New NASA Gallery of Restored 1960s Project Gemini Photos

Credit: NASA / JSC / Arizona State University

[/caption]

NASA has published a new online gallery of beautifully restored photographs from the historic Project Gemini of the 1960s, the second U.S. manned spaceflight program. The digitally remastered photos have been scanned from the original film, showing highlights of Project Gemini in beautifully enhanced colour and detail.

Project Gemini followed the initial Project Mercury program and was the predecessor for the ambitious Apollo missions to the Moon, with ten crewed flights from 1965-1966. It used a two-man spacecraft and tested new technologies and procedures for the later Apollo missions such as precision atmospheric reentry, Extra Vehicular Activity (spacewalking), fuel cells to generate electricity and water, perfect the rendezvous and docking process between two spacecraft, new techniques for propelling and maneuvering two docked spacecraft and long-term human spaceflight.

It featured the first spacewalk, the first rendezvous between two Gemini spacecraft, the first docking between a manned and unmanned vehicle, the first maneuver to change orbit and the first onboard computer.

Gemini VII's rendezvous with Gemini VI. Credit: NASA / JSC / Arizona State University

The photo gallery is part of the March to the Moon website archive, which also has restored photo galleries from the Mercury missions as well as background information on the missions, Quicktime video clips and links to additional resources.

America’s Youth Christen NASA’s Twin New Lunar Craft – Ebb & Flow

Ebb and Flow - New Names for the GRAIL Twins in Lunar Orbit. 4th Grade Students from Montana win NASA’s contest to rename the GRAIL A and GRAIL B spacecraft. Artist concept of twin GRAIL spacecraft flying in tandem orbits around the Moon to measure its gravity field in unprecedented detail and unravel the hidden mysteries of the lunar interior’s composition. Credit: NASA/JPL Montage:Ken Kremer

[/caption]

A classroom of America’s Youth from an elementary school in Bozeman, Montana submitted the stellar winning entry in NASA’s nationwide student essay contest to rename the twin GRAIL lunar probes that just achieved orbit around our Moon on New Year’s Eve and New Year’s Day 2012

“Ebb” & “Flow” – are the dynamic duo’s official new names and were selected because they clearly illuminate the science goals of the gravity mapping spacecraft and how the Moon’s influence mightily affects Earth every day in a manner that’s easy for everyone to understand.

“The 28 students of Nina DiMauro’s class at the Emily Dickinson Elementary School have really hit the nail on the head,” said GRAIL principal investigator Prof. Maria Zuber of the Massachusetts Institute of Technology in Cambridge, Mass.

“We asked the youth of America to assist us in getting better names.”

“We chose Ebb and Flow because it’s the daily example of how the Moon’s gravity is working on the Earth,” said Zuber during a media briefing held today (Jan. 17) at NASA Headquarters in Washington, D.C. The terms ebb and flow refer to the movement of the tides on Earth due to the gravitational pull from the Moon.

“We were really impressed that the students drew their inspiration by researching GRAIL and its goal of measuring gravity. Ebb and Flow truly capture the spirit and excitement of our mission.”

Leland Melvin, NASA Associate Administrator for Education, left, Maria Zuber, GRAIL Prinicipal Investigator at the Massachusetts Institute of Technology, and James Green, Director of the Planetary Science Division in the Science Mission Directorate at NASA Headquarters, right, applaud students from Emily Dickinson Elementary School in Bozeman, Mont. during a news conference, Tuesday, Jan. 17, 2012, at NASA Headquarters in Washington. Nine hundred classrooms and more than 11,000 students from 45 states, as well as Puerto Rico and the District of Columbia, participated in a contest that began in October 2011 to name the twin lunar probes. Credit: NASA/Paul E. Alers

Ebb and Flow are flying in tandem around Earth’s only natural satellite, the first time such a feat has ever been attempted.

As they fly over mountains, craters and basins on the Moon, the spaceships will move back and forth in orbit in an “ebb and flow” like response to the changing lunar gravity field and transmit radio signals to precisely measure the variations to within 1 micron, the width of a red blood cell.

The breakthrough science expected from the mirror image twins will provide unprecedented insight into what lurks mysteriously hidden beneath the surface of our nearest neighbor and deep into the interior.

The winning names from the 4th Graders of Emily Dickinson Elementary School were chosen from essays submitted by nearly 900 classrooms across America with over 11,000 students from 45 states, Puerto Rico and the District of Columbia, Zuber explained.

The students themselves announced “Ebb” and “Flow” in a dramaric live broadcast televised on NASA TV via Skype.

“We are so thrilled that our names were chosen and excited to share this with you. We can’t believe we won! We are so honored. Thank you!” said Ms. DiMauro as the very enthusiastic students spelled out the names by holding up the individual letters one-by-one on big placards from their classroom desks in Montana.

Watch the 4th Grade Kids spell the names in this video!

Until now the pair of probes went by the rather uninspiring monikers of GRAIL “A” and “B”. GRAIL stands for Gravity Recovery And Interior Laboratory.

