Calling all Skywatching and Space Fans ! This is a great week for observing the International Space Station (ISS), swiftly crossing the evening nighttime sky.
All this week from Monday thru Saturday, folks all across vast portions of the United States and Canada will be treated to fabulous viewings of the International Space Station. And at very convenient viewing times in the early evening, after dinner and in prime time.
From Maine to Vancouver, from Ohio to Texas, from Florida to New Mexico – many of you will be in for a rather pleasurable ISS treat.
Of course the exact viewing times, days, elevations, durations and directions varies greatly depending on your exact location – and clear skies. And the viewing parameters change daily.
This evening, Monday April 9, I shot a few 20 to 30 second exposures as the ISS was speeding past at about a 30 degree elevation. But the best viewings at far higher elevations are yet to come the remainder of this week.
The International Space Station is the brightest manmade object in the night sky and even brighter than Venus depending on orbital mechanics. Only our Sun is brighter. Since Venus is an evening observing target this week, maybe you’ll even be lucky to see the ISS seem to pass close by that hellishly hot planet.
Have you ever looked at the ISS hurtling overhead ?
Take some shots and send them to Ken to post here at Universe Today.
And remember, 6 Humans from the US, Russia and the Netherlands are currently residing aboard the ISS, conducting science research and sending back gorgeous shots of all of us back here on Earth.
Here’s an interesting illustration showing the size comparison of a Space Shuttle to a Soyuz vehicle, shared on Twitter by NASA astronaut Rick Mastracchio (@AstroRM). Amazing to think that three flight-suited astronauts are able to fit inside a Soyuz and have life support for up to a month! (Although I’m sure most hope they won’t have to stay that long.)
Compare the 7-person capacity, 65.8 cubic meter crew cabin of an orbiter to the 3-person, 10 cubic meter space inside a Soyuz and one can imagine how cozy it must get during trips to and from the Station.
Rick is currently in training for a Soyuz flight to the ISS in November of next year as a member of the Expedition 38 crew, at which time he’ll get plenty of first-hand experience with the precise interior measurements of a Soyuz.
Thanks to Rick for sharing this! You can find out more about the Soyuz vehicles here, and check out the full source publication MIR Hardware Heritage (1995) by David S. F. Portree for Johnson Space Center.
As of today, NASA’s car sized Curiosity rover has reached the halfway point in her 352 million mile (567 million km) journey to Mars – No fooling on April 1, 2012.
It’s T Minus 126 days until Curiosity smashes into the Martian atmosphere to brave the hellish “6 Minutes of Terror” – and, if all goes well, touch down inside Gale Crater at the foothills of a Martian mountain taller than the tallest in the continental United States – namely Mount Rainier.
Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.
The Curiosity Mars Science laboratory (MSL) rover was launched from sunny Florida on Nov. 26, 2011 atop a powerful Atlas V rocket for an 8.5 month interplanetary cruise from the Earth to Mars and is on course to land on the Red Planet early in the morning of Aug. 6, 2012 EDT and Universal Time (or Aug. 5 PDT).
On March 26, engineers at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., successfully ignited the spacecrafts thrusters for the second of six planned trajectory correction maneuvers (TCM’s) to adjust the robot’s flight path during the long journey to achieve a pinpoint landing beside the Martian mountain.
“It is satisfying to get the second maneuver under our belts and know we are headed in the right direction,” said JPL’s Erisa Hines, systems lead for the maneuver. “The cruise system continues to perform very well.”
This maneuver was one-seventh as much as the flight’s first course adjustment, on Jan. 11. The cruise stage is equipped with eight thrusters grouped into two sets of four that fire as the entire spacecraft spins at two rotations per minute. The thruster firings change the velocity of the spacecraft in two ways – along the direction of the axis of rotation and also perpendicular to the axis. Altogether there were more than 60 pulsing maneuvers spaced about 10 seconds apart.
“The purpose is to put us on a trajectory to the point in the Mars atmosphere where we need to be for a safe and accurate landing,” said Mau Wong, maneuver analyst at JPL.
Marking another crucial milestone, the flight team has also powered up and checked the status of all 10 MSL science instruments – and all are nominal.
