How the Air Force and SpaceX Saved Dragon from Doom

This grappling of the SpaceX Dragon capsule on March 3, 2013 by the space station robotic arm nearly didn’t happen when a thruster failure just minutes after the March 1 liftoff nearly doomed the mission. Credit: NASA

The picture perfect docking of the SpaceX Dragon capsule to the International Space Station (ISS) on March 3 and the triumphant ocean splashdown last week on March 26 nearly weren’t to be – and it all goes back to a microscopic manufacturing mistake in the oxidizer tank check valves that no one noticed long before the vessel ever took flight.

Barely 11 minutes after I witnessed the spectacular March 1 blastoff of the Dragon atop the SpaceX Falcon 9 rocket from Cape Canaveral, Florida, everyone’s glee suddenly turned to disbelief and gloom with the alarming news from SpaceX Mission Control that contact had been lost.

I asked SpaceX CEO and founder Elon Musk to explain what caused the failure and how they saved the drifting, uncontrolled Dragon capsule from doom – just in the nick of time.

Applying the space version of the Heimlich maneuver turned out to be the key. But if you can’t talk to the patient – all is lost.

dragonRight after spacecraft separation in low Earth orbit , a sudden and unexpected failure of the Dragon’s critical thrust pods had prevented three out of four from initializing and firing. The oxidizer pressure was low in three tanks. And the propulsion system is required to orient the craft for two way communication and to propel the Dragon to the orbiting lab complex.

So at first the outlook for the $133 million Dragon CRS-2 cargo resupply mission to the ISS appeared dire.

Then, SpaceX engineers and the U.S Air Force sprang into action and staged an amazing turnaround.

“The problem was a very tiny change to the check valves that serve the oxidizer tanks on Dragon.” Musk told Universe Today

“Three of the check valves were actually different from the prior check valves that had flown – in a very tiny way. Because of the tiny change they got stuck.”

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

SpaceX engineers worked frantically to troubleshoot the thruster issues in an urgent bid to overcome the serious glitch and bring the crucial propulsion systems back on line.

“What we did was we were able to write some new software in real time and upload that to Dragon to build pressure upstream of the check valves and then released that pressure- to give it a kind of a kick,” Musk told me at a NASA media briefing.

“For the spacecraft you could call it kind of a Heimlich maneuver. Basically that got the valves unstuck and then they worked well”

“But we had difficulty communicating with the spacecraft because it was in free drift in orbit.”

“So we worked closely with the Air Force to get higher intensity, more powerful dishes to communicate with the spacecraft and upload the software to do the Heimlich pressure maneuver.”

Schematic of SpaceX Dragon. Credit: SpaceX
Schematic of SpaceX Dragon. Credit: SpaceX

Just how concerned was Musk?

“Yes, definitely it was a worrying time,” Musk elaborated.

“It was a little frightening,” Musk had said right after the March 1 launch.

Later in the briefing Musk explained that there had been a small design change to the check valves by the supplier.

“The supplier had made mistakes that we didn’t catch,” said Musk. “You would need a magnifying glass to see the difference.”

SpaceX had run the new check valves through a series of low pressurization systems tests and they worked well and didn’t get stuck. But SpaceX had failed to run the functional tests at higher pressures.

“We’ll make sure we don’t repeat that error in the future,” Musk stated.

Musk added that SpaceX will revert to the old check valves and run tests to make sure this failure doesn’t happen again.

SpaceX, along with Orbital Sciences Corp, are both partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

Orbital’s Antares rocket could blast off on its first test mission as early as April 17.

Of course the Dragon CRS-2 flight isn’t the first inflight space emergency, and surely won’t be the last either.

So, for some additional perspective on the history of reacting to unexpected emergencies in space on both human spaceflight and robotic science probes, Universe Today contacted noted space historian Roger Launius, of the Smithsonian National Air & Space Museum (NASM).

Roger provided these insights to Universe Today editor Nancy Atkinson – included here:

“There are many instances in the history of spaceflight in which the mission had difficulties that were overcome and it proved successful,” said Launius.

“Let’s start with Hubble Space Telescope which had a spherical aberration on its mirror and the first reports in 1990 were that it would be a total loss, but the engineers found workarounds that allowed it to be successful even before the December 1993 servicing mission by a shuttle crew that really turned it into a superb scientific instrument.”

“Then what about Galileo, the Jupiter probe, which had a problem with its high gain antenna. It never did fully deploy but the engineers found ways to overcome that problem with the communication system and the spacecraft turned into a stunning success.”

“If you want to feature human spaceflight let’s start with the 1999 shuttle flight with Eileen Collins as commander that had a shutdown of the SSMEs prematurely and it failed to reach its optimum orbit. It still completed virtually all of the mission requirements.”

“That says nothing about Apollo 13,… I could go on and on. In virtually every mission there has been something potentially damaging to the mission that has happened. Mostly the folks working the mission have planned for contingencies and implement them and the public rarely hears about it as it looks from the outside like a flawless operation.”

“Bottom line, the recovery of the Dragon capsule was not all that amazing. It was engineers in the space business doing what they do best,” said Launius.

Ken Kremer

…………….

Learn more about SpaceX, Antares, Curiosity and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

SpaceX Falcon 9 rocket and Dragon capsule poised to blast off from Cape Canaveral Air Force Station, Florida on a commercial resupply mission to the ISS. Credit: Ken Kremer/www.kenkremer.com

Happy Easter Sunday from the ISS ! Crew Hunts Easter Eggs & Goodies

ISS Commander Chris Hadfield plans surprise Easter egg hunt for station crew today. Credit: NASA/Chris Hadfield

ISS Commander Chris Hadfield plans surprise Easter egg hunt for station crew today – Easter Sunday, March 31, 2013. Credit: NASA/Chris Hadfield
Updated with more astounding ‘Easter from Space’ photos by Chris Hadfield !
Dont miss the scrumptious ‘Easter Finale’ – below

Thank you Chris ![/caption]

Hush, hush !