The twin crafts’ new names were selected jointly by Prof. Zuber and Dr. Sally Ride, America’s first woman astronaut, and announced during today’s NASA briefing.


NASA’s naming competition was open to K-12 students who submitted pairs of names and a short essay to justified their suggestions.

“Ebb” and “Flow” (GRAIL A and GRAIL B) are the size of washing machines and were launched side by side atop a Delta II booster rocket on September 10, 2011 from Cape Canaveral, Florida.

They followed a circuitous 3.5 month low energy path to the Moon to minimize the fuel requirements and overall costs.

So far the probes have completed three burns of their main engines aimed at lowering and circularizing their initial highly elliptical orbits. The orbital period has also been reduced from 11.5 hours to just under 4 hours as of today.

“The science phase begins in early March,” said Zuber. At that time the twins will be flying in tandem at 55 kilometers (34 miles) altitude.

The GRAIL twins are also equipped with a very special camera dubbed MoonKAM (Moon Knowledge Acquired by Middle school students) whose purpose is to inspire kids to study science.

“GRAIL is NASA’s first planetary spacecraft mission carrying instruments entirely dedicated to education and public outreach,” explained Sally Ride. “Over 2100 classrooms have signed up so far to participate.”

Thousands of middle school students in grades five through eight will select target areas on the lunar surface and send requests for study to the GRAIL MoonKAM Mission Operations Center in San Diego which is managed by Dr. Ride in collaboration with undergraduate students at the University of California in San Diego.

By having their names selected, the 4th graders from Emily Dickinson Elementary have also won the prize to choose the first target on the Moon to photograph with the MoonKam cameras, said Ride.

Zuber notes that the first MoonKAM images will be snapped shortly after the 82 day science phase begins on March 8.

Ebb & Flow Achieve Lunar Orbit on New Year’s Weekend 2012
NASA’s twin GRAIL-A & GRAIL-B spacecraft are orbiting the Moon in this astrophoto taken on Jan. 2, 2012 shortly after successful Lunar Orbit Insertions on New Year’s Eve and New Year’s Day 2012.
Credit: Ken Kremer

Read continuing features about GRAIL and the Moon by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Two new Moons join the Moon – GRAIL Twins Achieve New Year’s Orbits
First GRAIL Twin Enters Lunar Orbit – NASA’s New Year’s Gift to Science
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
NASA’s Unprecedented Science Twins are GO to Orbit our Moon on New Year’s Eve
Student Alert: GRAIL Naming Contest – Essay Deadline November 11
GRAIL Lunar Blastoff Gallery
GRAIL Twins Awesome Launch Videos – A Journey to the Center of the Moon
NASA launches Twin Lunar Probes to Unravel Moons Core
GRAIL Unveiled for Lunar Science Trek — Launch Reset to Sept. 10
Last Delta II Rocket to Launch Extraordinary Journey to the Center of the Moon on Sept. 8
NASAs Lunar Mapping Duo Encapsulated and Ready for Sept. 8 Liftoff
GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery

SpaceX Delays Upcoming 1st Dragon Launch to ISS

SpaceX Dragon approaches the ISS, so astronauts can grapple it with the robotic arm and berth it at the Earth facing port of the Harmony node. Illustration: NASA /SpaceX

[/caption]

The first test launch of a commercially built spacecraft to the International Space Station has been delayed by its builder, Space Exploration Technologies or SpaceX, in order to carry out additional testing to ensure that the vehicle is fully ready for the high stakes Earth orbital mission.

SpaceX and NASA had been working towards a Feb. 7 launch date of the company’s Dragon spacecraft and announced the postponement in a statement today (Jan. 16).

A new target launch date has not been set and it is not known whether the delay amounts to a few days, weeks or more. The critical test flight has already been rescheduled several times and was originally planned for 2011.

The unmanned Dragon is a privately developed cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA to deliver supplies to the ISS and partially replace the transport to orbit capabilities that were fully lost following the retirement of the Space Shuttle in 2011.

“In preparation for the upcoming launch, SpaceX continues to conduct extensive testing and analysis, said SpaceX spokeswoman Kirstin Grantham in the statement.

“We [SpaceX] believe that there are a few areas that will benefit from additional work and will optimize the safety and success of this mission.”

“We are now working with NASA to establish a new target launch date, but note that we will continue to test and review data. We will launch when the vehicle is ready,” said Grantham.

This SpaceX Dragon will launch to the ISS sometime in 2012 on COTS2/3 mission. Protective fairings are installed over folded solar arrays, at the SpaceX Cape Canaveral launch site.

Dragon’s purpose is to ship food, water, provisions, equipment and science experiments to the ISS.

The demonstration flight – dubbed COTS 2/3 – will be the premiere test flight in NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

The Dragon will blast off atop a Falcon 9 booster rocket also built by SpaceX and, if all goes well, conduct the first ever rendezvous and docking of a privately built spacecraft with the 1 million pound orbiting outpost.

After closely approaching the ISS, the crew will grapple Dragon with the station’s robotic arm and berth it to the Earth-facing port of the Harmony node.

“We’re very excited about it,” said ISS Commander Dan Burbank in a recent televised interview from space.

