1st Space-bound Orion Crew Capsule Unveiled at Kennedy

Image caption: Sen. Bill Nelson of Florida welcomes the newly arrived Orion crew capsule at a Kennedy Space Center unveiling ceremony on July 2, 2012 and proclaims Mars is NASA’s long term goal for human exploration. Credit: Ken Kremer

NASA’s first space-bound Orion crew capsule was officially unveiled at a welcoming ceremony at the Kennedy Space Center on Monday (July 2) to initiate a process that the agency hopes will finally put Americans back on a path to exciting destinations of exploration beyond low Earth orbit for the first time in 40 years since Apollo and spawn a new era in deep space exploration by humans – starting with an initial uncrewed test flight in 2014.

Over 450 invited guests and dignitaries attended the Orion arrival ceremony at Kennedy’s Operations and Checkout Building (O & C) to mark this watershed moment meant to reignite human exploration of the cosmos.

“This starts a new, exciting chapter in this nation’s great space exploration story,” said Lori Garver, NASA deputy administrator. “Today we are lifting our spirits to new heights.”

Image caption: Posing in front of NASA’s 1st Orion crew module set for 2014 liftoff are; KSC Director Bob Cabana, Mark Geyer, NASA Orion Program manager, Sen. Bill Nelson (FL), Lori Garver, NASA Deputy Administrator. Credit: Ken Kremer

This Orion capsule is due to lift off on a critical unmanned test flight in 2014 atop a powerful Delta 4 Heavy booster – like the Delta rocket just launched on June 29.

The bare bones, olive green colored aluminum alloy pressure shell arrived at KSC last week from NASA’s Michoud Assembly Facility where the vessel was assembled and the final welds to shape it into a capsule were just completed. Every space shuttle External Tank was built at Michoud in New Orleans.

U.S. Senator Bill Nelson of Florida has spearheaded the effort in Congress to give NASA the goal and the funding to build the Orion Multipurpose Crew Vehicle (MPCV) and the means to launch it atop the most powerful rocket ever built – a Saturn V class booster dubbed the SLS or Space Launch System – to destinations in deep space that have never been explored before.

“Isn’t this beautiful?” said Nelson as he stood in front of the incomplete vessel, motioned to the crowd and aimed his sights high. “I know there are a lot of people here who can’t wait to get their hands and their fingers on this hardware.

“And ladies and gentlemen, we’re going to Mars!” proclaimed Nelson.

“Without question, the long-term goal of our space program, human space program right now is the goal of going to Mars in the decade of the 2030s.”

“We still need to refine how we’re going to go there, we’ve got to develop a lot of technologies, we’ve got to figure out how and where we’re going to stop along the way. The president’s goal is an asteroid in 2025. But we know the Orion capsule is a critical part of the system that is going to take us there.”


Image caption: The green colored aluminum alloy pressure vessel arrived at KSC last week and will be outfitted with all the instrumentation required for spaceflight. Launch is slated for 2014 atop Delta 4 Heavy booster from pad 37 on Cape Canaveral. Crew hatch and tunnel visible at center. Credit: Ken Kremer

Orion is the most advanced spacecraft ever designed.

Over about the next 18 months, engineers and technicians at KSC will install all the systems and gear – such as avionics, instrumentation, flight computers and the heat shield – required to transform this empty shell into a functioning spacecraft.

The 2014 uncrewed flight, called Exploration Flight Test-1 or EFT-1, will be loaded with a wide variety of instruments to evaluate how the spacecraft behaves during launch, in space and then through the searing heat of reentry.

The 2 orbit flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station. Although the mission will only last a few hours it will be able high enough to send the vehicle plunging back into the atmosphere at over 20.000 MPH to test the craft and its heat shield at deep-space re-entry speeds approaching those of the Apollo moon landing missions.

Image caption: Sen. Bill Nelson of Florida discusses the new arrived Orion capsule with NASA Deputy Administrator Lori Garver while surrounded by a horde of reporters at the Kennedy Space Center unveiling ceremony on July 2, 2012. Credit: Ken Kremer

Orion arrived at Kennedy on nearly the same day that the center opened its door 50 years ago.

“As KSC celebrates its 50th anniversary this month, I can’t think of a more appropriate way to celebrate than by having the very first Orion Multi-Purpose Crew Vehicle here at KSC,” said KSC Center Director Robert Cabana, a former shuttle commander, at the O & C ceremony.

“The future is here, now, and the vehicle we see here today is not a Powerpoint chart. It’s a real spacecraft, moving toward a test flight in 2014.”

In 2017, an Orion capsule will lift off on the first SLS flight. The first crewed Orion will launch around 2021 and orbit the moon, Lori Garver told me in an interview at KSC.