“The types of testing varied by instrument, and the series as whole takes us past the important milestone of confirming that all the instruments survived launch,” said Betina Pavri of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., science payload test engineer for the mission. “These checkouts provide a valuable calibration and characterization opportunity for the instruments, including camera dark images and a measurement of zero pressure in the vacuum of space for the rover weather station’s pressure sensor.”
Ever since it was the first of MSL’s science instruments to be switched on three months ago, the Radiation Assessment Detector (RAD) has been collecting valuable measurements about the potentially lethal radiation environment in space and acting as a stunt double for determining the potential health effects on future human travelers to Mars.
RAD has been collecting data on the recent wave of extremely powerful solar flares erupting from the sun.
Curiosity has another 244 million kilometers to go over the next 4 months.
All hopes ride on Curiosity as America’s third and last generation of Mars rovers.
Devastating and nonsensical funding cuts to NASA’s Planetary Science budget have forced NASA to cancel participation in the 2018 ExoMars lander mission that had been joint planned with ESA, the European Space Agency. ESA now plans to forge ahead with Russian participation.
“As you can imagine, all works comes to a stop on the Space Station when the toilet breaks,” said astronaut Don Pettit, known as Mr. Fixit among the astronaut corps. In this latest edition of “Inside the International Space Station,” Expedition 30 astronauts Dan Burbank and Don Pettit discuss their glamorous life in space of having to fix the toilet, upgrade their computers, and take out the garbage. This sounds just like living on Earth, but there are a few orbital twists for doing those things in space. And of course Pettit nails it with his vivid descriptions.
A combined team of American and Canadian engineers has taken a major first step forward by successfully applying new, first-of-its-kind robotics research conducted aboard the International Space Station (ISS) to the eventual repair and refueling of high value orbiting space satellites, and which has the potential to one day bring about billions of dollars in cost savings for the government and commercial space sectors.
Gleeful researchers from both nations shouted “Yeah !!!” – after successfully using the Robotic Refueling Mission (RRM) experiment – bolted outside the ISS- as a technology test bed to demonstrate that a remotely controlled robot in the vacuum of space could accomplish delicate work tasks requiring extremely precise motion control. The revolutionary robotics experiment could extend the usable operating life of satellites already in Earth orbit that were never even intended to be worked upon.
“After dedicating many months of professional and personal time to RRM, it was a great emotional rush and a reassurance for me to see the first video stream from an RRM tool,” said Justin Cassidy in an exclusive in-depth interview with Universe Today. Cassidy is RRM Hardware Manager at the NASA Goddard Spaceflight Center in Greenbelt, Maryland.
And the RRM team already has plans to carry out even more ambitious follow on experiments starting as soon as this summer, including the highly anticipated transfer of fluids to simulate an actual satellite refueling that could transfigure robotics applications in space – see details below !
All of the robotic operations at the station were remotely controlled by flight controllers from the ground. The purpose of remote control and robotics is to free up the ISS human crew so they can work on other important activities and conduct science experiments requiring on-site human thought and intervention.
Over a three day period from March 7 to 9, engineers performed joint operations between NASA’s Robotic Refueling Mission (RRM) experiment and the Canadian Space Agency’s (CSA) robotic “handyman” – the Dextre robot. Dextre is officially dubbed the SPDM or Special Purpose Dexterous Manipulator.
On the first day, robotic operators on Earth remotely maneuvered the 12-foot (3.7 meter) long Dextre “handyman” to the RRM experiment using the space station’s Canadian built robotic arm (SSRMS).
Dextre’s “hand” – technically known as the “OTCM” – then grasped and inspected three different specialized satellite work tools housed inside the RRM unit . Comprehensive mechanical and electrical evaluations of the Safety Cap Tool, the Wire Cutter and Blanket Manipulation Tool, and the Multifunction Tool found that all three tools were functioning perfectly.
“Our teams mechanically latched the Canadian “Dextre” robot’s “hand” onto the RRM Safety Cap Tool (SCT). The RRM SCT is the first on orbit unit to use the video capability of the Dextre OTCM hand,” Cassidy explained.