An astronaut operating the ISS robotic arm will grab Dragon and position it at a berthing port at the Harmony node. Illustration: NASA /SpaceX

Since the demonstration mission also involves many other first time milestones for the Dragon such as the first flight with integrated solar arrays and the first ISS rendezvous, extra special care and extensive preparatory activities are prudent and absolutely mandatory.

NASA’s international partners, including Russia, must be consulted and agree that all engineering and safety requirements, issues and questions related to the docking by new space vehicles such as Dragon have been fully addressed and answered.

William Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Mission Directorate recently stated that the launch date depends on completing all the work necessary to ensure safety and success, “There is still a significant amount of critical work to be completed before launch, but the teams have a sound plan to complete it.”

“As with all launches, we will adjust the launch date as needed to gain sufficient understanding of test and analysis results to ensure safety and mission success.”

“A successful mission will open up a new era in commercial cargo delivery to the international orbiting laboratory,” said Gerstenmaier.

SpaceX is also working on a modified version of the spacecraft, dubbed DragonRider, that could launch astronaut crews to the ISS in perhaps 3 to 5 years depending on the amount of NASA funding available, says SpaceX CEO and founder Elon Musk

Read Ken’s recent features about the ISS and SpaceX/Dragon here:
Dazzling Photos of the International Space Station Crossing the Moon!
Solar Powered Dragon gets Wings for Station Soar
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Doomed Phobos-Grunt Mars Mission Destructively Plunges to Earth

Phobos-Grunt plunged to Earth into the Pacific Ocean on Jan 15, 2012 - Crash Zone Map shows orbital track of Phobos-Grunt on Final Orbit before crashing to Earth in the Pacific Ocean west of South America on Jan 15, 2012.

[/caption]

Story and Crash Zone Map updated 1 p.m. EST Jan 16

Today (Jan. 15) was the last day of life for Russia’s ambitious Phobos-Grunt mission to Mars after a desperate two month race against time and all out attempts to save the daring spaceship by firing up a malfunctioning thruster essential to putting the stranded probe on a trajectory to the Red Planet, failed.

According to the Russian news agency Ria Novosti, the doomed Phobos-Grunt spacecraft apparently plunged into the southern Pacific Ocean today, (Jan. 15) at about 12:45 p.m. EST, 21:45 Moscow time [17:45 GMT] after a fiery re-entry into the Earth’s atmosphere.

“Phobos-Grunt fragments have crashed down in the Pacific Ocean,” Russia’s Defense Ministry official Alexei Zolotukhin told RIA Novosti. He added that the fragments fell 1,250 kilometers to the west of the Chilean island of Wellington.

Universe Today will monitor the developing situation and update this story as warranted. On Jan. 16 Roscosmos confirmed the demise of Phobos-Grunt at 12:45 p.m. EST in the Pacific Ocean – during its last orbit; #1097.

Artist’s concept of Phobos-Grunt re-entry and breakup in the Earth’s atmosphere on Jan 15, 2012

The demise of the Phobos-Grunt spacecraft was expected sometime today, (Jan 15) after a fiery and destructive fall back to Earth, said Roscosmos, the Russian Federal Space Agency, in an official statement released early today before the crash.

Since the re-entry was uncontrolled, the exact time and location could not be precisely calculated beforehand.

Mission Poster for the Russian Phobos-Grunt soil sample return spacecraft that launched to Mars and its moon Phobos on 9 November 2011. The mission did not depart Earth orbit when the upper stage engines failed to ignite. Credit: Roskosmos ( Russian Federal Space Agency)/IKI

The actual crash time of the 13,500 kg space probe was slightly earlier than predicted.

Roscosmos head Vladimir Popovkin had previously stated that perhaps 20 to 30 fragments weighing perhaps 400 pounds (180 kg) might survive and would fall harmlessly to Earth.

The spacecraft burst into a large quantity of pieces as it hit the atmosphere, heated up and broke apart. But the actual outcome of any possible fragments is not known at this time.

Shortly after launching from the Baikonur Cosmodrome on Nov. 9, 2011, the probe became stuck in low Earth orbit after its MDU upper stage engines repeatedly failed to ignite and send the ship on a bold sample return mission to the tiny Martian Moon Phobos.

Phobos-Grunt was loaded with over 11,000 kg of toxic propellants, including dimethylhydrazine and dinitrogen tetroxide, that went unused due to the thruster malfunction and that were expected to be incinerated during the plunge to Earth.

Frictional drag forces from the Earth’s atmosphere had gradually lowered the ship’s orbit in the past two months to the point of no return after all attempts to fire the thrusters and raise the orbit utterly failed.

The audacious goal of Phobos-Grunt was to carry out history’s first ever landing on Phobos, retrieve 200 grams of soil and bring the treasured samples back to Earth for high powered analysis that could help unlock secrets to the formation of Mars, Phobos and the Solar System.

Phobos-Grunt spacecraft being encapsulated inside the nose cone by technicians at the Baikonur Cosmodrome prior to Nov. 9, 2011 blastoff. Credit: Roscosmos

The Holy Grail of planetary science is to retrieve Martian soil samples – and scientists speculated that bits of the Red Planet could be intermixed with the soil of its mini moon Phobos, barely 15 miles in diameter.

