Curiosity Inspects ‘Shaler’ Outcrop on Descent to Yellowknife Bay Drill Target – 2D/3D

Image caption: Sol 120 colorized panorama of big and stunning ‘Shaler’ layered rock outcrop snapped by Curiosity’s right eye Navigation Camera (Navcam) on Dec. 7, 2012. ‘Shaler’ exhibits a pattern geologists refer to as ‘crossbedding’, at angles to one another. Some of the larger individual plates are about a foot or more wide. The cropped view spans from north at left to south at right. Future destination Mount Sharp is visible in the background. See the full 2-D panorama below and compare with the stereo effect available from NASA’s 3-D panorama, below. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

NASA’s Curiosity rover is on the final steps of her descent into a geologist’s paradise at an area called ‘Yellowknife Bay’.

Along the way just days ago on Sol 120 (Dec 7, 2012) she stopped to inspect a huge outcrop of layered rocks dubbed ‘Shaler’ and snapped dozens of high resolution photos with the Navcam and Mastcam cameras.

To catch a human’s eye view of the breathtaking terrain of what some might hearken to an ‘unexpected journey’, check out our Sol 120 photo mosaic in 2-D (above) and then compare that with NASA’s 3-D photo mosaic (below). You will need to whip out you red-cyan anaglyph glasses to take in the full measure of Curiosity’s glorious surroundings and the foreboding shadow – can you guess what that is?

The ‘Shaler’ outcrop features a plethora of striking layers, angled to each other in a pattern geologists refer to as ‘crossbedding’.

The team also used Curiosity’s Chemistry and Camera (ChemCam) instrument on the rover’s mast to help assess the content of ‘Shaler.’

With the Christmas holidays fast approaching, the rover science team is searching for a suitable location at Yellowknife Bay to select as the first potential target to drill into with Curiosity’s advanced percussion drill.

Thereafter she will deliver powdered rock samples to the CheMin and SAM duo of miniaturized analytical chemistry labs on the rovers deck to elucidate the inorganic mineral composition as well as seek to determine if any organic molecules are present.

Image caption: Complete Sol 120 colorized panorama of big ‘Shaler’ layered rock outcrop snapped by Curiosity’s right eye Navigation Camera (Navcam) on Dec. 7, 2012. ‘Shaler’ exhibits a pattern geologists refer to as ‘crossbedding’, at angles to one another. The view spans from north-northwest at the left to south-southwest at the right. Study this full 2-D panorama and compare with the stereo effect available from NASA’s 3-D panorama, below. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Image caption: Sol 120 Stereo panorama of ‘Shaler’ rock outcrop snapped by the right and left eye Navigation Camera (Navcam) on Dec. 7, 2012. The view spans from north-northwest at the left to south-southwest at the right, and is presented in a cylindrical-perspective projection. Credit: NASA/JPL-Caltech

Yellowknife Bay lies within the place dubbed ‘Glenelg’, the rovers first major science destination. Glenelg uniquely sits at the junction of three different types of intersecting geologic features that will help unravel the mysteries of Curiosity’s Gale Crater touchdown zone beside a humongous mountain known as Mount Sharp – the main target of the mission.

After safely surviving the harrowing touchdown at ‘Bradbury Landing’ on Aug. 6, the SUV-sized Curiosity rover has been on a roll to reach the inviting interior terrain of ‘Glenelg’ before Christmas.

The six wheeled robot has thus far traversed more than 0.37 mile (598 meters) and is now driving on top of the most challenging and scientifically rewarding terrain of the entire four month journey.

“The rover is traversing across terrain different from where it has driven earlier, and responding differently,” said Rick Welch, mission manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We’re making progress, though we’re still in the learning phase with this rover, going a little slower on this terrain than we might wish we could.”

Curiosity will spend at least several weeks thoroughly investigating Yellowknife Bay before reversing course and setting out on the year-long 6 mile (10 km) trek to the lower reaches of Mount Sharp. Along the way, the science team may possibly choose to re-investigate the Shaler and Hottah outcrops with the rover’s suite of 10 state-of-the-art science instruments.

Ken Kremer

Image caption: Curiosity Traverse Map, Sol 123 (Dec. 10, 2012). This map traces where NASA’s Mars rover Curiosity drove between landing at a site named ‘Bradbury Landing,’ and the position reached during the mission’s 123rd Martian day, or sol, (Dec. 10, 2012) at ‘Yellowknife Bay’ inside the place called ‘Glenelg’. Credit: NASA/JPL-Caltech/Univ. of Arizona

NASA’s Version of Mr. Fusion

Researcher Stephen Anthony works with the new reactor prototype that could turn trash into gas. Image credit: NASA/Dmitri Gerondidakis

It probably won’t be able to fuel Doc Brown’s flux capacitor on his DeLorean time machine, but NASA researchers are hoping a new device that will be tested on the International Space Station can turn trash into power. The Trash to Gas Reactor is a miniature version of large waste incineration facilities on Earth that generate electricity or fuel. This could help with the accumulating trash on the ISS and be used on future missions beyond Earth orbit, as well as help the trash problem in areas of the world where there are neither large power plants nor garbage processing facilities.

“Not only will the effort on this help space missions but also on Earth because we have enough problems dealing with our own trash,” said Anne Caraccio, a chemical engineer working on the project.