Don’t’ tell his crew, but Canadian astronaut Chris Hadfield has secretly planned a delightful space station surprise sure to also warm the hearts of Earth’s children celebrating the joyous occasion of this Easter Sunday – and there’s delicious photos below too.

They’re going on an Easter egg hunt !

“Don’t tell my crew, but I brought them Easter Eggs :)”, tweeted Hadfield from the ISS – where he currently serves as Commander of the Expedition 35 crew.

And Hadfield sends his greetings and ‘Easter from Space’ photos to all of us down here on the good Earth on this Holy Day.

“Good Morning, Earth! A fine Easter Sunday morning to you, from the crew of the International Space Station.”

You can follow along with Hadfield’s adventures from space as – @Cmdr_Hadfield

A Full Moon. It may not be made of chocolate, but it makes for a wonderfully natural Easter egg. Credit: NASA/Chris Hadfield
A Full Moon. It may not be made of chocolate, but it makes for a wonderfully natural Easter egg. Credit: NASA/Chris Hadfield

Occasionally, Mission Control relents and lets the astronauts have fun, taking a break from their out of this world chores.

But given the weightless of space, it’s not obvious how they’ll accomplish the traditional Easter egg roll. Perhaps we’ll hear about that later.

And there’s no word back yet on Easter Bunny sightings.

Well, to get ready Hadfield has been busy stashing assorted Easter goodies & gifts in the gazillion nooks and crannies aboard the ISS – and snapping fun photos for all the kids to play along.

“Sometimes the best place to hide an item is floating right above your nose. Or in this case, your sleep pod.”

This sleep pod apparently makes for a great hiding spot for Easter eggs and gift baskets on the ISS. Credit: NASA
This sleep pod apparently makes for a great hiding spot for floating Easter eggs and gift baskets on the ISS. Credit: NASA

Hadfield just couldn’t resist the temptation of some weightless juggling – and he’s not telling if they went .. splat !!

“It appears that I’m as bad at juggling in weightlessness as I am on Earth. Hopefully I’m better at hiding them… ”

Canadian astronaut Chris Hadfield attempts to juggle Easter eggs aboard the International Space Station. Do they go splat ??. Credit: NASA
Canadian astronaut Chris Hadfield attempts to juggle Easter eggs aboard the International Space Station. Do they go splat ??. Credit: NASA

Time will tell whether the crew of six guys are indeed clever enough to figure out all the secret hiding spots.

The Easter egg hunt could be especially trying for the three ‘new guys’ who just arrived on Thursday, March 28, on the Russian Soyuz express capsule – comprising of Russian cosmonauts Pavel Vinogradov and Alexander Misurkin and NASA astronaut Chris Cassidy. They join Hadfield, astronaut Tom Marshburn and cosmonaut Roman Romanenko who will stay aboard the station until May.

In the meantime, Hadfield is playfully diverting everyone’s concentration with gorgeous shots of Earth, like the Easter sunrise glinting across North America’s heartland – below.

An Easter sunrise glints across the Great Lakes. Heartland watershed. Credit: NASA/Chris Hadfield
An Easter sunrise glints across the Great Lakes. Heartland watershed. Credit: NASA/Chris Hadfield

And the Canadian Space Agency has now passed along an Easter greeting card.

Astronaut and cosmonaut crews have a decade’s long tradition of celebrating religious holidays in space. Probably the most famous occasion was when the three man American crew of Apollo 8 read scriptures from Genesis marking the first time in history that humans were orbiting the Moon – back in 1968.

All in all it’s been a busy week aboard the massive orbiting lab complex.

On Tuesday, March 26, the SpaceX Dragon capsule departed the station, loaded with a long awaited trove of science goodies and successfully splashed down in the ocean. Two days later the trio of new space men arriving aboard the Soyuz restored the ISS to its full crew complement of six.

Since arriving at the station just before Christmas 2012, Hadfield has been doing a stellar job enlightening folks about what it’s like to live and work in space in fun and understandable ways.

Happy Easter !

Ken Kremer

Easter Finale: The Sun, a bright point of light surrounded by profound blackness, our world glowing in-between. Credit: NASA/Chris Hadfield
Easter Finale: The Sun, a bright point of light surrounded by profound blackness, our world glowing in-between. Credit: NASA/Chris Hadfield

…………….

Learn more about the ISS, Curiosity, SpaceX, Antares, and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, ISS, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Soyuz Makes Record-Breaking ‘Fast Track’ to Space Station

Screen capture from NASA TV of the Soyuz approaching the International Space Station with the Expedition 35/36 crew. Via NASA TV

It was same day, freaky-fast delivery for the Soyuz TMA-08M spacecraft bringing the crew of Expedition 35/36 to the International Space Station. The expedited flight had the crew arriving even quicker than expected, in just 5 hours and 45 minutes after launch. The new abbreviated four-orbit rendezvous with the ISS uses a modified launch and docking profile for the Russian ships. It has been tried successfully with three Progress resupply vehicles, but this is the first time it has been used on a human flight.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

Liftoff of the Soyuz TMA-08M spacecraft took place at 4:43 p.m. EDT (20:43 UTC) on March 28 from the Baikonur Cosmodrome in Kazakhstan, and Russian commander Pavel Vinogradov, cosmonaut Aleksandr Misurkin and NASA astronaut Chris Cassidy docked with the ISS’s Poisk module at 10:28 p.m. EDT on Thursday (March 28; 0228 GMT Friday).