The science return from Phobos-Grunt would have been first rate and outstanding.

It’s a sad end to Russia’s attempts to restart their long dormant interplanetary space science program.

The $165 mission was Russia’s first Mars launch in more than 15 years.

Radar image of the Russian Mars orbiter Phobos-Grunt, created with the TIRA space observation radar by researchers at the Fraunhofer Institute in Germany. One can clearly see the extended solar panels (centre) and the tank ring (bottom)
Credit: Fraunhofer FHR
Click to enlarge

Roscosmos had stated that the Atlantic Ocean – to the west of Africa – was at the center of the predicted crash zone. But nothing was certain and the probe had the possibility to crash sooner, perhaps over the Pacific Ocean or South America or later over Africa, Europe or Russia.

Roscosmos had predicted the time of the plunge to Earth to be from 12:50 p.m. EST and 1:34 p.m. EST (1750 to 1834 GMT) or 21:50 to 22: 34 Moscow time on January 15. The last orbit carried the probe over the Pacific Ocean towards South America on a northeasterly heading.

Russia enlisted assistance from ESA and the US in a bid to establish contact with the probe to reorient itself and fire up its engines for a belated journey to the Red Planet. Other than extremely brief signals the efforts proved futile and today’s Pacific plunge is the unfortunate end result.

Hopefully the Russians will not give up in despair, but rather fix the flaws and launch an exciting new Mars mission.

NASA has had better luck with their Mars mission this season.

The Curiosity Mars Science Lab rover is precisely on course to the Red Planet following the Jan 11 firing of the cruise stage thrusters for the first of up to 6 Trajectory Correction Maneuvers – read the details here

Phobos-Grunt imaged while flying over Holland on Dec 28, 2011 by astrophotographer Ralf Vandebergh. Solar panels are deployed. Credit: Ralf Vandebergh

Read Complete Coverage about Phobos-Grunt, Curiosity and the Mars Rovers by Ken Kremer here:
Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

Russians Race to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Strait of Hormuz Shot from the International Space Station – World Strategic Flashpoint

Christmas Eve photo of the Strait of Hormuz from the International Space Station. The image of the Strait of Hormuz (center) and the Persian Gulf region was shot on Christmas Eve, 24 December 2011. 20% of the world’ s oil supply passes through the Strait every day. Iran has threatened to close the Strait to oil shipments. Note the thin atmosphere and curvature of the Earth. ISS module above. Photo Credit: NASA

[/caption]A beautiful and peaceful Christmas-time picture of The Strait of Hormuz was shot from the International Space Station (ISS) soaring some 250 miles (400 kilometers) overhead on Christmas Eve, 24 Dec 2011.

Today, the economically vital Strait of Hormuz is a ‘Flashpoint of Tension’ between Iran and the US and much of the rest of the world community because of official threats by Iranian government officials to shut the highly strategic waterway to crude oil tankers that transport the lifeblood of the world’s economy.

The timely image above was just tweeted by NASA Astronaut Ron Garan who wrote; “Interesting peaceful pic of the #StraightofHormuz #FromSpace taken on Christmas Eve (12/24/11) from the #ISS”. Garan served aboard the ISS from April to September 2011 as a member of the Expedition 27/28 crews.

The Strait of Hormuz lies at the mouth of the Persian Gulf between Iran and the Arabian Peninsula and is a major chokehold of the world’s energy consumption.

At its narrowest point, the Strait is only 34 miles (54 kilometers) wide. The vital shipping lanes span barely 2 miles (3 kilometers) in width in each direction (see maps below).

See more ISS photos of the Persian Gulf region and the Strait, below.

Image of the Strait of Hormuz and Persian Gulf region
Taken from the International Space Station on Sept. 30, 2003. United Arab Emirates, Oman and Saudi Arabia at left, Iran at right. Credit: NASA

Each and every day, about 20% of the world’s daily petroleum consumption is shipped through the extremely narrow channel on gigantic Oil tankers. Any disruption of petroleum shipments would instantly send crude oil prices skyrocketing to exhorbitant levels that could wreak havoc and rapidly lead to a worldwide economic depression and a devastating war between Iran and the US and its allies.

Red arrow indicates location of the Strait of Hormuz in relation to the Arabian Peninsula.

In recent days Iranian boats have approached US Naval warships at high speeds while they were heading through the Strait of Hormuz – playing a potentially deadly game of cat and mouse that could spin out of control in a single misstep, even if unintentional.

Clashes would easily disrupt the crude oil tanker shipping traffic.

Several Iranian speedboats came within about 800 yards of the US vessels in recent days as a war of words has flared over oil and Iran’s nuclear program as tensions escalate.


Video Caption: Iranian speedboats closely approach US Navy ships at high speed in the Strait of Hormuz on Jan. 6, 2012. Credit: US Dept of Defense

The US and allied fleet operates in the Gulf region to protect the oil shipments and the oil installations of a number of Arab countries including Saudi Arabia.