The prototype of the Trash to Gas Reactor is a meter-long (3 foot-long) device that looks strikingly similar to the “Mr. Fusion” reactor in the second “Back to the Future” movie. Just like Doc Brown and Marty, astronauts can throw in things like food wrappers, used clothing, food scraps, tape, packaging and other garbage accumulated by the crew and the reactor will turn it into potential power, such as methane gas, or even oxygen or water.

The team developing the reactor is hoping to have their prototype ready to fly on the ISS by 2018 – which unfortunately doesn’t fit into the “Back to the Future” timeline: Emmett Brown travels to 2015 where he gets his Mr. Fusion and changes the future. But perhaps its Earth-bound counterpart could be ready in two years, in time for the Doc’s arrival from 1985.

“Back to the Future’s” Mr. Fusion. Via Theme Park Review.

OK, back to reality now, even though this does have a science fiction element to it…

A team led by Paul Hintze at the Kennedy Space Center has built an 80-pound small reactor to test theories about incinerating a variety of trash ranging from used clothes to uneaten food. The reactor holds more than three quarts of material and burns at about 1,000 degrees F, about twice the maximum temperature of an average household oven. It’s expected to take astronauts four hours to burn a day’s worth of trash from a crew of four.

The team estimates that during the course of a year in space – one half the length of time a mission to Mars is expected to take – trash processing for a crew of four would create about 2,200 pounds of methane fuel, enough to power a launch from the lunar surface, Hintze said.

“The longer the mission, the more applicable this technology is,” Hintze said. “If you’re just doing a two-week mission, you wouldn’t want to take along something like this because you wouldn’t get anything out of it.”

Converting garbage into fuel also would keep astronauts from turning their cramped space capsule into an orbiting landfill.

Paul Hintze is the researcher leading the trash-to-gas project at NASA’s Kennedy Space Center in Florida. Image credit: NASA/Dmitri Gerondidakis

The experimental version of the reactor is made of steel, but the team expects to employ a different alloy for future versions, something that might be lighter but just as strong in order to withstand the high temperatures needed to break down the materials and destroy potential microbes.

One of the issues the team is working on is making sure that no smell or potential hazardous gases are created as a by-product in the closed environment of the space station or a spacecraft on its way to deep space.

“On Earth, a little bit of an odor is not a problem, but in space a bad smell is a deal breaker,” Hintze said.

Right now trash in the ISS is stuffed into the Progress resupply ship, which burns up in the atmosphere during re-entry. This new reactor could turn the trash into something valuable in space.

Source: NASA

How To Train for a Mission to the ISS: Medical Mayhem

Astronaut Chris Hadfield with biomedical equipment attached to his forehead. Credit: Chris Hadfield.

Canadian astronaut Chris Hadfield is scheduled to launch on Decemer 19 with crewmates Tom Marshburn and Roman Romanenko on a Soyuz rocket, heading for a long-duration 5-month mission on board the International Space Station. We’re taking a look back at his 2-plus years of training for this mission, which Hadfield shared via Twitter and Facebook, letting the public get an inside look at what it takes to prepare for a long-duration spaceflight.

The movie “The Right Stuff” depicted the grueling array of medical tests the early astronauts had to undergo in order to determine if they had… well, the right stuff to go into space. Now, more than 50 years later, with scientists and the medical community knowing quite a bit more about how the human body reacts to micro-gravity, the pre-flight medical procedures aren’t quite as intrusive. But astronaut Chris Hadfield says it is still part of being an astronaut.

“They do a nice job of telling how hard it is going to be, how invasive,” he said in an interview with Universe Today, “but none of that matters when it’s time to go to bed at night, when you’ve got six different probes stuck in you or a loud machine next to you, and you know you you’re not going to get a good night’s sleep.”

“Whether you are flying a spaceship or a T-38, it is good to be prepared,” Hadfield said, along with posting this image via Twitter.

Another part of medical training is having a forced special diet where “you have to document everything you eat, evaluating what happens at the other end,” Hadfield explained, “and they try to be as good and non-invasive as they can, but by its very nature it is invasive, and that’s the way it is.”

Hadfield said he knew about this going into the job. “It is absolutely part of the business so it is OK,” he said.

Hadfield participating in the VC Reflex test, an experiment for orthostatic hypotension, or dizzyness from low blood pressure, one of the most common physical complications of spaceflight. “Space Science: applying electricity behind the ears affects balance and thus blood pressure regulation,” Hadfield said.

Not only are there pre-flight medical tests and procedures, but all space station crew members undergo continual medical tests and evaluations during their time in orbit, becoming test subjects for various experiments as well as keeping tabs on their health while in space.

“We do regular urine, saliva collection and blood draws. We have to be able to take blood from each other or yourself. If you’ve never taken blood from yourself…” Hadfield said, letting the sentence trail off. Fun? Not so much.

“Astronaut physical for Space Station today – 18 tubes and a squeeze ball”

Thankfully, the astronauts don’t always have to poke themselves. “We have volunteers come in all the time and let me stick them with a needle so I can get good at drawing blood,” Hadfield said, “and we do a lot of ultrasounds – carotid artery and cardiac ultrasounds. We need to identify any changes that take place in the heart after extended zero-g. This is all very important for going beyond Earth orbit; we need to understand those changes.”