“At the beginning of tool operations, mission controllers mechanically drove the OTCM’s electrical umbilical forward to mate it with the SCT’s integral electronics box. When the power was applied to that interface, our team was able to see that on Goddard’s large screen TVs – the SCT’s “first light” video showed a shot of the tool within the RRM stowage bay (see photo).
“Our team burst into a shout out of “Yeah!” to commend this successful electrical functional system checkout.”
Dextre then carried out assorted tasks aimed at testing how well a variety of representative gas fittings, valves, wires and seals located on the outside of the RRM module could be manipulated. It released safety launch locks and meticulously cut two extremely thin satellite lock wires – made of steel – and measuring just 20 thousandths of an inch (0.5 millimeter) in diameter.
“The wire cutting event was just minutes in duration. But both wire cutting tasks took approximately 6 hours of coordinated, safe robotic operations. The lock wire had been routed, twisted and tied on the ground at the interface of the Ambient Cap and T-Valve before flight,” said Cassidy.
This RRM exercise represents the first time that the Dextre robot was utilized for a technology research and development project on the ISS, a major expansion of its capabilities beyond those of robotic maintenance of the massive orbiting outpost.
Video Caption: Dextre’s Robotic Refueling Mission: Day 2. The second day of Dextre’s most demanding mission wrapped up successfully on March 8, 2012 as the robotic handyman completed his three assigned tasks. Credit: NASA/CSA
Altogether the three days of operations took about 43 hours, and proceeded somewhat faster than expected because they were as close to nominal as could be expected.
“Days 1 and 2 ran about 18 hours,” said Charles Bacon, the RRM Operations Lead/Systems Engineer at NASA Goddard, to Universe Today. “Day 3 ran approximately 7 hours since we finished all tasks early. All three days baselined 18 hours, with the team working in two shifts. So the time was as expected, and actually a little better since we finished early on the last day.”
“For the last several months, our team has been setting the stage for RRM on-orbit demonstrations,” Cassidy told me. “Just like a theater production, we have many engineers behind the scenes who have provided development support and continue to be a part of the on-orbit RRM operations.”
“At each stage of RRM—from preparation, delivery, installation and now the operations—I am taken aback by the immense efforts that many diverse teams have contributed to make RRM happen. The Satellite Servicing Capabilities Office at NASA’s Goddard Space Flight Center teamed with Johnson Space Center, Kennedy Space Center (KSC), Marshall Space Flight Center and the Canadian Space Agency control center in St. Hubert, Quebec to make RRM a reality.”
“The success of RRM operations to date on the International Space Station (ISS) using Dextre is a testament to the excellence of NASA’s many organizations and partners,” Cassidy explained.
The three day “Gas Fittings Removal task” was an initial simulation to practice techniques essential for robotically fixing malfunctioning satellites and refueling otherwise nominally operating satellites to extend to hopefully extend their performance lifetimes for several years.
Ground-based technicians use the fittings and valves to load all the essential fluids, gases and fuels into a satellites storage tanks prior to launch and which are then sealed, covered and normally never accessed again.
“The impact of the space station as a useful technology test bed cannot be overstated,” says Frank Cepollina, associate director of the Satellite Servicing Capabilities Office (SSCO) at NASA’s Goddard Space Flight Center in Greenbelt, Md.
“Fresh satellite-servicing technologies will be demonstrated in a real space environment within months instead of years. This is huge. It represents real progress in space technology advancement.”
Four more upcoming RRM experiments tentatively set for this year will demonstrate the ability of a remote-controlled robot to remove barriers and refuel empty satellite gas tanks in space thereby saving expensive hardware from prematurely joining the orbital junkyard.
The timing of future RRM operations can be challenging and depends on the availability of Dextre and the SSRMS arm which are also heavily booked for many other ongoing ISS operations such as spacewalks, maintenance activities and science experiments as well as berthing and/or unloading a steady stream of critical cargo resupply ships such as the Progress, ATV, HTV, Dragon and Cygnus.
Flexibility is key to all ISS operations. And although the station crew is not involved with RRM, their activities might be.