Persian Gulf and Strait of Hormuz from cargo bay of NASA Space Shuttle - May 27, 2000. Credit: NASA

Map of Strait of Hormuz showing political boundaries and narrow maritime shipping lanes. Wikipedia

An international crew of six men from the US, Russia and Holland are currently in residence aboard the ISS running science experiments.

ISS Expedition 30 Commander and US astronaut Dan Burbank snapped gorgeous photos of Comet Lovejoy during this Christmas season – look here.

Strait of Hormuz and Persian Gulf region

Look here for dazzling photos of the ISS crossing the Moon – shot just days ago from NASA’s Johnson Space Center in Houston

Read Ken’s recent features about the ISS here:
Dazzling Photos of the International Space Station Crossing the Moon!
Solar Powered Dragon gets Wings for Station Soar
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown

[/caption]

NASA’s car-sized Curiosity Mars Science Lab (MSL) rover is now on course to touch down inside a crater on Mars in August following the completion of the biggest and most crucial firing of her 8.5 month interplanetary journey from Earth to the Red Planet.

Engineers successfully commanded an array of thrusters on MSL’s solar powered cruise stage to carry out a 3 hour long series of more than 200 bursts last night (Jan. 11) that changed the spacecraft’s trajectory by about 25,000 miles (40,000 kilometers) – an absolute necessity that actually put the $2.5 Billion probe on a path to Mars to “Search for Signatures of Life !”

“We’ve completed a big step toward our encounter with Mars,” said Brian Portock of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., deputy mission manager for the cruise phase of the mission. “The telemetry from the spacecraft and the Doppler data show that the maneuver was completed as planned.”

Mars Science Lab and cruise stage separate from Centaur upper stage just minutes after Nov. 26, 2011 launch. Thrusters on cruise stage performed course correction on Jan. 11, 2012. Up to 6 firings total will put the NASA robot on precision course to Mars.
Credit: NASA TV

This was the first of six possible TCM’s or trajectory correction maneuvers that may be required to fine-tune the voyage to Mars.

Until now, Curiosity was actually on a path to intentionally miss Mars. Since the Nov. 26, 2011 blastoff from Florida, the spacecraft’s trajectory was tracking a course diverted slightly away from the planet in order to prevent the upper stage – trailing behind – from crashing into the Red Planet.

The upper stage was not decontaminated to prevent it from infecting Mars with Earthly microbes. So, it will now sail harmlessly past the planet as Curiosity dives into the Martian atmosphere on August 6, 2012.

The thruster maneuver also served a second purpose, which was to advance the time of the Mars encounter by about 14 hours. The TCM burn increased the velocity by about 12.3 MPH (5.5 meters per second) as the vehicle was spinning at 2 rpm.

“The timing of the encounter is important for arriving at Mars just when the planet’s rotation puts Gale Crater in the right place,” said JPL’s Tomas Martin-Mur, chief navigator for the mission.


Video caption: Rob Manning, Curiosity Mars Science Lab Chief Engineer at NASA JPL describes the Jan. 11, 2012 thruster firing that put the robot on a precise trajectory to Gale Crater on Mars. Credit: NASA/JPL

As of today, Jan. 12, the spacecraft has traveled 81 million miles (131 million kilometers) of its 352-million-mile (567-million-kilometer) flight to Mars. It is moving at about 10,300 mph (16,600 kilometers per hour) relative to Earth, and at about 68,700 mph (110,500 kilometers per hour) relative to the Sun.

The next trajectory correction maneuver is tentatively scheduled for March 26, 2012.

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Credit: Ken Kremer

The goal of the 1 ton Curiosity rover is to investigate whether the layered terrain inside Gale Crater ever offered environmental conditions favorable for supporting Martian microbial life in the past or present and if it preserved clues about whether life ever existed.

Curiosity will search for the ingredients of life, most notably organic molecules – the carbon based molecules which are the building blocks of life as we know it. The robot is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Curiosity’s Roadmap through the Solar System-From Earth to Mars
Schematic shows 8.5 month interplanetary trajectory of Curiosity. Credit: NASA/JPL-Caltech

Curiosity Countdown – 205 days to go until Curiosity lands at Gale Crater on Mars !

January 2012 marks the 8th anniversary of the landings of NASA’s Spirit and Opportunity Mars rovers back in January 2004.

Opportunity continues to operate to this day. Read my salute to Spirit here

Read continuing features about Curiosity and Mars rovers by Ken Kremer starting here:
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life

Mike Fossum Answers Your Questions

NASA astronaut Mike Fossum, Expedition 29 commander, works with the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Image Credit: NASA

[/caption]We recently launched a new “Ask” feature here at Universe Today. Our inaugural launch featured Dr. Alan Stern, Principal Investigator for the New Horizons mission to Pluto and the Kuiper Belt.

Following up on the success of our first “Ask” feature, we’ve followed up with a new installment featuring Expedition 29 commander Mike Fossum. We collected your questions and passed them along to Mike who graciously took the time to answer them.