But the entire schedule and construction of the hardware is fully dependent on funding from the federal government.

In these lean times, there is no guarantee of future funding and NASA’s budget has already been significantly chopped – forcing numerous delays and outright mission cancellations on many NASA projects; including the outright termination of NASA next Mars rover and multi-year delays to the commercial crew program and prior plans to launch a crewed Orion to orbit as early as 2013.

Image caption: Veteran NASA Astronaut Rex Walheim discusses Orion with Universe Today. Walheim flew on the last space shuttle mission (STS-135). Credit: Ken Kremer

Astronaut Rex Walheim, who flew on the final space shuttle mission (STS-135) and has had key role in developing Orion, said the Orion capsule can be the principal spacecraft for the next 30 years of human exploration of the solar system.

“It’s the first in a line of vehicles that can take us where we’ve never gone before,” Walheim said. “It’ll be a building block approach, we’ll have to have a lander and a habitation module, but we can get there.”


Image caption: John Karas, Lockheed Martin Vice President for Human Space Flight poses with Orion and discusses the upcoming 2014 EFT-1 test flight with Universe Today. Lockheed is the prime contractor for Orion. Credit: Ken Kremer

“Personally I am thrilled to be working on the next vehicle that will take us beyond low Earth orbit, said John Karas, Lockheed Martin Vice President for Human Space Flight. Lockheed Martin is the prime contractor to build Orion.

“Orion will carry humans to destinations never explored before and change human’s perspectives”

“Folks here are ready to start working on the EFT-1 mission. In about 18 months, EFT-1 will fly on the next Delta 4 Heavy flight.

“I can’t wait to go deeper into the cosmos!” Karas exclaimed.

Ken Kremer

…..
July 13/14: Free Public Lectures about NASA’s Mars and Planetary Exploration, the Space Shuttle, SpaceX , Orion and more by Ken Kremer at the Adirondack Public Observatory in Tupper Lake, NY.

Integrating New Concepts for Entry, Descent and Landing for Future Human Missions to Mars

Editor’s note: This guest post was written by Andy Tomaswick, an electrical engineer who follows space science and technology.

One of the most technically difficult tasks of any future manned missions to Mars is to get the astronauts safely on the ground. The combination of the high speed needed for a short trip in space and the much lighter Martian atmosphere creates an aerodynamics problem that has been solved only for robotic spacecraft so far. If people will one day walk Mars’ dusty surface, we will need to develop better Entry Descent and Landing (EDL) technologies first.

Those technologies are part of a recent meeting of the Lunar Planetary Institute (LPI), The Concepts and Approaches for Mars Exploration conference, held June 12-14 in Houston, which concentrated on the latest advances in technologies that might solve the EDL problem.

Of the multitude of technologies that were presented at the meeting, most seemed to involve a multi-tiered system comprising several different strategies. The different technologies that will fill those tiers are partly mission-dependent and all still need more testing. Three of the most widely discussed were Hypersonic Inflatable Aerodynamic Decelerators (HIADs), Supersonic Retro Propulsion (SRP), and various forms of aerobraking.

HIADs are essentially large heat shields, commonly found many types of manned reentry capsule used in the last 50 years of spaceflight. They work by using a large surface area to create enough drag through the atmosphere of a planet to slow the traveling craft to a reasonable speed. Since this strategy has worked so well on Earth for years, it is natural to translate the technology to Mars. There is a problem with the translation though.

HIADs rely on air resistance for its ability to decelerate the craft. Since Mars has a much thinner atmosphere than Earth, that resistance is not nearly as effective at slowing reentry. Because of this drop in effectiveness, HIADs are only considered for use with other technologies. Since it is also used as a heat shield, it must be attached to the ship at the beginning of reentry, when the air friction causes massive heating on some surfaces. Once the vehicle has slowed to a speed where heating is no longer an issue, the HIAD is released in order to allow other technologies to take over the rest of the braking process.

One of those other technologies is SRP. In many schemes, after the HIAD is released, SRP becomes primarily responsible for slowing the craft down. SRP is the type of landing technology commonly found in science fiction. The general idea is very simple. The same types of engines that accelerate the spacecraft to escape velocity on Earth can be turned around and used to stop that velocity upon reaching a destination. To slow the ship down, either flip the original rocket boosters around upon reentry or design forward-facing rockets that will only be used during landing. The chemical rocket technology needed for this strategy is already well understood, but rocket engines work differently when they are traveling at supersonic speeds. More testing must be done to design engines that can deal with the stresses of such velocities. SRPs also use fuel, which the craft will be required to carry the entire distance to Mars, making its journey more costly. The SRPs of most strategies are also jettisoned at some point during the descent. The weight shed and the difficulty of a controlled descent while following a pillar of flame to a landing site help lead to that decision.