A day of medical training with dummies. “Somehow the sock makes it worse,” Hadfield said via Twitter.

Not only do the crew have to do medical tests on themselves, but they have to be prepared for any medical emergency, since there usually isn’t a dedicated medical doctor on the space station. However, Hadfield considers himself lucky: crewmate Marshburn is a medical doctor.

“There are various ways to get ill on board – some natural, like appendicitis, stroke, — or you could be in an accident.” Hadfield said, “Someone could bang their head coming around a corner, get pinched between equipment, get the bends coming in from a spacewalk, or be exposed to poisonous gas. Various things can happen.”

“We have full-911 capability on board,” Hadfield continued. “We can react, we can strap someone down, get them on oxygen, inject them with things to get their heart going again, or use defibrillators. We need to know how to intubate people and give them forced breathing. We need to know how to react.”

Medical training includes practicing emergency medical procedures such as stitches.

They have small pharmacy on board, and need to know a lot of procedures. “Of course we always have medical help on-call from the ground, but you could easily have to deal with a burn or something in an eye, so I’ve trained working in an emergency room at a hospital in Houston,” Hadfield said, doing things from making a quick diagnosis to inserting catheters or IVs, or sewing stitches on wounds “ so I can get comfortable doing those things to the human body.”

Astronauts on the ISS practicing CPR: “How do you give CPR without gravity to hold you down? Like this!,” Tweeted Hadfield.

This video shows some of the emergency medical training the crew receives:

Next: Astronaut Food

Additional articles in this series:
How to Train for Long Duration Space Flight with Chris Hadfield
How to Train for a Mission to the ISS: Medical Mayhem
How to Train for a Mission to the ISS: Eating in Space
How to Train for a Mission to the ISS: The Soyuz

How to Train for Long-Duration Spaceflight, with Chris Hadfield

Canadian astronaut Chris Hadfield prior to his world-famous Expedition 34/35 mission in 2013. Credit: NASA

Astronaut Chris Hadfield getting dressed for work – “with a little help from my friends,” he said.

On December 19, 2012, a trio of Expedition 34 crewmembers are scheduled to launch from the Baikonur Cosmodrome in Kazakhstan and head towards their home in space for six months, the International Space Station. Among the crew is Canadian astronaut Chris Hadfield, who for over two years has been training for this flight. During that time, Hadfield has been sharing his training experiences through Twitter and Facebook, letting the public get an inside look at what it takes to prepare for a long-duration spaceflight. Some of this training – much of it, in fact – is not pretty or glamorous or easy. But it will get you to one of the most unique destinations that humans have ever gone.

With Hadfield’s help, we’re going to share some of his training experiences and insights from the past two years as we wait for his launch in ten days. Hadfield is now in quarantine in Kazakhstan, making final preparations for his flight with crewmates Tom Marshburn and Roman Romanenko.

“Enemas and Barf Bags – the less glamorous side of spaceflight 🙂 From today’s medical briefings in quarantine,” Tweeted Hadfield on December 9, 2012.

“When you first become an astronaut,” Hadfield said earlier this year from his office at NASA’s Johnson Space Center, “your training is like a big pyramid. Initially, it is like the bottom of the pyramid and is very broad-brush, where you cover a lot of topics but don’t get into super-detail. Then you start getting more and more detail on specific things like systems, specialties, and robotics, and then start getting deeper and deeper into each of them.”

“But then, when you get assigned to a flight, you review all those things and then start focusing on things that a pertinent to your increment, and when you get closer to the flight you start putting everything together and do simulations where you have to know the things that you really need to know,” Hadfield explained, adding that this is similar to studying at any university, and then going out into the real world….except that the stakes are much higher in space, and your life can depend on your training.

At the Baikonur Cosmodrome in Kazakhstan, Expedition 34 Flight Engineer Chris Hadfield of the Canadian Space Agency conducts a “fit check” dress rehearsal inside the Soyuz TMA-07M spacecraft Dec. 7, 2012. Credit: NASA

“The training starts with a lot of theory and classroom and powerpoint and exams through simulations and practical things,” Hadfield said. For example, the morning we talked with him, he had spent an hour learning how to repair the water processing and urine purification systems on the ISS, then went on to inventory management of food, learning how to keep track and store the food. The next day, he was have a “day in the life” simulation where he and Marshburn would spend a day as if they were on the ISS, practicing everything from their daily planning conference and getting their the daily uplink messages, to sampling the indoor atmosphere, fixing broken equipment, and doing inventory.

“We’re going from theoretical to practical,” Hadfield said.

“I’m studying for my final 7 exams to qualify for spaceflight,” said Hadfield on November 5, 2012.”

On top of the general training is the specific training for the science and various payloads that will be part of their expedition. That training is often very specific.

“With some we have to get quite hands on, like doing a cardio ultrasound where we the technician, and others where we just have to monitor the power systems,” Hadfield said. “It all blends together and as you get closer to the top of the pyramid, it gets very focused on what you need to know.”

“The Final Sim – the biggie, 8 hours in the Soyuz where they throw everything at us. We’re ready!” said Hadfield on November 27, 2012.

Hadfield is a veteran of two previous space flights on the space shuttle but this will be his first long-duration flight on the ISS.