Here are the questions picked by you, the readers, and Fossum’s responses. Special thanks to NASA and Mike Fossum for their participation.

1.) Living on the ISS is sometimes said to be a difficult experience – if you could make any one change to the ISS to make it more comfortable, what would it be?

Mike Fossum: “Get the transporter working – it would be great to be home for the weekend.” Fossum also added, “I loved living and working there (The ISS) and there’s very few things I’d change. I had a great window view and my own personal quarters. I guess if anything I missed being able to sit in a chair – that and being able to have a cup of coffee (instead of out of a bag) and read the newspaper in the morning.”

2.) As a trained astronaut, what are your thoughts on the feasibility of making space flight a routine for normal civilians ( besides tourists) especially with regard to interplanetary/beyond earth orbit flights?

Mike Fossum: “I think we’ll see low Earth-orbit very soon.” Fossum also mentioned, “I was born a few months after Sputnik’s launch, the changes in spaceflight over the past 54 years are staggering. The potential for changes over the next fifty years is unimaginable.” Fossum also had a parting thought on the rise of commercial space travel, “I have a nagging voice telling me to say “be careful”, we’ve learned hard and costly lessons”.

3.) While in the Earth’s shadow, could you see the stars, constellations and planets? If you could, did they look any better or brighter?

Mike Fossum: “Oh, Yes! The key is to be in a place where you can dark adapt – any sunlight overpowers night vision.” Fossum mentioned that during some “down” time on a spacewalk, he was able to turn off his helmet lights and immerse himself in the “3-d feeling” of being in the stars. Describing the quality of the views, Fossum stated, “The Milky Way was clear, and no twinkle in stars. The different colors of stars were more intense”.

4.) After a typical stay on the ISS, how long does it take an astronaut to recover from the effects of weightlessness?

Mike Fossum: “There’s a great deal of recovery in the first three weeks. Balance, running, walking, I’d say I’m at about 90%” Fossum mentioned one other side effect of his stay on the ISS – apparently he’s in better physical shape than before he left. Fossum speculated that the improvements in his physical shape were due to the rigorous exercise routines he performed during his stay on the ISS.

5.) What would you say is the strongest asset that each of the space fairing countries brings to the table when it comes to our forward progress into space as a species?

Mike Fossum: “The Russians have a different design process than we (The United States) do. They evolve, rather than start over.” Fossum added, “Looking at their station module design, they took stuff that worked from MIR and improved upon it, they analyzed and tested and broke stuff and added more steel. Americans analyze and analyze – it was a real shock to NASA on how Russia built things.” Fossum mentioned that in 2008, he helped install the JAXA Kibo module on the International Space Station and was impressed by the efficiency of JAXA engineers.

Regarding some of the other partner nations participating in the ISS, Fossum mentioned, “ESA has the best of German efficiency and Italian flexibility.” Fossum also discussed the Canadians niche in robotics, stating that they’ve been leaders who are proud of their work. Fossum cited the success of the remote manipulator arm on the space shuttles, as well as the “big arm” on the ISS and the DEXTRE manipulator.

Fossum shared a final thought regarding all the nations participating in the ISS, stating, “There’s a common passion for space among the big partners on the ISS.” Fossum also mentioned to “Look at history” regarding Russia, Germany, Italy, Japan and the U.S, emphasizing that nations who were at war with each other not that long ago are working together to achieve common goals in space.

This wraps up our latest “Ask” feature. Once again we’d like to thank Mike Fossum and NASA for taking the time to answer your questions.

8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !

Spirit Mars rover - view from Husband Hill summit. Spirit snapped this view self portrait from the summit of Husband Hill inside Gusev crater on Sol 618 on 28 September 2005. The rovers were never designed or intended to climb mountains. It took more than 1 year for Spirit to scale the Martian mountain. This image was created by an international team of astronomy enthusiasts and appeared on the cover of the 14 November 2005 issue of Aviation Week & Space Technology magazine and the April 2006 issue of Spaceflight magazine. Also selected by Astronomy Picture of the Day (APOD) on 28 November 2005. Credit: Marco Di Lorenzo, Douglas Ellison, Bernhard Braun and Kenneth Kremer. NASA/JPL/Cornell/Aviation Week & Space Technology

[/caption]

January 2012 marks the 8th anniversary since of the daring landing’s of “Spirit” and “Opportunity”NASA’s now legendary twin Mars Exploration Rovers (MER), on opposite sides of the Red Planet in January 2004. They proved that early Mars was warm and wet – a key finding in the search for habitats conducive to life beyond Earth.

I asked the leaders of the MER team to share some thoughts celebrating this mind-boggling milestone of “8 Years on Mars” and the legacy of the rovers for the readers of Universe Today. This story focuses on Spirit, first of the trailblazing twin robots, which touched down inside Gusev Crater on Jan. 3, 2004. Opportunity set down three weeks later on the smooth hematite plains of Meridiani Planum.

“Every Sol is a gift. We push the rovers as hard as we can,” Prof. Steve Squyres informed Universe Today for this article commemorating Spirit’s landing. Squyres, of Cornell University, is the Scientific Principal Investigator for the MER mission.