Once the SRP boosters fall away, in most designs an aerobraking technology would take over. A commonly discussed technology at the conference was the ballute, a combination balloon and parachute. The idea behind this technology is to capture the air that is rushing past the landing craft and use it to fill a ballute that is tethered to the craft. The compression of the air rushing into the ballute would cause the gas to heat up, in effect creating a hot air balloon that would have similar lifting properties to those used on Earth. Assuming enough air is rushed into the ballute, it could provide the final deceleration needed to gently drop the landing craft off on the Martian surface, with minimal stress on the payload. However, the total amount this technology would slow the craft down is dependent on the amount of air it could inject into its structure. With more air come larger ballute, and more stresses on the material the ballute is made out of. With those considerations, it is not being considered as a stand-alone EDL technology.

These strategies barely scratch the surface of proposed EDL methods that could be used by a human mission to Mars. Curiosity, the newest rover soon set to land on Mars, is using several, including a unique form of SRP known as the Sky Crane. The results of its systems will help scientists like those at the LPI conference determine what suite of EDL technologies will be the most effective for any future human missions to Mars.

Read our previous article about the difficulties of landing large payloads on Mars, an interview with JPL’s Rob Manning.


Lead image caption: Artist’s concept of Hypersonic Inflatable Aerodynamic Decelerator slowing the atmospheric entry of a spacecraft. Credit: NASA

Second image caption: Supersonic jets are fired forward of a spacecraft in order to decelerate the vehicle during entry into the Martian atmosphere prior to parachute deployment. The image is of the Mars Science Lab at Mach 12 with 4 supersonic retropropulsion jets. Credit: NASA

Source: LPI Concept and Approaches for Mars Exploration

ISS Expedition 31 Crew Returns Safely to Earth

We’re sure going to miss Don Pettit’s and Andre Kuipers’ reports and images from the International Space Station. Pettit, Kuipers and Russian Commander Oleg Kononenko undocked from the International Space Station and returned safely to Earth on July 1, wrapping up their six-and-a-half-month mission in orbit.

They landed in their Soyuz TMA-03M spacecraft in Kazakhstan at 08:14 a.m. UT (2:14 p.m. local time) after undocking from the space station’s Rassvet module at 04:47 UT. This video shows a great view of the Soyuz slowly drifting down (it’s interesting to see the parachute undulate, looking almost like a jellyfish!) and then visible are the breaking thrusters firing just a second before the hard landing.

The trio originally arrived at the station back on Dec. 23, 2011, and during this mission spent a total of 193 days in space, 191 of which were aboard the station.

During their expedition, the crew supported more than 200 scientific investigations involving more than 400 researchers around the world. The studies ranged from integrated investigations of the human cardiovascular and immune systems to fluid, flame and robotic research. They also were part of the team that successfully berthed the first commercial spacecraft to visit the ISS, the SpaceX Dragon capsule.

Before leaving the station, Kononenko handed over command of Expedition 32 to the Russian Federal Space Agency’s Gennady Padalka, who remains aboard the station with NASA astronaut Joe Acaba and Russian cosmonaut Sergei Revin. NASA astronaut Sunita Williams, Russian cosmonaut Yuri Malenchenko and Japan Aerospace Exploration Agency astronaut Akihiko Hoshide will join them July 17. Williams, Malenchenko and Hoshide are scheduled to launch July 14 from the Baikonur Cosmodrome in Kazakhstan.

During Expedition 31, Pettit used household objects aboard the station to perform a variety of unusual physics experiments for the video series “Science Off the Sphere,” like his recent video showing water balloons in space. Through these demonstrations, Pettit showed more than a million Internet viewers how space affects scientific principles.

On June 25, Pettit reached a milestone: spending one cumulative year in space, combining his time in orbit on Expedition 6, Expedition 30/31 and the STS-126 space shuttle Endeavour flight to the station in November 2008. Pettit now has 370 days in space, placing him fourth among U.S. space fliers for the longest time in space.

Kuipers conducted over 50 scientific experiments for ESA, and shared, almost daily, images and reports of his stay in space. The next ESA astronaut to board the Space Station is Luca Parmitano of Italy, who will fly on Soyuz TMA-09M in 2013 as member of Expedition 36/37.

New “Flying Tea Kettle” Could Get Us To Mars in Weeks, Not Months

At 54.6 million km away at its closest, the fastest travel to Mars from Earth using current technology (and no small bit of math) takes around 214 days — that’s about 30 weeks, or 7 months. A robotic explorer like Curiosity may not have any issues with that, but it’d be a tough journey for a human crew. Developing a quicker, more efficient method of propulsion for interplanetary voyages is essential for future human exploration missions… and right now a research team at the University of Alabama in Huntsville is doing just that.