“Both times I thought, wow, I wish I could stay,” Hadfield said. “To leave earth for awhile, change your zip code for awhile and really leave Earth; I was jealous of that experience. Now after a lot of lucky coincidences and a lot of hard work I get to be one of those who stays for an extended period off the planet. I’m really looking forward to it.”

“4 Flags over Kazakhstan – I was proud to raise the Maple Leaf, now flying above our Quarantine here in Baikonur,” Tweeted Hadfield on December 10, 2012.

And there’s a bit of Canadian pride that goes along with this. Hadfield was the first Canadian to operate the robotic Canadarm in space in 1995 and on his second flight in 2001 Hadfield made the first Canadian spacewalk as he attached Canadarm2 to the International Space Station.

And now, in another first for a Canadian, Hadfield will take command of the ISS for the second half of his mission, lead a crew of two Americans and three Russians during the final three months.

“Russian crew poster. Happy to be cast as Tommy Lee Jones,” said Hadfield on November 29, 2012.

“Astronaut Glamour Shot – white underwear, black socks, Snoopy helmet & leather slippers. The ensemble screams ‘cool'” Tweeted Hadfield on October 31, 2012.

Video: Chris Hadfield Suits-up and Signs-off on his final Soyuz Qualification exam

Video: School is never out for an astronaut – Chris Hadfield in Star City, Russia. Translation: “We are walking to work—to school—at the Gagarin Cosmonaut Training Centre in Star City, Russia.”

Additional articles in this series:
How to Train for Long Duration Space Flight with Chris Hadfield
How to Train for a Mission to the ISS: Medical Mayhem
How to Train for a Mission to the ISS: Eating in Space
How to Train for a Mission to the ISS: The Soyuz

Curiosity Gets a Sister – What Should She Do ? Scientists Speak

Mars Curiosity Sisters a1_Ken Kremer

Image caption: Seeing Double – Future Martian Sisters. NASA just announced plans to build and launch a new Mars science robotic rover in 2020 based on the design of the tremendously successful Curiosity rover which touched down safely inside Gale Crater on Aug. 6, 2012. This mosaic illustrates an imaginary Red Planet get-together of Curiosity and her yet to be constructed Martian sister. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer

Curiosity will apparently get a sister after all and she’ll be born in 2020 – rising from the ashes of a near death experience.

The good news concerning approval of a future NASA Mars rover was announced this week by John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate at NASA HQ, at the 2012 annual meeting of the AGU (American Geophysical Union) held in San Francisco.

What should Curiosity’s younger sister do? There are a multitude of great ideas, but a paucity of money in these very tough budget times – foremost among them is to gather and return the first ever Martian soil samples to Earth. What should the science goals be especially with regards to sample cache/return?

So, I asked these questions to Grunsfeld and leading Mars scientists, including Steve Squyres, Ray Arvidson and Jim Bell, the science team and camera leaders of NASA’s wildly successful Spirit and Opportunity Mars Exploration Rovers (MER). Opportunity is nearing the 9th anniversary of her Red Planet touchdown – and is exploring the most scientifically bountiful terrain yet of her entire mission at this very moment.

The design for the new Mars rover, let’s call it MSL 2, will be largely based on NASA’s hugely successful Curiosity Mars Science Laboratory (MSL) rover and the breathtaking rocket powered ‘Sky Crane’ landing architecture she so elegantly employed for touchdown barely 4 months ago on Aug. 6, 2012.

Grunsfeld and the researchers weighed in to Universe Today with their thoughts on this – “Will the 2020 Mars rover be focused on astrobiology and the search for life? Or, other goals like sample return or future human visits?”

“That question will ultimately be determined by the Science Definition Team,” Grunsfeld told me. “Historically the driving question behind our Mars exploration has been ‘are we alone in the universe?’ that includes searching for signs of conditions supportive of past and/or present life on Mars.”

Steve Squyres, of Cornell University in New York, says that “sample return is the next logical step” in Mars exploration.

“Simple… it should collect and cache a well-chosen set of samples for eventual return to Earth,” Squyres told me. “Doing so was the clear top priority of the recent planetary decadal survey.”

Squyres led the planetary decadel survey for the National Research Council (NRC) and is the scientific Principal Investigator for the Spirit and Opportunity MER rovers.

Image caption: Artists Concept for Mars Sample Return mission. Credit: NASA

“The recently announced 2020 rover has the potential to be directly responsive to the recommendations of the recent planetary decadal survey. The highest priority large mission identified by the Mars community, and indeed by the broader planetary community, in the decadal was a rover that would collect and cache a suite of samples for eventual return to Earth. The 2020 rover, which will be based on the highly capable MSL design, clearly can have that capability if it is appropriately equipped,” Squyres elaborated.

“The National Research Council planetary decadal survey documented the US planetary science community’s consensus views on future priorities for planetary exploration. The 2020 rover mission will be consistent with those priorities only if it collects and caches a suite of samples for eventual return to Earth,” Squyres told Universe Today.

Although retrieving and returning pristine samples from the Red Planet’s surface has long been the top priority for many researchers like Squyres, that ambitious goal would also be expensive and likely require a sequential series of flights to accomplish. But it is doable and would enable scientists on Earth to utilize every one of the most powerful science instruments at their disposal to help solve the most fundamental mysteries of all, like; ‘How did the Solar System form’, ’Did life ever exist on Mars’ and “Are We Alone?’