Hatches will be opened shortly, and Expedition 35 commander Chris Hadfield,astronaut Tom Marshburn and cosmonaut Roman Romanenko will welcome their new crewmates aboard. Update: Here’s the video of the hatch opening:

Find out more about the “fast-track” trajectory in our earlier articles here and here.

Space Station Crew Captures Soyuz Launch, As Seen from Orbit

Soyuz Rocket Launch - the moment of ignition, as-seen from their target, the Space Station. Credit: NASA/CSA/Chris Hadfield.

Just how much activity on Earth can be seen from orbit? In the dark of night, the Soyuz rocket launch on March 29/28, 2013 was bright enough to be seen by the International Space Station crew 350 km (220 miles) above. “Soyuz Rocket Launch – the moment of ignition, as-seen from their target, the Space Station,” tweeted ISS commander Chris Hadfield in sharing this image.

The new fast-track trajectory used for the first time for a crewed Soyuz has the rocket launching shortly after the ISS passes overhead, and so the ISS was in the perfect spot for the crew to witness the launch with their own eyes — at least with a camera and a zoom lens. The Soyuz TMA-08M spacecraft launched at 2:43 a.m. Friday local time from the Baikonur Cosmodrome in Kazakhstan (4:43 p.m. EDT, 20:43 UTC on March 28), carrying the crew of Pavel Vinogradov, Aleksandr Misurkin and Chris Cassidy.

The fast-track launch had the crew arriving in just 5 hours and 45 minutes after launch. This is the first crew to use this quick trajectory. It came with the added bonus of the launch being visible from space.

Gallery: Dragon Splashes Down Successfully

Dragon is slowed by three main parachutes prior to splashdown into the Pacific Ocean. Credit: SpaceX.

Splashdown! The SpaceX Dragon has returned home safely, splashing down in the Pacific Ocean at 16:36 UTC (12:36 p.m. EDT) on Tuesday, March 26, 2013. “Recovery ship has secured Dragon,” Tweeted SpaceX CEO Elon Musk. “Powering down all secondary systems. Cargo looks A-OK.”

A team of SpaceX engineers, technicians and divers will recover the vehicle off the coast of Baja, California, for the journey back to shore, which NASA said will take 30-48 hours.

The big job will be unloading the 3,000- plus pounds (1,360 kg) of ISS cargo and packaging inside the spacecraft. The Dragon is currently the only vehicle capable of returning cargo and important scientific experiments back to Earth.

“The scientific research delivered and being returned by Dragon enables advances in every aspect of NASA’s diverse space station science portfolio, including human research, biology and physical sciences,” said Julie Robinson, International Space Station Program
scientist. “There are more than 200 active investigations underway aboard our orbiting laboratory in space. The scientific community has
eagerly awaited the return of today’s Dragon to see what new insights the returned samples and investigations it carries will unveil.”

See more images below of Dragon’s return and mission to the ISS; we’ll be adding more as the SpaceX team supplies them!

Here’s a gif image of the splashdown:

A series of images shows the Dragon splashdown. Credit: SpaceX.
A series of images shows the Dragon splashdown. Credit: SpaceX.
This picture captures the Dragon just as it hits the water in the Pacific Ocean. Credit: SpaceX.
This picture captures the Dragon just as it hits the water in the Pacific Ocean. Credit: SpaceX.
Dragon was released from the International Space Station on March 26, 2013 during the CRS-2 mission. Credit: SpaceX.
Dragon was released from the International Space Station on March 26, 2013 during the CRS-2 mission. Credit: SpaceX.

Dragon’s release from Canadarm2 occurred earlier today at 10:56 UTC. The Expedition 35 crew commanded the spacecraft to slowly depart from the International Space Station

Dragon attached to the International Space Station during the CRS-2 mission. Credit: NASA.
Dragon attached to the International Space Station during the CRS-2 mission. Credit: NASA.
Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield

Among the the scientific experiment returned on Dragon was the Coarsening in Solid-Liquid Mixtures (CSLM-3) experiment, which also launched to space aboard this Dragon. CLSM-3 studies how crystals known as dendrites form as a metal alloy becomes solid. The research could help engineers develop stronger materials for use in automobile, aircraft and spacecraft parts.

Dragon also is returning several human research samples that will help scientists continue to examine how the human body reacts to long-term spaceflight. The results will have implications for future space exploration and direct benefits here on Earth.

The mission was the second of at least 12 cargo resupply trips SpaceX plans to make to the space station through 2016 under NASA’s
Commercial Resupply Services contract.

SpaceX Dragon Departs Station for Pacific Splashdown with Valuable Science Cargo

SpaceX Dragon was released from ISS at 6:56am ET and now begins its return trip to Earth. Credit: NASA

The SpaceX Dragon commercially developed cargo craft loaded with thousands of pounds of precious science samples has departed from the International Space Station at 6:56 a.m EDT this morning (March 26) and is heading back to Earth today for a splashdown in the Pacific Ocean at around 12:34 p.m EDT.

The ISS crew commanded the Dragon’s release by a trigger at the robotic work station inside the Cupola as they were soaring some 250 miles over the northeast coast of Australia after Mission Control gave the “GO for release”.
A video of the unberthing is below:

Cameras aboard both the ISS and Dragon transmitted breathtaking views of the departure maneuver. The entire ISS filled the video screen as Dragon slowly pulled away.

