credit: NASA/Bill Ingalls
Student dancers from the North Carolina School of the Arts perform during a national tribute to Sally Ride at the John F. Kennedy Center for the Performing Arts on May 20, 2013. Credit: NASA/Bill Ingalls

Music, art and science all met at a gala at Washington, D.C.’s John F. Kennedy Center for the Performing Arts on Monday (May 20). The performances focused on things that had meaning to Ride, NASA stated, including a performance of Claude Debussy’s “Clair de Lune” and a reading of Mary Oliver’s poem “The Summer Day.”

Speakers at the event included astronaut Leland Melvin (now NASA’s associate administrator for education), astronaut Pam Melroy (a former space shuttle commander), and Senator Barbara Mikulski of Maryland.

“I’m thrilled to pay tribute to Sally because her dedication and superb talent cemented the value of women’s contributions in space and in science, smoothing the path for all women to achieve success,” stated Melroy.

“Sally showed the world what was possible, opening the eyes of millions of women and men to what could be. Her achievements in space inspired a generation of young women, and her achievements in STEM education will pass that legacy of inspiration on to future generations.”

The Smithsonian also held a lecture in honor of Ride’s memory on May 17.

The 1.5-hour lecture (which is just above this text and definitely worth your time to see) includes commentary from a cross-section of space experts on Ride’s legacy. Speakers represented everything from the Smithsonian National Air and Space Museum to NASA’s Johnson Space Center to USA Today.

“We all admire Dr. Ride, but I don’t know that everyone in the room appreciates fully and remembers fully the history of what she accomplished,” said Margaret Weitekamp, a curator in the Smithsonian’s space history division who focuses on women in aviation, in opening remarks to the event.

Weitekamp pointed to investigations in the 1950s concerning women in space, showing that they could have advantages over men: they’re smaller (easier to fit in a spacecraft) and at the time were linked to studies showing women have fewer pulmonary problems, a higher tolerance to pain, and better performance in isolation tests.

She also cited early forays for women in space, including Lovelace’s Women in Space program, which she characterized as the first thorough physiological investigation of how women fare in that field. You can read more about their exploits on this NASA page.

What do you think is Sally Ride’s greatest legacy? Share your thoughts in the comments.