Ray Arvidson, of Washington University in St. Louis and deputy Principal Investigator for the MER rover, said this to Universe Today:

“For the 2020 rover I would frame the rationale and purpose as:

“*The surface area of Mars is equivalent to the surface area of Earth’s continents. The more we look the richer the geologic record relevant to ancient climatic conditions (e.g., the rover bed gravels found by MSL and the new clay hunting grounds Opportunity is exploring). Thus another MSL class rover and payload to a new site of paleo-environmental interest would be wonderful. Imagine trying to unravel Earth’s history by exploring three locations (MER+MSL) on the continents,” Arvidson informed me.

“*Given the rich, complex nature of the geologic record another MSL class rover exploring a new location will definitely help us narrow down the best place to go for sample return.”

“*For the 2020 rover include some engineering tests that will lead to a lower risk sample return mission. This could be what measurements to do to decide on which samples to acquire and keep, could be how to drill, handle, and cache, etc.”

Jim Bell, of Arizona State University and team leader for the MER Pancam cameras also feels that sample return is the top priority.

“I think it’s important that the 2020 rover adhere to the planetary science community’s stated goals for the next flagship-class mission to Mars–that it make significant progress towards a robotic Mars sample return’” Bell told me. “This was the judgment of the recent National Academy of Science’s Planetary Decadal Survey–representing the consensus of more than 1600 professional planetary scientists worldwide. The simplest way to implement that would be to make the 2020 rover a caching rover–able to store well-selected samples for potential later return to Earth by another mission.”

“I’m really excited about the opportunity to send a new MSL-class rover to Mars, and speaking with my Planetary Society President hat on, I think the public will be really excited to follow another mission as well.”

“Mars exploration is incredibly popular, and represents the best aspects of American engineering, innovation, and scientific exploration. That mission, and the continuing discoveries from Curiosity, Opportunity, and other missions, will help get us closer to answering age-old questions like, “are we alone?” Exciting!” Bell said.

By reutilizing the now proven MSL designs, NASA should be able to restrain and accurately estimate the development costs while simultaneously retiring a lot of the unknown risks associated with the construction and testing of MSL 1.

At the AGU briefing, Grunsfeld said that the 2020 rover will cost about $1.5 Billion, plus or minus $200 million, and fits within the president’s NASA budget request for 2013 and going forward. Curiosity cost about $2.5 Billion over the course of a 10 year development span.

“This mission concept fits within the current and projected Mars exploration budget, builds on the exciting discoveries of Curiosity, and takes advantage of a favorable launch opportunity,” says Grunsfeld.

The exact nature and actual mass of the 2020 rover’s science instruments will be decided by the Science Definition Team and also depends on the actual budget allocation received by NASA.

The surprising decision to fund MSL 2 comes despite the Obama Administrations cancellation earlier this year of NASA’s participation in a pair of missions to Mars, jointly proposed with the European Space Agency (ESA) – the 2016 Trace Gas Orbiter and the 2018 ExoMars rover. ESA has now forged a new alliance with Russia to carry out Mars exploration. NASA will fund instruments on both spacecraft.

In February 2012, the Obama Administration cut the planetary science budget by 20% and NASA was forced to withdrawn from the two joint Mars missions with ESA – as outlined earlier here and here.

So, I asked Grunsfeld, “Will the 2020 mission be international with participation by ESA or Roscosmos?”

“Yes, it will be international. Details will be worked out in the planning phase,” Grunsfeld replied.

Image caption: Artist concept shows Earth return capsule with Red planet samples during rendezvous in Mars orbit. Credit: NASA

The 2020 launch window is next most favorable window after 2018 and would permit a higher weight of landed science instruments compared to Curiosity.

U.S. Rep. Adam Schiff (D-CA), who represents the area that is home to NASA’s Jet Propulsion Laboratory, and has worked to reverse the budget cuts, applauded the announcement of “the new robotic science rover set to launch in 2020.”

Schiff issued a statement that said, “While a 2020 launch would be favorable due to the alignment of Earth and Mars, a launch in 2018 would be even more advantageous as it would allow for an even greater payload to be launched to Mars. I will be working with NASA, the White House and my colleagues in Congress to see whether advancing the launch date is possible and what it would entail.”

Now it’s up to NASA to formulate a well defined and realistic plan that the politicians will support. The specific payload and science instruments for the 2020 mission will be openly competed following established processes for instrument selection. A science definition team will be appointed to outline the scientific objectives for the mission.

Stay tuned here for continuing updates on Curiosity and the future of Mars exploration and more.

** Here is your chance to do something positive & simple – and ‘Save Our Science’!

Cast your vote for Curiosity as TIME magazine Person of the Year. Vote now and avoid the long lines at the polling booth – before it’s too late. You only have until 11:59 p.m. on Dec. 12 to cast your vote online.

Ken Kremer

…..
Learn more about Curiosity’s groundbreaking discoveries and NASA missions at my upcoming free presentation for the general public at Princeton University.

Dec 11: Free Public lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more including the Space Shuttle, Orion and SpaceX by Ken Kremer at Princeton University and the Amateur Astronomers Association of Princeton (AAAP) in Princeton, NJ at 8 PM – Princeton U campus at Peyton Hall, Astrophysics Dept. Students welcome.