SpaceX Dragon capsule grappled by ISS robotic arm prior to today’s  departure and  return to Earth and Pacific Ocean splashdown. Credit: NASA
SpaceX Dragon capsule grappled by ISS robotic arm prior to today’s departure and return to Earth and Pacific Ocean splashdown. Credit: NASA

The private Dragon was unberthed from a docking port on the Harmony node at 4:10 a.m. EDT in anticipation of today’s return to Earth.

The capsule had been docked at the orbiting outpost for three weeks since arriving on March 3.

NASA astronaut Tom Marshburn and station commander Chris Hadfield from Canada opened the snares on the stations Canadian built robotic arm – Canadarm2 – firmly grasping the Dragon.

ISS imaged be cameras on departing Dragon. Credit: SpaceX/NASA
ISS imaged by cameras on departing Dragon. Credit: SpaceX/NASA

A series of three short departure burns executed in rapid succession took Dragon safely away from the ISS and beyond the imaginary 656-foot (200-meter) “Keep Out Sphere” around the station for the journey back to Earth.

Everything with Dragon happened as expected said NASA.

“All looks beautiful and nominal as expected,” radioed the ISS crew.

The Dragon capsule is the first private ship ever to dock at the ISS.

Dragon conducts departure burns from the ISS on March 26, 2013. Credit: NASA
Dragon conducts departure burns from the ISS on March 26, 2013. Credit: NASA

Dragon will fire its engines for the last time for the 10 minute long deorbit burn at 11:42 a.m. EDT sending it through the Earth’s atmosphere for a fiery reentry and splashdown in the Pacific Ocean around 12:34 p.m.

“Sad to see the Dragon go,” said Marshburn. “She performed her job beautifully and is heading back to her lair. Wish her all the best for the splashdown today.”

A team of SpaceX engineers, technicians and divers will recover the vehicle after splashdown about 214 miles off the coast of Baja, California.

SpaceX recovery crews will pluck the capsule from the Pacific Ocean for the journey back to shore which will take about 30 hours.

Dragon had been scheduled to return yesterday on Monday, March 25, but was postponed due to inclement weather developing near its targeted splashdown site in the Pacific Ocean.

There was no affect on the return of the science samples and gear weighing a hefty 2668 pounds. Dragon is the only vehicle that can safely return significant amounts of science cargo and gear from the ISS following the retirement of NASA’s space shuttle orbiters.

The SpaceX Dragon CRS-2 capsule blasted off on March 1 atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

A thruster failure shortly after liftoff nearly doomed the mission. But fast acting SpaceX engineers saved the day and restarted the engines a few hours later – read my earlier story here.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

The resupply mission carried aloft some 1200 pounds of food, water and science experiments for the station crew.

After a two day flight, Marshburn captured the Dragon just 32 feet away from the station with the Canadarm2 on March 3. Ground controllers then took over Canadarm2 operations and berthed Dragon to the Harmony node.

SpaceX is under contract to NASA to deliver about 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

SpaceX and Orbital Sciences Corp are partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

The maiden launch of Orbital’s Antares/Cygnus ISS cargo resupply program is now slated to occur on April 16-18 from NASA Wallops Flight Facility in Virginia – read my onsite photo report here.

The inaugural Antares launch will be a test flight with a simulated Cygnus.

The next SpaceX Dragon flight – dubbed CRS-3 – is slated to blast off in late November 2013.

Ken Kremer

Dragon and Earth from the ISS. Credit: NASA
Dragon and Earth from the ISS. Credit: NASA

Curiosity is Back! Snapping Fresh Martian Vistas

Curiosity's raised robotic arm and drill are staring at you in this new panoramic vista of Yellowknife Bay basin snapped on March 23, Sol 223 by the rover's navigation camera system. The raw images were stitched by Marco Di Lorenzo and Ken Kremer and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/KenKremer (kenkremer.com)

Curiosity is back! After a multi-week hiatus forced by a computer memory glitch, NASA’s mega rover is back to full operation.

And the proof is crystal clear in the beautiful new panoramic view (above) snapped by Curiosity this weekend from Yellowknife Bay, showing the robot’s arm and drill elevated and aiming straight at you – raring to go and ready to feast on something deliciously Martian.

“That drill is hungry, looking for something tasty to eat, and ‘you’ (loaded with water and organics) are it,” I thought with a chuckle as Curiosity seeks additional habitats and ingredients friendly to life.

So my imaging partner Marco Di Lorenzo and I celebrated the great news by quickly creating the new panoramic mosaic assembled from images taken on Saturday, March 23, or Sol 223, by the robot’s navigation cameras. Our new Curiosity mosaic was first featured on Saturday at NBC News Cosmic Log by Alan Boyle – while I was hunting for Comet Pan-STARRS.

So the fact that Curiosity is again snapping images and transmitting fresh alien vistas and new science data is a relief to eagerly waiting scientists and engineers here on Earth.

Drilling goes to the heart of the mission. It was absolutely essential to the key finding of Curiosity’s Martian foray thus far – that Mars possesses an environment where alien microbes could once have thrived in the distant past when the Red Planet was warmer and wetter.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity has found widespread evidence for repeated episodes of flowing liquid water on the floor of her Gale Crater landing site – an essential prerequisite to life as we know it.

After coring and analyzing the first powder ever drilled from the interior of a Martian rock in February 2013, NASA’s Curiosity robot discovered some of the key chemical ingredients necessary to support life on early Mars billions of years ago.