This summer, UAHuntsville researchers, partnered with NASA’s Marshall Space Flight Center and Boeing, are laying the groundwork for a propulsion system that uses powerful pulses of nuclear fusion created within hollow 2-inch-wide “pucks” of lithium deuteride. And like hockey pucks, the plan is to “slapshot” them with plasma energy, fusing the lithium and hydrogen atoms inside and releasing enough force to ultimately propel a spacecraft — an effect known as “Z-pinch”.

“If this works,” said Dr. Jason Cassibry, an associate professor of engineering at UAH, “we could reach Mars in six to eight weeks instead of six to eight months.”

Read: How Long Does It Take To Get To Mars?

The key component to the UAH research is the Decade Module 2 — a massive device used by the Department of Defense for weapons testing in the 90s. Delivered last month to UAH (some assembly required) the DM2 will allow the team to test Z-pinch creation and confinement methods, and then utilize the data to hopefully get to the next step: fusion of lithium-deuterium pellets to create propulsion controlled via an electromagnetic field “nozzle”.

Although a rocket powered by Z-pinch fusion wouldn’t be used to actually leave Earth’s surface — it would run out of fuel within minutes — once in space it could be fired up to efficiently spiral out of orbit, coast at high speed and then slow down at the desired location, just like conventional rockets except… better.

“It’s equivalent to 20 percent of the world’s power output in a tiny bolt of lightning no bigger than your finger. It’s a tremendous amount of energy in a tiny period of time, just a hundred billionths of a second.”

– Dr. Jason Cassibry on the Z-pinch effect

In fact, according to a UAHuntsville news release, a pulsed fusion engine is pretty much the same thing as a regular rocket engine: a “flying tea kettle.” Cold material goes in, gets energized and hot gas pushes out. The difference is how much and what kind of cold material is used, and how forceful the push out is.

Everything else is just rocket science.

Read more on the University of Huntsville news site here and on al.com. Also, Paul Gilster at Centauri Dreams has a nice write-up about the research as well as a little history of Z-pinch fusion technology… check it out. Top image: Mars imaged with Hubble’s Wide-Field Planetary Camera 2 in March 1995.

Top Secret Air Force Mini Shuttle lands after Record-Setting Stay in Space

Image Caption: 2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandernberg AFB, Calif., on June 16, 2012. The record setting mission lasted 469 days in earth orbit. Designed to be launched like a satellite and land like an airplane, the second X-37B Orbital Test Vehicle, built by Boeing for the United States Air Force’s Rapid Capabilities Office, is an affordable, reusable space vehicle. Credit: Boeing.
See landing video below

The 2nd of the US Air Force’s top secret X-37B unmanned, reusable mini shuttles safely landed on Saturday, June 16, at 5:48 a.m. Pacific local time at Vandenberg Air Force Base, California to conclude a record setting classified 469 day experimental test flight in Earth orbit.

This was the first flight of OTV-2 and the second flight of the military’s classified X-37B Orbital Test Vehicle (OTV) test program for the U.S. Air Force Rapid Capabilities Office.

The reusable space plane is designed to be launched like a satellite and land on a runway like an airplane and NASA space shuttle. The X-37B is one of the newest and most advanced reentry spacecraft.

Here is the YouTube landing video released by the US Air Force:

OTV-2 was launched atop a United Launch Alliance Atlas V booster from Cape Canaveral Air Force Station, Fla., on March 5, 2011.

About 18 minutes after launch, the Air Force imposed a news blackout on the classified mission. Details about the cargo and experiments loaded aboard the Air Force orbital space plane are shrouded behind a veil of military security.

It is not known if the X-37B conducted reconnaissance activities during the test flight. It does have the capability to deploy satellites in space

The Air Force says the primary mission goal was to check out the vehicles capabilities and testing the ability to send experiments to space and return them safely.


Image caption: Top secret Air Force X-37B OTV mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the classified X 37-B shows the umbilical line attachments. Credit: Ken Kremer

The mission duration of well over one year far exceeded the 220-day mission duration of the first OTV craft and tested additional capabilities. Two OTV vehicles have been built by Boeing. The first craft, known as OTV-1, was the United States’ first unmanned vehicle to return from space and land on its own.

Previously, NASA space shuttles piloted by astronauts were the only space vehicles that had demonstrated the capability of returning to Earth and being reused.

“The vehicle was designed for a mission duration of about 270 days,” said Lt. Col. Tom McIntyre, the X-37B program manager in an Air Force statement. “We knew from post-flight assessments from the first mission that OTV-1 could have stayed in orbit longer. So one of the goals of this mission was to see how much farther we could push the on-orbit duration.”