Image Caption: Panoramic mosaic shows gorgeous Glenelg terrain where Curiosity is now touring in search of first rocks to drill into and sample. The eroded rim of Gale crater and base of Mount Sharp seen in the distance. This is a cropped version of the wider mosaic as assembled from 75 images acquired by the Mastcam 100 camera on Sol 64 in October 2012. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Golden Spike to Offer Commercial Human Missions to the Moon

A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company

A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company

A group of space experts, media figures and even politicians announced today a new commercial company to bring paying passengers to the Moon. The Golden Spike Company is looking to “implement and operate a human space transportation system at commercially successful price points,” the company says on their website, focusing “on generating a sustainable human lunar exploration business that generates profits through multiple high value revenue streams.”

Initial estimates for a ticket to the Moon and back with Golden Spike are a cool $1.5 billion. But they aren’t only focusing on individuals as paying customers, but also other space companies and even governmental entities.

The people behind Golden Spike include their CEO Alan Stern, Principal Investigator for the New Horizons mission to Pluto who is also involved with several other space-related ventures such as Uwingu, former Apollo flight director Gerry Griffin, former shuttle flight director Wayne Hale and politician Newt Gingrich, who touted the idea of building colonies on the Moon while he was a US presidential candidate.

Golden Spike’s video preview:

During an announcement at the National Press Club today — made on the eve of the 40th anniversary of the launch of Apollo 17, the last human exploration of the Moon — Griffin said that a group of like-minded individuals got together and concluded that time is ripe for such exploration that could be afforded by corporations, nations and individuals. Golden Spike looks to provide turn-key services such as vehicles, mission planning, mission ops, and crew training to create a reliable and affordable lunar exploration system that will be U.S. based

Stern said they will not build new hardware but adapt crew capsules already in development and use existing infrastructure and launchers. However, they are looking to developing their own lunar spacesuits and lunar landers.

Their tentative plan is to use a series of launches where the first launch sends a lunar lander to orbit the Moon and a second launch brings the crew, which will then dock with the lander and head to the Moon.

Stern said their costs per flight are not much higher than some recent robotic lunar missions that have been flown and they will offset their costs with spaceship naming rights, media rights, and other enticements, plus they hope to have several investors as backers.

They also want to bring public along as an integral part of the mission.

“We realize this is science fiction. We intend to make it science fact,” Stern was quoted as saying.

Reportedly, Golden Spike has conferred with NASA on their plans.

While there are already a number of skeptics about this new endeavor, others see it as a step forward.

“Conquering the space frontier requires leadership at NASA and a partnership between commercial companies and governments,” stated Commercial Space Fight President Michael Lopez-Alegria. “I’m thrilled to see the Golden Spike announcement, which harnesses space leaders with years of experience to launch an exciting new private space venture. In the last few years we’ve learned that commercial space, by speaking to the dreams and aspirations of people around the world, can create new excitement for space travel, bringing us ever closer to our shared goal of sustainably extending human activity beyond Earth.”

Other board members include new-space entrepreneur Esther Dyson and Taber McCallum, co-founder and CEO of Paragon Space Development Corporation. The list of advisers for the company former NASA engineer and author Homer Hickam, Bill Richardson, who has served as U.N. ambassador, energy secretary and the governor of New Mexico, space historian and author Andrew Chaikin, former NASA flight surgeon Jonathan Clark, Nancy Conrad who is founder of The Conrad Foundation and is the widow of Apollo 12 moonwalker Pete Conrad.

Golden Spike also lists United Launch Alliance, Armadillo Aerospace, Masten Space Systems and several other space-industry companies as being involved with this new endeavor.

Golden Spike was the name given to the ceremonial spike that joined the rails of the first transcontinental railroad across the United States in 1869, which opened up the Western frontier to new opportunities.

“We’re not just about America going back to the moon; we’re about American industry and American entrepreneurial spirit leading the rest of the world to an exciting era of human lunar exploration,” said Stern in a press release. “It’s the 21st century, we’re here to help countries, companies, and individuals extend their reach in space, and we think we’ll see an enthusiastic customer manifest developing.”

See the Golden Spike website

Sources: Thanks to Jeff Foust (@jeff_foust) for live-Tweeting the press conference and to Doug Messier from Parabolic Arc for live blogging the event.

Vote ‘Curiosity’ as TIME Person of the Year

I Need You ! Vote for ‘Curiosity’ as TIME magazine Person Of The Year. NASA’s new Curiosity Mars rover snapped this Head and Shoulders Self-Portrait on Sol 85 (Nov. 1 , 2012) as Humanity’s emissary to the Red Planet in Search of Signs of Life. Mosaic Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Caption – I Need You ! Vote for ‘Curiosity’ as TIME magazine Person Of The Year.
NASA’s new Curiosity Mars rover snapped this Self-Portrait on Sol 85 (Nov. 1 , 2012) as Humanity’s emissary to the Red Planet in Search of Signs of Life. Mosaic Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

You can make it happen. Vote Now ! Vote Curiosity !

Vote for ‘Curiosity’ as the Time magazine Person of the Year

Make your voice heard – Help send a message to the Feds to “Save Our Science” as the Fiscal Cliff nears and threatens our Science.