Curiosity found that the fine-grained, sedimentary mudstone rock at the rovers current worksite inside the Yellowknife Bay basin possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of simple Martian life forms eons ago.

Curiosity's First Sample Drilling hole is shown at the center of this image in a rock called "John Klein" on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS

The rovers 7 foot (2.1 meter) long robotic arm fed aspirin sized samples of the gray, pulverized powder into the miniaturized CheMin and SAM analytical instruments on Feb. 22 and 23, or Sols 195 and 196. The samples were analyzed on Sol 200 and then the rover experienced her first significant problems since landing on Aug. 5, 2012.

The Chemistry and Mineralogy (CheMin) instrument and Sample Analysis at Mars (SAM) instruments test the Martian soil and rock samples to determine their chemical composition and search for traces of organic molecules – the building blocks of life

No organics have been found thus far.

The rover’s science mission has been on hold for nearly a month since “a memory glitch on the A-side computer on Feb. 27, which prompted controllers to command a swap from the A-side computer to the B-side computer,” according to a NASA statement.

“That operator-commanded swap put Curiosity into safe mode for two days. The rover team restored the availability of the A-side as a backup and prepared the B-side to resume full operations.”

The memory issue may have been caused by a cosmic ray strike. The rover suffered another minor setback last week, briefly reentering ‘safe mode’. And in between, a solar storm forced the team to shut Curiosity down for a few more days.

All appears well now.

The next step is to reanalyze those 1st gray rock tailings to continue the hunt for traces of organic molecules.

But the next solar conjunction will interrupt communications starting around April 4 for several weeks. More on that shortly.

After conjunction, Curiosity will resume her drilling campaign

Ken Kremer

…………….

Learn more about Curiosity’s groundbreaking discoveries and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Washington Crossing State Park, Titusville, NJ, 130 PM

Rover self portrait MAHLI mosaic taken this week has Curiosity sitting on the flat rocks of the “John Klein” drilling target area within the Yellowknife Bay depression. Note gradual rise behind rover. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/www.KenKremer.com.
Rover self portrait MAHLI mosaic taken this week has Curiosity sitting on the flat rocks of the “John Klein” drilling target area within the Yellowknife Bay depression. Note gradual rise behind rover. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer (kenkremer.com)

Powerful Private Rocket Crucial to ISS Set for Maiden April Blast Off from Virginia – Launch Pad Gallery

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The first stage of the privately developed Antares rocket stands erect at newly constructed Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for mid-April 2013. Later operational flights are critical to resupply the ISS.
Credit: Ken Kremer (kenkremer.com)
See Antares photo gallery below[/caption]

The most powerful rocket ever to ascend near major American East Coast population centers is slated to blast off soon from the eastern Virginia shore on its inaugural test flight in mid April.

And Universe Today took an exclusive inspection tour around the privately developed Antares rocket and NASA Wallops Island launch complex just days ago.

NASA announced that the maiden flight of the commercial Antares rocket from Orbital Sciences is slated to soar to space between April 16 to 18 from the newly constructed seaside launch pad dubbed 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

The two stage Antares rocket is absolutely pivotal to NASA’s plans to ship essential cargo to the International Space Station (ISS) in the wake of the shutdown of the Space Shuttle program in July 2011.

No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager! Credit: Ken Kremer (kenkremer.com)
No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager. Credit: Ken Kremer (kenkremer.com)

Antares stands 131 feet tall and serves as the launcher for the unmanned commercial Cygnus cargo spacecraft.

Both Antares and Cygnus were developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle’s. The goal is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

I visited NASA Wallops for an up close personal tour of the impressive Antares 1st stage rocket erected at the launch pad following the successful 29 second hot fire engine test that cleared the last hurdle to approve the maiden flight of Antares. Umbilical lines were still connected to the rocket.

Antares rocket 1st stage and umbilicals at NASA Wallops Flight Facility.  Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and umbilical lines at NASA Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The pads protective seawall was rebuilt following significant damage from Hurricane Sandy, NASA Wallops spokesman Keith Koehler told me.

Launch Complex 0-A sits just a few hundred yards (meters) from Virginia’s eastern shore line on the Atlantic Ocean. It’s hard to believe just how close the low lying pad complex is to the beach and potentially destructive tidal surges.

Barely 400 meters (1300 feet) away lies the adjacent Launch Pad 0-B – from which Orbital’s new and unflown solid fueled Minotaur 5 rocket will boost NASA’s LADEE lunar science probe to the Moon in August 2013 – see my upcoming article.

The maiden Antares test flight is called the A-One Test Launch Mission. It will validate the medium class rocket for the actual follow-on flights to the ISS topped with the Cygnus cargo carrier starting later this year with a demonstration docking mission to the orbiting lab complex.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
1st stage of private Antares rocket erect at new Launch Pad 0-A at NASA’s Wallops Flight Facility. This rocket will be rolled back to the hanger to make way for the complete Antares booster due to blast off in mid-April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The launch window opens at 3 p.m. and extends for a period of time since this initial test flight is not docking at the ISS, Orbital spokesman Barry Boneski told Universe Today.

Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares A-One will fly on a southeast trajectory and the Cygnus dummy will be instrumented to collect flight and payload data.

The simulated Cygnus will separate from the upper stage 10 minutes after liftoff for orbital insertion.

“All launches are to the south away from population centers. Wildlife areas are nearby,” said Koehler.

The goal of the ambitious A-One mission is to fully demonstrate every aspect of the operational Antares rocket system starting from rollout of the rocket and all required functions of an operational pad from range operation to fueling to liftoff to payload delivery to orbit.

Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). Credit: Ken Kremer (kenkremer.com)
Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). . Credit: Ken Kremer (kenkremer.com)

Antares/Cygnus will provide a cargo up mass service similar to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked three times to the ISS during historic linkups in 2012 and earlier this month following the tension filled March 1 liftoff of the SpaceX CRS-2 mission.

The Dragon is still docked to the ISS and is due to make a parachute assisted return to Earth on March 26.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and huge water tower at NASA’s Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

Orbital has eight commercial resupply missions manifested under a $1.9 Billion contact with NASA to deliver approximately 20,000 kilograms of supplies and equipment to the ISS, Orbital spokesman Barry Boneski told me.

Tens of millions of American East Coast residents in the Mid-Atlantic and Northeast regions have never before had the opportunity to witness anything as powerful as an Antares rocket launch in their neighborhood.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore.  Only a few hundred feet separate the pad from the Atlantic Ocean. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore. Only a few hundred feet of beach sand and a low sea wall separate the pad from the Atlantic Ocean and Mother Nature. Credit: Ken Kremer (kenkremer.com)

U.S. To Restart Plutonium Production for Deep Space Exploration

A marshmellow-sized Pu-238 pellet awaits a space mission. (Credit: The Department of Energy).

The end of NASA’s plutonium shortage may be in sight. On Monday March 18th,  NASA’s planetary science division head Jim Green announced that production of Plutonium-238 (Pu-238) by the United States Department of Energy (DOE) is currently in the test phases leading up to a restart of full scale production.

“By the end of the calendar year, we’ll have a complete plan from the Department of Energy on how they’ll be able to satisfy our requirement of 1.5 to 2 kilograms a year.” Green said at the 44th Lunar and Planetary Science Conference being held in Woodlands, Texas this past Monday.

This news comes none too soon. We’ve written previously on the impending Plutonium shortage and the consequences it has for future deep space exploration. Solar power is adequate in most cases when you explore the inner solar system, but when you venture out beyond the asteroid belt, you need nuclear power to do it.

Production of the isotope Pu-238 was a fortunate consequence of the Cold War.  First produced by Glen Seaborg in 1940, the weapons grade isotope of plutonium (-239) is produced via bombarding neptunium (which itself is a decay product of uranium-238) with neutrons. Use the same target isotope of Neptunium-237 in a fast reactor, and Pu-238 is the result. Pu-238 produces 280x times the decay heat at 560 watts per kilogram versus weapons grade Pu-239  and is ideal as a compact source of energy for deep space exploration.

Since 1961, over 26 U.S. spacecraft have been launched carrying Multi-Mission Radioisotope Thermoelectric Generators (MMRTG, or formerly simply RTGs) as power sources and have explored every planet except Mercury. RTGs were used by the Apollo Lunar Surface Experiments Package (ALSEP) science payloads left on by the astronauts on the Moon, and Cassini, Mars Curiosity and New Horizons enroute to explore Pluto in July 2015 are all nuclear powered.

Plutonium powered RTGs are the only technology that we have currently in use that can carry out deep space exploration. NASA’s Juno spacecraft will be the first to reach Jupiter in 2016 without the use of a nuclear-powered RTG, but it will need to employ 3 enormous 2.7 x 8.9 metre solar panels to do it.

The plutonium power source inside the Mars Science Laboratory's MMRTG during assembly at the Idaho National Laboratory. (Credit: Department of Energy?National Laboratory image under a Creative Commons Generic Attribution 2.0 License).
The plutonium power source inside the Mars Science Laboratory’s MMRTG during assembly at the Idaho National Laboratory. (Credit: Department of Energy/Idaho National Laboratory image under a Creative Commons Generic Attribution 2.0 License).

The problem is, plutonium production in the U.S. ceased in 1988 with the end of the Cold War. How much Plutonium-238 NASA and the DOE has stockpiled is classified, but it has been speculated that it has at most enough for one more large Flag Ship class mission and perhaps a small Scout class mission. Plus, once weapons grade plutonium-239 is manufactured, there’s no re-processing it the desired Pu-238 isotope. The plutonium that currently powers Curiosity across the surface of Mars was bought from the Russians, and that source ended in 2010. New Horizons is equipped with a spare MMRTG that was built for Cassini, which was launched in 1999.

Technicians handle an RTG at the Payload Hazardous Servicing Facility at the Kennedy Space Center for the Cassini spacecraft. (Credit: NASA).
Technicians handle an RTG at the Payload Hazardous Servicing Facility at the Kennedy Space Center for the Cassini spacecraft. (Credit: NASA).

As an added bonus, plutonium powered missions often exceed expectations as well. For example, the Voyager 1 & 2 spacecraft had an original mission duration of five years and are now expected to continue well into their fifth decade of operation. Mars Curiosity doesn’t suffer from the issues of “dusty solar panels” that plagued Spirit and Opportunity and can operate through the long Martian winter. Incidentally, while the Spirit and Opportunity rovers were not nuclear powered, they did employ tiny pellets of plutonium oxide in their joints to stay warm, as well as radioactive curium to provide neutron sources in their spectrometers. It’s even quite possible that any alien intelligence stumbles upon the five spacecraft escaping our solar system (Pioneer 10 & 11, Voyagers 1 & 2, and New Horizons) could conceivably date their departure from Earth by measuring the decay of their plutonium power source. (Pu-238 has a half life of 87.7 years and eventually decays after transitioning through a long series of daughter isotopes into lead-206).