“While the crew itself does not rely on Dextre for their operations, Dextre ops can indirectly affect what the crew can or can’t do,” Bacon told me. “For example, during our RRM operations the crew cannot perform certain physical exercise activities because of how that motion could affect Dextre’s movement.”
Here is a list of forthcoming RRM operations – pending ISS schedule constraints:
Refueling (summer 2012) – After Dextre opens up a fuel valve that is similar to those commonly used on satellites today, it will transfer liquid ethanol into it through a sophisticated robotic fueling hose.
Thermal Blanket Manipulation (TBD 2012)- Dextre will practice slicing off thermal blanket tape and folding back a thermal blanket to reveal the contents underneath.
Electrical Cap Removal (TBD 2012)- Dextre will remove the caps that would typically cover a satellite’s electrical receptacle.
http://youtu.be/LboVN38ZdgU
RRM was carried to orbit inside the cargo bay of Space Shuttle Atlantis during July 2011 on the final shuttle mission (STS-135) of NASA’s three decade long shuttle program and then mounted on an external work platform on the ISS backbone truss by spacewalking astronauts. The project is a joint effort between NASA and CSA.
“This is what success is all about. With RRM, we are truly paving the way for future robotic exploration and satellite servicing,” Cassidy concluded.
…….
March 24 (Sat): Free Lecture by Ken Kremer at the New Jersey Astronomical Association, Voorhees State Park, NJ at 830 PM. Topic: Atlantis, the End of Americas Shuttle Program, RRM, Orion, SpaceX, CST-100 and the Future of NASA Human & Robotic Spaceflight
The first student selected photos of the Moon’s surface snapped by NASA’s new pair of student named Lunar Mapping orbiters – Ebb & Flow – have just been beamed back and show an eerie view looking back to the Home Planet – and all of Humanity – barely rising above the pockmarked terrain of the mysterious far side of our nearest neighbor in space.
Congratulations to Americas’ Youth on an outstanding and inspiring choice !!
The student photo is reminiscent of one of the iconic images of Space Exploration – the first full view of the Earth from the Moon taken by NASA’s Lunar Orbiter 1 back in August 1966 (see below).
The images were taken in the past few days by the MoonKAM camera system aboard NASA’s twin GRAIL spacecraft currently circling overhead in polar lunar orbit, and previously known as GRAIL A and B. The formation-flying probes are soaring over the Moon’s north and south poles.
The nearly identical ships were rechristened as Ebb and Flow after Fourth grade students from the Emily Dickinson Elementary School in Bozeman, Mont., won the honor to rename both spacecraft by submitting the winning entries in a nationwide essay competition sponsored by NASA.
“The Bozeman 4th graders had the opportunity to target the first images soon after our science operations began,” said Maria Zuber, GRAIL principal investigator of the Massachusetts Institute of Technology in Cambridge, Mass., to Universe Today.
“It is impossible to overstate how thrilled and excited we are !”
The initial packet of some 66 student-requested digital images from the Bozeman kids were taken by the Ebb spacecraft from March 15-17 and downlinked to Earth March 20. They sure have lots of exciting classwork ahead analyzing all those lunar features !
“GRAIL’s science mapping phase officially began on March 6 and we are collecting science data,” Zuber stated.
GRAIL’s science goal is to map our Moon’s gravity field to the highest precision ever. This will help deduce the deep interior composition, formation and evolution of the Moon and other rocky bodies such as Earth and also determine the nature of the Moon’s hidden core.
Engaging students and the public in science and space exploration plays a premier role in the GRAIL project. GRAIL is NASA’s first planetary mission to carry instruments – in the form of cameras – fully dedicated to education and public outreach.
Over 2,700 schools in 52 countries have signed up to participate in MoonKAM.
5th to 8th grade students can send suggestions for lunar surface targets to the GRAIL MoonKAM Mission Operations Center at UC San Diego, Calif. Students will use the images to study lunar features such as craters, highlands, and maria while also learning about future landing sites.
NASA calls MoonKAM – “The Universe’s First Student-Run Planetary Camera”. MoonKAM means Moon Knowledge Acquired by Middle school students.