Perhaps you are a doubter. Well think again. Because at this moment NASA’s Curiosity Mars rover has thrust forward into 5th Place, inching ahead of – comedian Stephen Colbert, according to the running tally at TIME’s Person of the Year website.

NASA’s SUV-sized Curiosity Mars rover is the most powerful science robot ever dispatched as Humanity’s emissary to the surface of the Red Planet. She is searching for Signs of Life and may shed light on the ultimate questions – “Are We Alone?” – “Where do We fit In?

Curiosity is NASA’s first Astrobiology mission to Mars since the twin Viking landers of the 1970’s.

TIME’s editors are soliciting your input on worthy candidates for Person of the Year, although they will choose the ultimate winner.

You have until 11:59 p.m. on Dec. 12 to cast your vote. The winner of the people’s choice will be announced on Dec. 14. The magazine itself with the ultimate winner appears on newsstands on Dec. 21

Image caption: Curiosity trundling across Mars surface inside Gale Crater on Sol 24 (Aug. 30, 2012). Colorized mosaic stitched together from Navcam images. This panorama is featured on PBS NOVA ‘Ultimate Mars Challenge’ documentary which premiered on PBS TV on Nov. 14. Credit: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo

Read TIME’s statement about voting for Curiosity:

You may own a cool car — you may even own a truly great car — but it’s a cinch that no matter how fantastic it is, it can never be anything more than the second best car in the solar system. The greatest of all is the Mars Curiosity rover, one ton of SUV-size machine now 160 million miles from Earth and trundling across the Martian surface. It was the rover’s landing on Mars last August that first caught people’s eyes: an improbable operation that required a hovering mother ship to lower the rover to the surface on cables like a $2.5 billion marionette. But it’s the two years of exploration Curiosity has ahead of it — with a suite of instruments 10 times as large as any ever carried to Mars before — that will make real news. NASA built the country one sweet ride, and yes, alas, it’s sweeter than yours.

Cast your vote for Curiosity now, and avoid the long lines – before it’s too late

Ken Kremer

…..

Learn more about Curiosity’s groundbreaking discoveries and NASA missions at my upcoming pair of free presentations for the general public at two colleges in New Jersey:

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity, Orion, SpaceX and more by Ken Kremer at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ at 8 PM

Dec 11: Free Public lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more by Ken Kremer at Princeton University and the Amateur Astronomers Association of Princeton (AAAP) in Princeton, NJ at 8 PM – Princeton U Campus at Peyton Hall, Astrophysics Dept.

Inspiring New ISS Timelapse: Further Up Yonder

As humble as it may be, the International Space Station is our long-awaited outpost in space; a foothold and gateway to the cosmos. This stirring and poignant new ISS timelapse reminds us of our accomplishments so far while urging us on to keep exploring. This video was compiled by film-making student Giacomo Sardelli, who says, “People on Earth must understand that they have to get rid of the concept of borders on our planet if they want to follow the astronauts to new worlds in outer space.”

In the first part of the video, while the astronauts and cosmonauts are speaking, a day passes on Earth, from dawn to sunset. Then a “gateway” of sorts appears to open with a burst of light. “The ISS then gains speed and goes faster and faster, the astronauts are leaving our planet which they see spinning faster and faster, merging earth, oceans and people together, ready to follow them, Further Up Yonder,” writes Sardelli.

Beautiful.

Further Up Yonder from Giacomo Sardelli on Vimeo.

NASA, Roscosmos Choose First Crew for Year-Long ISS Mission

Back in October the partnering countries of the International Space Station announced an agreement to send two crew members to the International Space Station on a one-year mission designed to collect valuable scientific data needed to send humans to new destinations in the solar system. Today, NASA, the Russian Federal Space Agency (Roscosmos) announced they have selected the first crew to be part of such a mission: NASA has selected Scott Kelly and Roscosmos has chosen Mikhail Kornienko.

Kelly and Kornienko begin their mission in the spring of 2015, launching on Russian Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan in spring 2015 and will land in Kazakhstan in spring 2016. Kelly and Kornienko have trained together before, as Kelly was a backup crew member for the station’s Expedition 23/24 crews, where Kornienko served as a flight engineer.

“Congratulations to Scott and Mikhail on their selection for this important mission,” said William Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington. “Their skills and previous experience aboard the space station align with the mission’s requirements. The one-year increment will expand the bounds of how we live and work in space and will increase our knowledge regarding the effects of microgravity on humans as we prepare for future missions beyond low-Earth orbit.”

NASA astronaut Scott Kelly

Kelly is the twin brother of former astronaut Mark Kelly, who is married to Gabrielle Giffords, the former US Congresswoman who was shot by an assailant in January of 2011.

The goal of their yearlong expedition is to understand better how the human body reacts and adapts to the harsh environment of space. Data from the 12-month expedition will help inform current assessments of crew performance and health and will determine better and validate countermeasures to reduce the risks associated with future exploration as NASA plans for missions around the moon, an asteroid and ultimately Mars.

“Selection of the candidate for the one year mission was thorough and difficult due to the number of suitable candidates from the Cosmonaut corps,” said head of Russian Federal Space Agency, Vladimir Popovkin. “We have chosen the most responsible, skilled and enthusiastic crew members to expand space exploration, and we have full confidence in them.”