New Horizons in the Payload Hazardous Servicing Facility at the Kennedy Space Center. Note the RTG (black) protruding from the spacecraft. (Credit: NASA/Uwe W.)
New Horizons in the Payload Hazardous Servicing Facility at the Kennedy Space Center. Note the RTG (black) protruding from the spacecraft. (Credit: NASA/Uwe W.)

The current production run of Pu-238 will be carried out at the Oak Ridge National Laboratory (ORNL) using its High Flux Isotope Reactor (HFIR). “Old” Pu-238 can also be revived by adding newly manufactured Pu-238 to it.

“For every 1 kilogram, we really revive two kilograms of the older plutonium by mixing it… it’s a critical part of our process to be able to utilize our existing supply at the energy density we want it,” Green told a recent Mars exploration planning committee.

Still, full target production of 1.5 kilograms per year may be some time off. For context, the Mars rover Curiosity utilizes 4.8 kilograms of Pu-238, and New Horizons contains 11 kilograms. No missions to the outer planets have left Earth since the launch of Curiosity in November 2011, and the next mission likely to sport an RTG is the proposed Mars 2020 rover. Ideas on the drawing board such as a Titan lake lander and a Jupiter Icy Moons mission would all be nuclear powered.

Engineers perform a fit check of the MMRTG on Curiousity at the Kennedy Space Center. The final installation of the MMRTG occured the evening prior to launch. (Credit: NASA/Cory Huston).
Engineers perform a fit check of the MMRTG on Curiosity at the Kennedy Space Center. The final installation of the MMRTG occurred the evening prior to launch. (Credit: NASA/Cory Huston).

Along with new plutonium production, NASA plans to have two new RTGs dubbed Advanced Stirling Radioisotope Generators (ASRGs) available by 2016. While more efficient, the ASRG may not always be the device of choice. For example, Curiosity uses its MMRTG waste heat to keep instruments warm via Freon circulation.  Curiosity also had to vent waste heat produced by the 110-watt generator while cooped up in its aero shell enroute to Mars.

Cutaway diagram of the Advanced Stirling Radioisotope Generator. (Credit: DOE/NASA).
Cutaway diagram of the Advanced Stirling Radioisotope Generator. (Credit: DOE/NASA).

And of course, there are the added precautions that come with launching a nuclear payload. The President of the United States had to sign off on the launch of Curiosity from the Florida Space Coast. The launch of Cassini, New Horizons, and Curiosity all drew a scattering of protesters, as does anything nuclear related. Never mind that coal fired power plants produce radioactive polonium, radon and thorium as an undesired by-product daily.

An RTG (in the foreground on the pallet) left on the Moon by astronauts during Apollo 14.  (Credit: NASA/Alan Shepard).
An RTG (in the foreground on the pallet) left on the Moon by astronauts during Apollo 14. (Credit: NASA/Alan Shepard).

Said launches aren’t without hazards, albeit with risks that can be mitigated and managed. One of the most notorious space-related nuclear accidents occurred early in the U.S. space program with the loss of an RTG-equipped Transit-5BN-3 satellite off of the coast of Madagascar shortly after launch in 1964. And when Apollo 13 had to abort and return to Earth, the astronauts were directed to ditch the Aquarius Landing Module along with its nuclear-powered science experiments meant for the surface of the Moon in the Pacific Ocean near the island of Fiji. (They don’t tell you that in the movie) One wonders if it would be cost effective to “resurrect” this RTG from the ocean floor for a future space mission. On previous nuclear-equipped launches such as New Horizons, NASA placed the chance of a “launch accident that could release plutonium” at 350-to-1 against  Even then, the shielded RTG is “over-engineered” to survive an explosion and impact with the water.

But the risks are worth the gain in terms of new solar system discoveries. In a brave new future of space exploration, the restart of plutonium production for peaceful purposes gives us hope. To paraphrase Carl Sagan, space travel is one of the best uses of nuclear fission that we can think of!

Survival: Terrifying Moments in Space Flight

Apollo 13's dangerous explosion in 1970 inspired a movie, released in 1995, that starred (left to right) Bill Paxton, Kevin Bacon and Tom Hanks. Credit: Universal Pictures

Space is a dangerous and sometimes fatal business, but happily there were moments where a situation happened and the astronauts were able to recover.

An example: today (March 16) in 1966, Neil Armstrong and Dave Scott were just starting the Gemini 8 mission. They latched on to an Agena target in the hopes of doing some docking maneuvers. Then the spacecraft started spinning inexplicably.

 

They undocked and found themselves tumbling once per second while still out of reach of ground stations. A thruster was stuck open. Quick-thinking Armstrong engaged the landing system and stabilized the spacecraft. This cut the mission short, but saved the astronauts’ lives.

Gemini 8's Agena target before a stuck thruster on the spacecraft put the astronauts in a terrifying tumble. Credit: NASA
Gemini 8’s Agena target before a stuck thruster on the spacecraft put the astronauts in a terrifying tumble. Credit: NASA

Here are some other scary moments that astronauts in space faced, and survived:

Friendship 7: False landing bag indicator (1962)

Astronaut John Glenn views stencilling used as a model to paint the words "Friendship 7" on his spacecraft. Credit: NASA
Astronaut John Glenn views stencilling used as a model to paint the words “Friendship 7” on his spacecraft. Credit: NASA

John Glenn was only the third American in space, so you can imagine the amount of media attention he received during his three-orbit flight. NASA received an indication that his landing bag had deployed while he was still in space. Friendship 7’s Mercury spacecraft had its landing cushion underneath the heat shield, so NASA feared it had ripped away. Officials eventually informed Glenn to keep his retrorocket package strapped to the spacecraft during re-entry, rather than jettisoning it, in the hopes the package would keep the heat shield on. Glenn arrived home safely. It turned out to be a false indicator.