The MoonKAM project is managed by Dr Sally Ride, America’s first female astronaut.
“What might seem like just a cool activity for these kids may very well have a profound impact on their futures,” Ride said in a NASA statement. “The students really are excited about MoonKAM, and that translates into an excitement about science and engineering.”
“MoonKAM is based on the premise that if your average picture is worth a thousand words, then a picture from lunar orbit may be worth a classroom full of engineering and science degrees,” says Zuber. “Through MoonKAM, we have an opportunity to reach out to the next generation of scientists and engineers. It is great to see things off to such a positive start.”
Altogether there are eight MoonKAM cameras aboard Ebb and Flow – one 50 mm lens and three 6 mm lenses. Each probe is the size of a washing machine and measures just over 3 feet in diameter and height.
Snapping the first images was delayed a few days by the recent series of powerful solar storms.
“Due to the extraordinary intensity of the storms we took the precaution of turning off the MoonKAMs until the solar flux dissipates a bit,” Zuber told me.
“GRAIL weathered the storm well. The spacecraft and instrument are healthy and we are continuing to collect science data.”
The washing-machine sized probes have been flying in tandem around the Moon since entering lunar orbit in back to back maneuvers over the New Year’s weekend. Engineers spent the past two months navigating the spaceship duo into lower, near-polar and near-circular orbits with an average altitude of 34 miles (55 kilometers) that are optimized for science data collection and simultaneously checking out the spacecraft systems.
Ebb and Flow were launched to the Moon on September 10, 2011 aboard a Delta II rocket from Cape Canaveral, Florida and took a circuitous 3.5 month low energy path to the moon to minimize the overall costs.
The Apollo astronauts reached the Moon in just 3 days. NASA’s next generation Orion space capsule currently under development will send American astronauts back to lunar orbit by 2021 or sooner.
NASA has just granted an extension to the GRAIL mission. Watch for my follow-up report detailing the expanded science goals of GRAIL’s extended lunar journey.
…….
March 24 (Sat): Free Lecture by Ken Kremer at the New Jersey Astronomical Association, Voorhees State Park, NJ at 830 PM. Topic: Atlantis, the End of Americas Shuttle Program, Orion, SpaceX, CST-100, Moon and the Future of NASA Human & Robotic Spaceflight
NASA is on course to make the highest leap in human spaceflight in nearly 4 decades when an unmanned Orion crew capsule blasts off from Cape Canaveral, Fla., on a high stakes, high altitude test flight in early 2014.
A new narrated animation (see below) released by NASA depicts the planned 2014 launch of the Orion spacecraft on the Exploration Flight Test-1 (EFT-1) mission to the highest altitude orbit reached by a spaceship intended for humans since the Apollo Moon landing Era.
Orion is NASA’s next generation human rated spacecraft and designed for missions to again take humans to destinations beyond low Earth orbit- to the Moon, Mars, Asteroids and Beyond to deep space.
Orion Video Caption – Orion: Exploration Flight Test-1 Animation (with narration by Jay Estes). This animation depicts the proposed test flight of the Orion spacecraft in 2014. Narration by Jay Estes, Deputy for flight test integration in the Orion program.
Lockheed Martin Space Systems is making steady progress constructing the Orion crew cabin that will launch atop a Delta 4 Heavy booster rocket on a two orbit test flight to an altitude of more than 3,600 miles and test the majority of Orion’s vital vehicle systems.
The capsule will then separate from the upper stage, re-enter Earth’s atmosphere at a speed exceeding 20,000 MPH, deploy a trio of huge parachutes and splashdown in the Pacific Ocean off the west coast of California.
Lockheed Martin is responsible for conducting the critical EFT-1 flight under contract to NASA.
Orion will reach an altitude 15 times higher than the International Space Station (ISS) circling in low orbit some 250 miles above Earth and provide highly valuable in-flight engineering data that will be crucial for continued development of the spaceship.
“This flight test is a challenge. It will be difficult. We have a lot of confidence in our design, but we are certain that we will find out things we do not know,” said NASA’s Orion Program Manager Mark Geyer.