The 11,000 pound state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

“With the retirement of the space shuttle fleet, the X-37B OTV program brings a singular capability to space technology development,” McIntyre said. “The return capability allows the Air Force to test new technologies without the same risk commitment faced by other programs”

Among the cutting-edge technologies tested were the auto de-orbit capability, thermal protection tiles, and high-temperature components and seals.

“The X-37B’s advanced thermal protection and solar power systems, and environmental modeling and range safety technologies are just some of the technologies being tested,” said McIntyre. “Each mission helps us continue to advance the state-of-the-art in these areas.”


Image caption: Blastoff of the X-37B Orbital Test Vehicle (OTV) atop an Atlas V rocket on March 5, 2011 from Space Launch Complex-41 (SLC-41) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

OTV-1 may lift off as early as October 2012 from Cape Canaveral.

“We look forward to the second launch of OTV-1 later this year and the opportunity to demonstrate that the X-37B is an affordable space vehicle that can be repeatedly reused,” said Paul Rusnock, Boeing vice president of Government Space Systems.

Read my X-37B OTV-2 pre-launch report and see my up-close photo album of the Atlas launch pad – here

Ken Kremer

Upcoming First Human Mission to Chinese Space Station May Include Female Taikonaut

An artist's rendering of the Tiangong-1 module, China's space station, which was launched to space in September, 2011. To the right is a Shenzhou spacecraft, preparing to dock with the module. Image Credit: CNSA
An artist's rendering of the Tiangong-1 module, China's space station, which was launched to space in September, 2011. To the right is a Shenzhou spacecraft, preparing to dock with the module. Image Credit: CNSA

[/caption]

The Chinese government has announced they will launch three taikonauts sometime in mid-June 2012, on the first manned mission to dock with their orbiting experimental module, and confirmed again that the crew might include China’s first female space traveler. A rocket carrying the Shenzhou 9 spacecraft was moved to a launch pad in China’s desert northwest over the weekend, China’s Xinhua News Agency reported.

The three-member crew will dock with and live inside the Tiangong 1 (or Heavenly Palace-1) orbital module launched last year. No word on how long the mission will be. We reported in March that the crew possibly could include a woman, and Niu Hongguang, deputy commander-in-chief of the country’s manned space program, said the final selection would depend on conditions nearer the time of launch.

This type of late announcement of the crew is not unprecedented – in the past, China’s space program has named the crew for the next mission just a few days before launch.

From previous reports, China picked two women and five men from thousands of candidates to become the second batch of seven astronaut trainees in 2010. Both of the women were former fighter jet pilots.

“The manned space program would not be complete without women’s participation,” Jiao Weixin, an earth and space scientist with Peking University, was quoted as saying.

China launched their first human mission in 2003. They have launched two other human missions, one of which included a space walk in 2008.

Zhou Jianping, chief designer of China’s human space program, said that the mission will be “a significant step in China’s space history”, because it’s the first time for a Chinese spacecraft to send astronauts into a space lab, instead of just carrying them to circle the Earth as in the previous three manned missions, the Chinese Daily reported.

During the flight, one crew member will remain aboard the Shenzhou 9 “as a precautionary measure in case of emergency” while the others enter Tiangong 1, Xinhua said.

We’ll keep you updated on any announcements of the crew or when the launch will take place.

The Chinese government last year announced a 5-year plan for space exploration that includes collecting samples from the Moon by 2016.

Sources: China Daily, Xinhua

Shuttle Enterprise Lands on the Deck of Intrepid in Manhattan

NASA’s Space Shuttle Enterprise lowered by crane onto the deck of the Intrepid on June 6, 2012. After transiting the NYC Skyline on a barge on June 3 and June 6, Enterprise arrive at her permanent new home and was hoisted onto the flight deck of the Intrepid Sea, Air and Space Museum. Credit: Ken Kremer

[/caption]
NASA’s Space Shuttle Enterprise magnificently completed her final mission by making a historic landing on the deck of a retired aircraft carrier berthed in Manhattan- the Intrepid – as the first and only space shuttle to ever do so on a once-in-history spectacle befitting the Big Apple.

But instead of a piloted landing by air, Enterprise arrived afloat, atop a seagoing barge and was then hoisted and gently lowered for touch down on top of the Intrepid’s flight deck by a humongous seagoing crane accompanying the shuttle on a second barge at 4 p.m. EDT on Wednesday, June 6.

The Intrepid Sea, Air and Space Museum is the permanent new home of the Enterprise, NASA’s prototype shuttle – built in 1976 – that was used for a series of critical atmospheric approach and landing tests in the late 1970’s and that paved the way for building all the five shuttle orbiters that followed and the first launch by the Columbia in April 1981.