“I seriously thought both Spirit and Opportunity would be finished by the summer of 2004,” Ray Arvidson told Universe Today. Arvidson, of Washington University in St. Louis, is the deputy principal investigator for the MER rovers.

'Calypso' Panorama of Spirit's View from 'Troy'
This full-circle view from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit shows the terrain surrounding the location called "Troy," where Spirit became embedded in soft soil during the spring of 2009. The hundreds of images combined into this view were taken beginning on the 1,906th Martian day (or sol) of Spirit's mission on Mars (May 14, 2009) and ending on Sol 1943 (June 20, 2009). Credit: NASA/JPL-Caltech/Cornell University
click to enlarge

Spirit endured for more than six years and Opportunity is still roving Mars today !

The dynamic robo duo were expected to last a mere three months, or 90 Martian days (sols). In reality, both robots enormously exceeded expectations and accumulated a vast bonus time of exploration and discovery in numerous extended mission phases.

Spirit survived three harsh Martian winters and only succumbed to the Antarctic-like temperatures when she unexpectedly became mired in an unseen sand trap driving beside an ancient volcanic feature named ‘Home Plate’ that prevented the solar arrays from generating life giving power to safeguard critical electronic and computor components.

Spirit was heading towards another pair of volcanic objects named von Braun and Goddard and came within just a few hundred feet when she died.

Everest Panorama from Husband Hill summit
It took Spirit three days, sols 620 to 622 (Oct. 1 to Oct. 3, 2005), to acquire all the images combined into this mosaic, called the "Everest Panorama". Credit: NASA/JPL-Caltech/Cornell University
Click to enlarge

“I never thought that we would still be planning sequences for Opportunity today and that we only lost Spirit because of her limited mobility and bad luck of breaking through crusty soil to get bogged down in loose sands,” said Arvidson

By the time of her last dispatch from Mars in March 2010, Spirit had triumphantly traversed the red planets terrain for more than six years of elapsed mission time – some 25 times beyond the three month “warranty” proclaimed by NASA as the mission began back in January 2004.

The "Columbia Hills" in Gusev Crater on Mars
Husband Hill is 3.1 kilometers distant. Spirit took this mosaic of images with the panoramic camera at the beginning of February, 2004, less than a month after landing on Mars. Image credit: NASA/JPL-Caltech/Cornell

“I am feeling pretty good as the MER rover anniversaries approach in that Spirit had an excellent run, helping us understand without a doubt that early Mars had magmatic and volcanic activity that was “wet”, Arvidson explained.

“Magmas interacted with ground water to produce explosive eruptions – at Home Plate, Goddard, von Braun – with volcanic constructs replete with steam vents and perhaps hydrothermal pools.”

Altogether, the six wheeled Spirit drove over 4.8 miles (7.7 kilometers) and the cameras snapped over 128,000 images. NASA hoped the rovers would drive about a quarter mile during the planned 90 Sol mission.

“Milestones like 8 years on Mars always make me look forward rather than looking back,” Squyres told me.

Carbonate-Containing Martian Rocks discovered by Spirit Mars Rover
Spirit collected data in late 2005 which confirmed that the Comanche outcrop contains magnesium iron carbonate, a mineral indicating the past environment was wet and non-acidic, possibly favorable to life. This view was captured during Sol 689 on Mars (Dec. 11, 2005). The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University

Spirit became the first robotic emissary from humanity to climb a mountain beyond Earth, namely Husband Hill, a task for which she was not designed.

“No one expected the rovers to last so long,” said Rob Manning to Universe Today. Manning, of NASA’s Jet Propulsion laboratory, Pasadena, CA. was the Mars Rover Spacecraft System Engineering team lead for Entry, Descent and Landing (EDL)

“Spirit surmounted many obstacles, including summiting a formidable hill her designers never intended her to attempt.”

“Spirit, her designers, her builders, her testers, her handlers and I have a lot to be thankful for,” Manning told me.

After departing the Gusev crater landing pad, Spirit traversed over 2 miles to reach Husband Hill. In order to scale the hill, the team had to create a driving plan from scratch with no playbook because no one ever figured that such a mouthwatering opportunity to be offered.

Spirit Rover traverse map from Gusev Crater landing site to Home Plate: 2004 to 2011

It took over a year to ascend to the hill’s summit. But the team was richly rewarded with a science bonanza of evidence for flowing liquid water on ancient Mars.

Spirit then descended down the other side of the hill to reach the feature dubbed Home Plate where she now rests and where she found extensive evidence of deposits of nearly pure silica, explosive volcanism and hot springs all indicative of water on Mars billions of years ago.

“Spirit’s big scientific accomplishments are the silica deposits at Home Plate, the carbonates at Comanche, and all the evidence for hydrothermal systems and explosive volcanism, Squyres explained. “ What we’ve learned is that early Mars at Spirit’s site was a hot, violent place, with hot springs, steam vents, and volcanic explosions. It was extraordinarily different from the Mars of today.”