“Having the opportunity to do that early in our development is invaluable, because it will allow us to make adjustments now and address them much more efficiently than if we find changes are needed later. Our measure of success for this test will be in how we apply all of those lessons as we move forward.”
Lockheed Martin is nearing completion of the initial assembly of the Orion EFT-1 capsule at NASA’s historic Michoud Assembly Facility (MAF) in New Orleans, which for three decades built all of the huge External Fuel Tanks for the NASA’s Space Shuttle program.
In May, the Orion will be shipped to the Kennedy Space Center in Florida for final assembly and eventual integration atop the Delta 4 Heavy rocket booster and launch from Space Launch Complex 37 at nearby Cape Canaveral. The Delta 4 is built by United Launch Alliance.
The first integrated launch of an uncrewed Orion is scheduled for 2017 on the first flight of NASA’s new heavy lift rocket, the SLS or Space Launch System that will replace the now retired Space Shuttle orbiters
Continued progress on Orion, the SLS and all other NASA programs – manned and unmanned – is fully dependent on the funding level of NASA’s budget which has been significantly slashed by political leaders of both parties in Washington, DC in recent years.
…….
March 24 (Sat): Free Lecture by Ken Kremer at the New Jersey Astronomical Association, Voorhees State Park, NJ at 830 PM. Topic: Atlantis, the End of Americas Shuttle Program, Orion, SpaceX, CST-100 and the Future of NASA Human & Robotic Spaceflight
Star Lab, the next-generation vehicle for suborbital experiments developed by the Florida-based 4Frontiers Corporation, is well on its way toward its first successful flight — and it’s looking for payloads.
First reported on Universe Today by Jason Rhian in November of last year, Star Lab consists of stacked and subdivided cylindrical sections customized to hold scientific experiments. Contained within a rocket vehicle affixed to the wing of a Starfighters, Inc. F-104 supersonic aircraft, Star Lab will be launched during flight to attain an altitude of about 100 km, going suborbital and achieving 3 1/2 minutes of microgravity before descending.
“If Star Lab proves itself viable this could open the door to a great many scientific institutions conducting their research by using the Star Lab vehicle,” Mark Homnick, CEO of 4Frontiers Corporation, told Universe Today in November.
A high-purity environment within the Star Lab compartments will ensure no contamination from the outside can interfere with payloads contained within, making Star Lab suitable for both non-organic and bio-med experiments.
Alternatively, the payload compartments can be made accessible to the external environment, allowing for atmospheric sampling.
After descent, Star Lab will splash down into the Atlantic and be retrieved by ship. Clients can expect to have their payloads returned within a 24-hour period — a quick turnaround especially essential for biological experiments.
In addition, Star Lab payloads can be accessed up to 24 hours before launch, allowing for any last-minute adjustments, minor installations or fine tuning.
Currently Star Lab is moving into its flight test phase of development, when the F-104s will go through a series of incremental tests up to and including an actual launch of the vehicle. This will determine how well it handles the stresses of flight and how to best — and most safely — perform the actual launch, slated for September 2012.
A maneuver only ever executed in military operations, Star Lab will become the first commercial vehicle to be launched from an aircraft.
Star Lab has 14 contracts signed for payloads at this time, and is right now working on a partnership with the payload-specialist company Kentucky Space to co-develop a successful market for bio-med experiments.
“We are looking for payloads… we’re real, we’re viable, and we have the best deal that I know of in respect to costs and what we provide,” Homnick said during an interview on March 15, 2012. “We’ll have the lowest cost and the highest launch rate, anywhere.”
At this point, signups with Star Lab require only a signature… no payment is required until the vehicle is proven.
“There’s even a contingency in there… we have to show with our prototypes that we are launching in the summer that they actually perform,” Homnick added. “One, they have to reach the altitude — over 80 kilometers — and two, we have to return the payloads for our prototype. And then, after all that, they would actually pay us… half up front, and half after launch.”
And if that’s not a good enough deal, the state of Florida is helping pick up some of the bill.
Under NASA’s Florida Space Grant, commercial ventures taking place in Florida are subject to a rebate program. Once a payload is launched, Space Lab customers can receive a refund from Space Florida of 1/3 of their cost.