Enterprise transits the NYC skyline and the Empire State Building and arrives by barge at the Intrepid on June 6, 2012. Enterprise was then hoisted onto the flight deck of the Intrepid Sea, Air and Space Museum. Credit: Ken Kremer

Enterprise embarked on a long and winding road to reach the Intrepid which I witnessed at points along the way. First she flew piggyback on top of NASA’s specially modified 747 Jumbo Jet from Dulles International Airport for a triumphant fly over tour of the New York Metropolitan region on April 27 before touching down at John F. Kennedy (JFK) International Airport.

Enterprise had been on public display at the Smithsonian’s National Air & Space Museum Annex in Virginia since 2003.

Then the shuttle took a two day cruise on June 3 and June 6, towed by a tugboat; departing from JFK on June 3 and voyaging through New York Harbor to the Statue of Liberty before making an intermediate stop at a port in Bayonne, New Jersey to switch to another larger barge. Along the way the orbiter suffered some minor damage to the right wing tip when wind gusts caused her to scrape against a railroad bridge.

After a 24 hour postponement due to poor weather, a repaired shuttle Enterprise at last put out to sea again on Wednesday morning, June 6, at about 9:45 a.m. for the very last time on the final leg of her thrilling final voyage.

A giant Weeks Marine crane hoist Enterprise off the barge and onto the flight deck of the Intrepid Sea, Air and Space Museum on June 6, 2012. Credit: Ken Kremer

Enterprise took one last beauty ride past the Statue of Liberty, Ground Zero and the Freedom Tower before sailing North up the Hudson River and past the Empire State Building on Manhattan’s West Side; enjoyed by throngs of onlookers and space enthusiasts lining the shores of New York and New Jersey.

She arrived at the Intrepid, located at Pier 86 at 46th Street and 12th Avenue, at about 1 p.m. accompanied by a flotillia of police and water spraying fire boats, ferries , sailboats and pleasure craft.

The giant lifting crane was maneuvered into position in between the Intrepid and Enterprise.

Over the next three hours, technicians carefully attached a yellow steel harness sling to the 150,000 pound orbiter at four points, two in the front and two in the rear. This was the same sling used to lift Enterprise onto and off the back of the 747 jet.

The 240 foot crane used to hoist Enterprise is the same one used to lift the US Airways jet piloted by hero captain Chesley “Sully” Sullenberger out of the Hudson after an emergency water landing near the same exact spot in January 2009 – where all the passengers and crew on board miraculously survived.

Sailing by Statue of Liberty on June 6, 2012. The space shuttle Enterprise, atop a barge, passes the Statue of Liberty in New York on its way to the Intrepid Sea, Air and Space Museum where it will be permanently displayed. Photo Credit: NASA/Bill Ingalls

The dramatic pluck of the 75 ton Enterprise off the Weeks Marine barge started around 3:45 p.m. as the winds were gently gusting. Enterprise was raised some 75 feet and rotated nearly 180 degrees so her nose faced directly towards the Hudson River and the beautiful city and cliffs of Weehauken, in Hudson County, New Jersey, where I was watching and photographing from. Enterprise came to rest with wheels down around 4:02 p.m., pretty much exactly on time.

Finally the yellow sling was detached around 6 p.m. and Enterprise was dramatically exposed on the deck of the Intrepid in a beautiful sight for all to see.

But that gorgeous deck view didn’t last long because the museum quickly covered Enterprise with an inflatable pavilion to protect the delicate and precious orbiter from the weather and flying debris – and gawkers looking for free.

To see the Enterprise in all her glory now, you’ll have to pay $22 for admission to the museum and an extra $6 for the shuttle – or check my deck top photo below.

Dramatic rare view of exposed Enterprise at rest on the flight deck of the Intrepid - hoisting sling removed after June 6 landing. Soon thereafter the shuttle was covered with a temporary inflatable pavilion for protection - and no open view. Nose faces exactly to Weehauken, New Jersey. Credit: Ken Kremer

The museum is hastily constructing a temporary, climate controlled “Space Shuttle Pavilion” to house Enterprise. She will be open for public display starting on July 19.

Enterprise is named after the fictional starship in the world renowned and beloved TV science fiction series – “Star Trek”.

Ken Kremer

Humans on Mars by 2023?

Artist concept of the Mars One lander, a variant on the SpaceX Dragon. Credit: Mars One

Reality TV goes to Mars! Dutch entrepreneur Bas Lansdorp is leading a group visionaries and businesspeople who want to send four humans to Mars by 2023, and they say they can achieve their goal at an estimated cost of $6 billion USD. How can they do it? By building it into a global media spectacle. And oh, by the way, this will be a one-way trip.

“Who would be able to look away from an adventure such as this one?” asks Lansdorp in his bio on the Mars One website. “Who wouldn’t be compelled to watch, talk about, get involved in the biggest undertaking mankind has ever made? The entire world will be able to follow this giant leap from the start; from the very first astronaut selections to the established, independent village years later. The media focus that comes with the public’s attention opens pathways to sponsors and investors.”