Apollo 11: Empty fuel tank (1969)

Apollo 11's Eagle spacecraft, as seen from fellow spaceship Columbia. Credit: NASA
Apollo 11’s Eagle spacecraft, as seen from fellow spaceship Columbia. Credit: NASA

Shortly after Neil Armstrong announced “Houston, Tranquility Base, here, the Eagle has landed” during Apollo 11, capsule communicator Charlie Duke answered, “Roger, Tranquility. We copy you on the ground. You got a bunch of guys about to turn blue. We’re breathing again. Thanks a lot.” They weren’t holding their breath just because it was the first landing on the moon; Armstrong was navigating a spacecraft that was almost out of fuel. The spacecraft Eagle overshot its landing and Armstrong did a series of maneuvers to put it on relatively flat ground. Accounts say he had less than 30 seconds of fuel when he landed on July 20, 1969.

Apollo 12: Lightning strike (1969)

Apollo 12's launch in 1969, moments before the rocket was struck by lightning. Credit: NASA
Apollo 12’s launch in 1969, moments before the rocket was struck by lightning. Credit: NASA

Moments after Apollo 12 headed from ground towards orbit, a lightning bolt hit the rocket and caused the spacecraft to go into what appeared to be a sort of zombie mode. The rocket was still flying, but the astronauts (and people on the ground) were unsure what to do. Scrambling, one controller suggested a command that essentially reset the spacecraft, and Apollo 12 was on its way. NASA did take some time to do some double-checking in orbit, to be sure, before carrying on with the rest of the mission. The agency also changed procedures about launching in stormy weather.

Apollo 13: Oxygen tank explosion (1970)

Evidence of the Apollo 13 explosion on the spacecraft Odyssey. Credit: NASA
Evidence of the Apollo 13 explosion on the service module. Credit: NASA

The astronauts of Apollo 13 performed a routine stir of the oxygen tanks on April 13, 1970. That’s when they felt the spacecraft shudder around them, and warning lights lit up. It turned out that an oxygen tank, damaged through a series of ground errors, had exploded in the service module that fed the spacecraft Odyssey, damaging some of its systems. The astronauts survived for days on minimal power in Aquarius, the healthy lunar module that was originally supposed to land on the moon. They arrived home exhausted and cold, but very much alive.

Apollo-Soyuz Test Project: Toxic vapours during landing (1975)

The Apollo command module used in the Apollo-Soyuz Test Project, during recovery. Credit: NASA
The Apollo command module used in the Apollo-Soyuz Test Project, during recovery. Credit: NASA

The Apollo-Soyuz Test Project was supposed to test out how well American and Russian systems (and people) would work together in space. Using an Apollo command module and a Russian Soyuz, astronauts and cosmonauts met in orbit and marked the first mission between the two nations. That almost ended in tragedy when the Americans returned to Earth and their spacecraft was inadvertently flooded with vapours from the thruster fuel. “I started to grunt-breathe to make sure I got pressure in my lungs to keep my head clear. I looked over at Vance [Brand] and he was just hanging in his straps. He was unconscious,” recalled commander Deke Slayton, in a NASA history book about the event. Slayton ensured the entire crew had oxygen masks, Brand revived quickly, and the mission ended shortly afterwards.

Mir: The fire (1997)

Jerry Linenger dons a mask during his mission on Mir in 1997. Credit: NASA
Jerry Linenger dons a mask during his mission on Mir in 1997. Credit: NASA

The crew on Mir was igniting a perchlorate canister for supplemental oxygen when it unexpectedly ignited. As they scrambled to put out the fire, NASA astronaut Jerry Linenger discovered at least one oxygen mask on board were malfunctioning as well. The crew managed to contain the fire quickly. Even though it affected life aboard the station for a while afterwards, the crew survived, did not need to evacuate, and helped NASA learn lessons that they still use aboard the International Space Station today.

STS-51F: Abort to orbit (1985)

STS-51F aborted to orbit during its launch. Credit: NASA
STS-51F aborted to orbit during its launch. Credit: NASA

The crew of space shuttle Challenger endured two aborts on this mission. The first one took place at T-3 seconds on July 12, when a coolant valve in one of the shuttle’s engines malfunctioned. NASA fixed the problem, only to face another abort situation shortly after liftoff on July 29. One of the engines shut down too early, forcing the crew to abort to orbit. The crew was able to carry on its mission, however, including many science experiments aboard Spacelab.

STS-114: Foam hitting Discovery (2005)

Discovery during STS-114, as seen from the International Space Station. CREDIT: NASA
Discovery during STS-114, as seen from the International Space Station. CREDIT: NASA

When Discovery lifted off in 2005, the fate of the entire shuttle program was resting upon its shoulders. NASA had implemented a series of fixes after the Columbia disaster of 2003, including redesigning the process that led to foam shedding off Columbia’s external tank and breaching the shuttle wing. Wayne Hale, a senior official in the shuttle program, later recalled his terror when he heard of more foam loss on Discovery: “I think that must have been the worst call of my life. Once earlier I had gotten a call that my child had been in an auto accident and was being taken to the hospital in an ambulance. That was a bad call. This was worse.” The foam, thankfully, struck nothing crucial and the crew survived. NASA later discovered the cracks in the foam are linked to changes in temperature the tank undergoes, and made more changes in time for a much more successful mission in 2006.

We’ve probably missed some scary moments in space, so which ones do you recall?