Starting at $4,000 (after the Space Florida rebate), including integration and return costs, getting an experiment suborbital has never been so cost-effective.
“The whole concept is to make it really inexpensive and convenient to fly a lot of payloads,” Homnick said. “With ten launches a year, and up to thirteen payloads per launch, there’s a high launch rate.”
And with such convenience, Star Lab will help get the future of space research off the ground — literally.
“We’re real, we’re viable, and we have the best deal that I know of… we’ll have the lowest cost and the highest launch rate, anywhere.”
– Mark Homnick, CEO of 4Frontiers Corporation
4Frontiers will be at the Space Flight Payloads Workshop on Friday, March 23 at the Florida Solar Energy Center from 10 am to 5 pm. See more about Star Lab and what’s coming next from 4Frontiers here.
4Frontiers Corporation, the principal developer of Star Lab, was founded in 2005 in Florida, USA. 4Frontiers is an emerging space commerce company focused on developing fundamental space-related capabilities and resources essential for a long-term human presence in space. 4Frontiers will address the potential of the four most promising space frontiers: Earth orbit, the Moon, Mars and asteroids.
In preparation for his jump from from 36,500 meters (120,000 feet) sometime this summer, Austrian skydiver Felix Baumgartner took a practice jump yesterday from Roswell, New Mexico. The Red Bull Stratos Mission just posted the video of the jump — well, actually everything but the jump (you’ll see the preparations and post landing in this video). I’m sure the best footage is being saved for a documentary about the mission that is being done by the BBC and National Geographic. But this taste of the action whets your whistle for the big jump, when Baumgartner could become the first person to go supersonic outside a vehicle. He plans one more test jump, from 27,400 meters (90,000 feet) before attempting the full 36,500 meters to break the record for the longest freefall. According to Red Bull Stratos, the ‘launch window’ for the big jump opens in July and extends until the beginning of October.
Microgravity — or “zero-g” as it’s sometimes called — is not a natural state for the human body to live in for prolonged periods of time. But that is what today’s astronauts are often expected to do, whether while on expedition aboard Space Station or during a future voyage to the Moon or Mars. A host of physical issues can result from the space environment, from bone loss and muscle atrophy to the risks associated from increased exposure to radiation.
Now, there’s another downside to long-term life in orbit: eye and brain damage.
A team of radiologists led by Dr. Larry A. Kramer from The University of Texas Medical School at Houston performed MRIs on 27 astronauts, measuring in each the shape and thickness of the rear of the eyes, optic nerve, optic nerve sheath and pituitary gland.
In 7 of the 27 astronauts flattening of the backs of the eyes was noted, and enlargement of the optic nerve was detected in nearly all of them — 26 out of 27.
In addition, four exhibited deformation of the pituitary gland.
The changes to the eyes and optic nerves are similar to what are typically seen in those suffering from idiopathic intracranial hypertension (IIH), a disorder characterized by increased pressure within the skull. Symptoms typically include headache, dizziness and nausea, and if left untreated it can produce permanent vision loss through optic nerve damage.
“The MRI findings revealed various combinations of abnormalities following both short- and long-term cumulative exposure to microgravity also seen with idiopathic intracranial hypertension,” said Dr. Kramer. “Microgravity-induced intracranial hypertension represents a hypothetical risk factor and a potential limitation to long-duration space travel.”
Chief of flight medicine at NASA’s Johnson Space Center, Dr. William J. Tarver, noted that although no astronaut has been kept from flight duties as a result of such risks, NASA will continue to “closely monitor the situation” and has placed the potential danger “high on its list of human risks.”
The team’s paper was accepted into the journal Radiology on Feb. 1.
“Orbital and Intracranial Effects of Microgravity: Findings at 3-T MR Imaging.” Collaborating with Dr. Kramer were Ashot Sargsyan, M.D., Khader M. Hasan, Ph.D., James D. Polk, D.O., and Douglas R. Hamilton, M.D., Ph.D.
Update Oct. 24, 2013: Further investigation by researchers at Houston Methodist and Johnson Space Center have shown more evidence of long-term eye damage after just two weeks in orbit. Read more.