Kelly, a captain in the U.S. Navy, is from Orange, N.J. He has degrees from the State University of New York Maritime College and the University of Tennessee, Knoxville. He served as a pilot on space shuttle mission STS-103 in 1999, commander on STS-118 in 2007, flight engineer on the International Space Station Expedition 25 in 2010 and commander of Expedition 26 in 2011. Kelly has logged more than 180 days in space.

Russian cosmonaut Mikhail Kornienko

Kornienko is from the Syzran, Kuibyshev region of Russia. He is a former paratrooper officer and graduated from the Moscow Aviation Institute as a specialist in airborne systems. He has worked in the space industry since 1986 when he worked at Rocket and Space Corporation-Energia as a spacewalk handbook specialist. He was selected as an Energia test cosmonaut candidate in 1998 and trained as an International Space Station Expedition 8 backup crew member. Kornienko served as a flight engineer on the station’s Expedition 23/24 crews in 2010 and has logged more than 176 days in space.

During the 12 years of permanent human presence aboard the International Space Station, scientists and researchers have gained valuable, and often surprising, data on the effects of microgravity on bone density, muscle mass, strength, vision and other aspects of human physiology. This yearlong stay will allow for greater analysis of these effects and trends.

Kelly and Kornienko will begin a two-year training program in the United States, Russia and other partner nations starting early next year.

Curiosity Ramps Up Complexity of Surface Ops with 1st ‘Touch and Go’ Maneuver – Cool Animation

Image Caption: Thanksgiving Greetings from Mars ! Curiosity snaps Head and Shoulders Self-Portrait on Sol 85 while posing at windblown ‘Rocknest’ ripple with eroded rim of Gale Crater in the background. This color mosaic was assembled from Mastcam 34 raw images snapped on Sol 85 (Nov. 1, 2012). See below the utterly cool animation of Curioity’s 1st ever ‘Touch and Go’ maneuver. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

In the days leading up to Thanksgiving, NASA’s Curiosity mega Mars rover completed her first so-called “touch and go” maneuver – whereby she drives to and inspects an interesting rock and then moves on the same day to the next target of interest.

Check out the totally cool action animation below depicting Curiosity’s first ever “touch and go” movement and a subsequent martian drive of 83 feet (25.3 meters) conducted on Nov. 18.

“The ‘touch and go’ on Sol 102 went well, the data arriving in time for planning Sol 104”, says rover team member Ken Herkenhoff, of the US Geological Survey (USGS).

The science and engineering team guiding Curiosity is commanding her to accomplish ever more sophisticated and bold forays across the floor of Gale crater after finishing more than a month of investigations at the windblown ripple named “Rocknest.

On Nov 16, Curiosity drove 6.2 feet (1.9 meters) to get within arm’s reach of a rock called “Rocknest 3”. She deployed the arm and placed the Alpha Particle X-Ray Spectrometer (APXS) instrument onto the rock, and then took two 10-minute APXS readings of data to ascertain the chemical elements in the rock.

Thereafter Curiosity stowed her 7 foot (2.1 m) long arm and drove eastward toward the next target called “Point Lake”.

Curiosity is now inside the ‘Glenelg’ geologic formation which the science team selected as the first major science destination because it lies at the intersection of three diverse types of geology areas that will help unlock the secrets of Mars’ ancient watery history and evolution to modern times.

Image Caption: Panoramic mosaic shows gorgeous Glenelg snapped by Curiosity on Sol 64 (Oct. 10) with eroded crater rim and base of Mount Sharp in the distance. Curiosity is now touring inside Glenelg. This is a cropped version of the full mosaic as assembled from 75 images acquired by the Mastcam 100 camera. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

“We have done touches before, and we’ve done goes before, but this is our first ‘touch-and-go’ on the same day,” said Curiosity Mission Manager Michael Watkins of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “It is a good sign that the rover team is getting comfortable with more complex operational planning, which will serve us well in the weeks ahead.”

During the holiday period, Curiosity is taking high resolution imagery, conducting atmospheric observations and making measurements with the DAN neutron spectrometer and her other state-of-the-art science instruments.

Meanwhile, the Curiosity science team is still ‘chewing over’ the meaning of the results from the first ever scoopful of soil spooned up at ‘Rocknest’ and ingested by the SAM (Sample Analysis at Mars) chemistry instrument on the rover deck that is designed to detect organic molecules – the building blocks of life.

“We’ve got a briefing on Monday [Dec 3] where we’ll discuss our results,” Curiosity project manager John Grotzinger, of Caltech, told me. Those SAM results will be announced to a flurry of interest during the annual meeting of the AGU (American Geophysical Union) being held from Dec 3-7 in San Francisco.

Learn more about Curiosity’s groundbreaking discoveries, SAM and NASA missions at my upcoming pair of free presentations for the general public at two colleges in New Jersey:

Ken Kremer

…..

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity, Orion, SpaceX and more by Ken Kremer at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ at 8 PM

Dec 11: Free Public lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more by Ken Kremer at Princeton University and the Amateur Astronomers Association of Princeton (AAAP) in Princeton, NJ at 8 PM – Princeton U Campus at Peyton Hall, Astrophysics Dept.