As far as the one-way mission (a concept that Universe Today has written about extensively) the Mars One website notes, “this is no way excludes the possibility of a return flight at some point in the future.”

[/caption]

The difference between this mission and the one proposed by Jim McLane back in 2008 is that McLane wanted to send just one person to Mars.

However, the Mars One group says that once the first trip is successful and Mars becomes developed, it will be “much easier to build the returning rocket there.”

In a Q&A on reddit, Lansdorp said the biggest challenge will be financing.

“We have estimated, and discussed with our suppliers that it will cost about 6 billion US$ to get the first crew of four people to Mars. We plan to organize the biggest media event ever around our mission. When we launch people to Mars and when they land, the whole world will watch. After that a lot of people will be very interested to see how ‘our people on Mars’ are doing.”

But the big challenge is that the biggest expenditures will be building the equipment before they send people to Mars. “This is why we are building a very strong technical case now. If we can convince sponsors and investors that this will really happen, then we believe that we can convince them to help us finance it,” Lansdorp said.

As far as technologies, Mars One expects to use a SpaceX Falcon 9 Heavy as a launch vehicle, a transit vehicle/space habitat built by Thales Alenia Space, a variant on the SpaceX Dragon as the lander, an inflatable habitat built by ILC Dover, a rover vehicle by MDA Space Missions, and Mars spacesuits made by Paragon.

The project website says “no new technologies” will be needed, but does any space agency or company really have a good handle on providing providing ample air, oxygen, energy, food and water for extended (lifetimes?) periods of time? Instead, the website provides more details on FAQ’s like, What will the astronauts do on Mars? Why should we go to Mars? Is it safe to live on Mars? How does the Mars base communicate with Earth? And the Mars One team emphasizes that this can be done with current technology. However, no one really knows how to land large payloads on Mars yet, so at least some development will be required there.

Who will go? Later this year they will begin to take applications and eventually 40 people will take part in a rigid, decade-long training program (which sounds very expensive) where the ‘contestants” will essentially be voted off the island to get to the final four astronauts. The selection and training process will be broadcast via television and online to public, with viewers voting on the final selected four.

It’s an intriguing proposition, but one filled with technological hurdles. I’ve just finished reading Ben Bova’s “Mars,” so I’m also thinking the Mars One folks will need to be on the lookout for micrometeorite swarms.

Mars One website.

Repaired Space Shuttle Enterprise to set Sail on Final Voyage

NASA’s Space Shuttle Enterprise suffered minor damage to a wingtip on June 3, during the initial stages of her seagoing journey to her new home at the Intrepid Sea, Air and Space Museum. Inset shows location of the damage, which has since been repaired. Credit: Ken Kremer

[/caption]

Enterprise, post boo-boo and postponed a day by rainy weather, should arrive at the Intrepid today !

The final leg of the final voyage of Space Shuttle Enterprise is due to conclude on Wednesday, June 6 with a journey by barge up the Hudson River on Manhattan’s West Side to her permanent new home at the Intrepid Sea, Air and Space Museum.

And it can’t come soon enough. As might be expected, Barge rides for Space Shuttles can be both visually stunning and downright perilous.

And for the initial seagoing leg of Enterprise’s journey on Sunday, June 3, it was a mixture of both – mostly thrilling (as I can attest) plus a few bad moments

During Sunday’s transit of Enterprise across the New York skyline, the shuttle suffered some minor damage to the wing tip (see photo above) soon after she set sail.

According to collectSpace.com, Enterprise grazed a New York railroad bridge when wind gusts caused the shuttle loaded aboard the Weeks Marine barge to veer off course.

“Mother nature did not smile on us. Just as the barge entered the railroad bridge, the wind caught it and pushed the right wing into the bridge abutment. Fortunately, the damage seems to be cosmetic, limited to the foam that covered the wingtip. No structure or mechanisms appear to have been damaged,” wrote Dennis Jenkins who was aboard the barge with Enterprise.

Winds gusts caused Space Shuttle Enterprise to grazed a bridge and suffer minor damage to a wingtip on June 3, during the initial stages of her seagoing journey on a Weeks marine barge to her new home at the Intrepid Sea, Air and Space Museum. Credit: Ken Kremer

The remainder of the voyage went off without a hitch and was enjoyed by throngs of onlookers including myself.

I caught some shots of the damage late in the day as the crew from Weeks Marine was towing Enterprise into port for the night.
Workers have already repaired Enterprise, the Intrepid said in a statement.

On Wednesday morning, Enterprise is due to set sail atop a barge from Bayonne, New Jersey from where she docked on Sunday, June 3 on the initial leg of her seagoing journey to her permanent new home.

Enterprise is scheduled to depart from Bayonne at 10:15 am and then make her way North passing the Statue of Liberty at approximately 10:52 am and Ground Zero at about 11:30 am says the Intrepid. She will reach the Museum at around 12:30 pm and be hoisted onto the flight deck later in the day – all of which is weather permitting.

On July 19, Enterprise will be opened to public viewing

Ken Kremer

Shuttle Enterprise Transits NYC Skyline on a Barge

NASA’s Space Shuttle Enterprise Transits the NYC Skyline on a Barge on June 3, 2012. Enterprise completed the first leg of a twp part watery journey to her new home at the Intrepid Sea, Air and Space Museum. Credit: Ken Kremer

[/caption]

On Sunday, June 3, throngs of New Yorkers, Jerseyites and more witnessed one of those ultra rare astronomical events – The Space Shuttle Enterprise’s Transit of the NYC Skyline !

NASA’s Space Shuttle Enterprise completed the first leg of her final voyage – a seagoing journey by barge from John F. Kennedy (JFK) International Airport across New York Harbor and to her final resting place at the Intrepid Sea, Air and Space Museum on the Hudson River on Manhattan’s West Side.

To prepare for the watery journey, Enterprise was hoisted by crane onto the Weeks Marine barge on Saturday, June 2. On Sunday, the barge with Enterprise firmly in place was moved by tugboat out of JFK and along the shores of Queens and Brooklyn. It passed by the Marine Parkway-Gil Hodges Memorial Bridge at about 3:30 p.m. and Coney Island at about 4:19 p.m.

NASA’s Space Shuttle Enterprise floats on a barge in front of the NYC Skyline on June 3, 2012. Pleasure craft sail nearby in New York Harbor. Credit: Ken Kremer

I watched Enterprise’s voyage with a big crowd of excited onlookers from a breathtaking north facing lookout on Staten Island towards southern Manhattan’s indelible skyscrapers.

Enterprise on a barge passes under the Verrazano Narrows Bridge as cars speed by on the bridge roadways above on June 3, 2012. Credit: Ken Kremer

At last the orbiter approached shortly after 5 p.m. along with a small flotilla of guard and guide ships. She passed gracefully under the gorgeous and lengthy span of the Verrazano Narrows Bridge and past the humongous pylons, right on time at around 5:30 p.m. – as enormous Cruise Ships swarming with thousands of agog passengers steamed by the comparatively tiny space shuttle. Sailboats and pleasure craft also sailed close by for exquisite views.

Enterprise put on a fantastic, once-in-a-lifetime spectacle, enjoyed by the gathered multitudes all along the route and she sailed past Manhattan’s shore and skyscrapers and on towards the Statue of Liberty in New York Harbor.

Ultimately, Enterprise docked late in the evening at Port Elizabeth, Bayonne, New Jersey – at a different location than had been announced – with a direct view of the Statue of Liberty and the southern tip of the gorgeous Manhattan skyline, home to the Freedom Tower currently in the final stages of construction and now the tallest building in New York City.

Enterprise on a barge passes under the Verrazano Narrows Bridge as huge Cruise ship steams by with passengers agog on June 3, 2012. Credit: Ken Kremer

Enterprise suffered some minor damage to the wing tip during the initial stages of the journey – see separate report.

Inclement NYC weather has postponed the second part of the two part barge journey to the Intrepid museum from Tuesday tentatively to Wednesday, June 6. Enterprise will again journey past the Statue of Liberty and then up the Hudson River to her new home at the Intrepid, where she will be hoisted by crane onto the flight deck of the aircraft carrier – when the weather safely allows.

Enterprise approaches the Statue of Liberty on June 3, 2012. Credit: Ken Kremer

Millions of gawkers watched as Enterprise arrived in New York on April 27, loaded on the back of NASA’s specially modified 747 Jumbo Jet for her very last flight from the Smithsonian’s National Air and Space Museum at Dulles International Airport.

Read more about the April 27 flyover arrival of Enterprise in NYC, in my article here:

The Enterprise was a prototype shuttle and the first of NASA’s Space Shuttles orbiters to be built and was used in landmark approach and landing tests that paved the way for the entire Shuttle fleet and the first shuttle launch in 1981 from the Kennedy Space Center in Florida.

Enterprise docked in Bayonne, New Jersey on June 3, 2012 in view of the Statue of Liberty. Inclement weather postpones final barge trip to the Intrepid until tentatively June 6.
Credit: Ken Kremer

Enterprise is named after the fictional starship in the world renowned and beloved TV science fiction series – “Star Trek”.

The Intrepid museum will open Enterprise to public viewing starting in mid- July.

Ken Kremer