“We’ve still got a lot of exploring to do [with Opportunity], but we’re doing it with a vehicle that was designed for a 90-sol mission,” Squyres concluded. “That means that ever sol is a gift at this point, and we have to push the rover and ourselves as hard as we can.”

NASA concluded the last attempt to communicate with Spirit in a transmission on May 25, 2011.

Spirit Rover traverse map from Husband Hill to resting place at Home Plate: 2004 to 2011
The Last View Ever from Spirit rover on Mars
Spirit’s last panorama from Gusev Crater was taken during February 2010 before her death from extremely low temperatures during her 4th Martian winter. Spirit was just 500 feet from her next science target - dubbed Von Braun – at center, with Columbia Hills as backdrop.
Mosaic Credit: Marco De Lorenzo/ Kenneth Kremer/ NASA/JPL/Cornell University
Mosaic featured on Astronomy Picture of the Day (APOD) on 30 May 2011 - http://apod.nasa.gov/apod/ap110530.html

Meanwhile, the Curiosity Mars Science Lab rover, NASA’s next Red Planet explorer, continues her interplanetary journey on course for a 6 August 2012 landing at Gale Crater.

Read continuing features about the Mars Rovers, Curiosity and GRAIL by Ken Kremer here:
Two new Moons join the Moon – GRAIL Twins Achieve New Year’s Orbits
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

Jan 11: Free Lecture by Ken Kremer at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

Solar Powered Dragon gets Wings for Station Soar

SpaceX Dragon set to dock at International Space Station on COTS 2/3 mission. Falcon 9 launch of Dragon on COTS 2/3 mission is slated for Feb.7, 2012 from pad 40 at Cape Canaveral, Florida. Artist’s rendition of Dragon spacecraft with solar panels fully deployed on orbit. ISS crew will grapple Dragon and berth to ISS docking port. Credit: NASA

[/caption]

The Dragon has grown its mighty wings

SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.

Dragon’s solar array panels being installed on Dragon’s trunk at the SpaceX hangar in Cape Canaveral,FL.

The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.

The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.

The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.

SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.

SpaceX engineers conducting an early solar panel test. Hundreds of flood lamps simulate the unfiltered light of the sun. Photo: Roger Gilbertson/ SpaceX

The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.


Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX

I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.

NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.

Dragon with the protective fairings installed over the folded solar arrays, at the SpaceX

The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.

“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.

The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.

“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”

Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.

Read recent features about the ISS and commercial spaceflight by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

Dazzling Photos of the International Space Station Crossing the Moon!

Moon and International Space Station from NASA Johnson Space Center, Houston, Texas. This photo was taken in the early evening of Jan. 4. Equipment: Nikon D3S, 600mm lens and 2x converter, Heavy Duty Bogen Tripod with sandbag and a trigger cable to minimize camera shake. Camera settings: 1/1600 @ f/8, ISO 2500 on High Continuous Burst. Credit: NASA

[/caption]

Has the International Space Station (ISS) secretly joined NASA’s newly arrived GRAIL lunar twins orbiting the Moon?

No – but you might think so gazing at these dazzling new images of the Moon and the ISS snapped by a NASA photographer yesterday (Jan. 4) operating from the Johnson Space Center in Houston, Texas.

Check out this remarkable series of NASA photos above and below showing the ISS and her crew of six humans crossing the face of Earth’s Moon above the skies over Houston, Texas. And see my shot below of the Moon near Jupiter – in conjunction- taken just after the two GRAIL spacecraft achieved lunar orbit on New Year’s weekend.

In the photo above, the ISS is visible at the upper left during the early evening of Jan. 4, and almost looks like it’s in orbit around the Moon. In fact the ISS is still circling about 248 miles (391 kilometers) above Earth with the multinational Expedition 30 crew of astronauts and cosmonauts hailing from the US, Russia and Holland.

Space Station Crossing Face of Moon
This composite of images of the International Space Station flying over the Houston area show the progress of the station as it crossed the face of the moon in the early evening of Jan. 4, 2012 over NASA’s Johnson Space Center, Houston, Texas. Credit: NASA
click to enlarge

The amazing photo here is a composite image showing the ISS transiting the Moon’s near side above Houston in the evening hours of Jan 4.

The ISS is the brightest object in the night sky and easily visible to the naked eye if it’s in sight.

With a pair of binoculars, it’s even possible to see some of the stations structure like the solar panels, truss segments and modules.

Check this NASA Website for ISS viewing in your area.

How many of you have witnessed a sighting of the ISS?

It’s a very cool experience !

NASA says that some especially good and long views of the ISS lasting up to 6 minutes may be possible in the central time zone on Friday, Jan 6 – depending on the weather and your location.

And don’t forget to check out the spectacular photos of Comet Lovejoy recently shot by Expedition 30 Commander Dan Burbank aboard the ISS – through the Darth Vader like Cupola dome, and collected here

Moon and International Space Station (at lower right) on Jan 4, 2012 from NASA Johnson Space Center, Houston, Texas. Credit: NASA click to emlarge
Moon, Jupiter and 2 GRAILs on Jan. 2, 2012
Taken near Princeton, NJ after both GRAIL spacecraft achieved lunar orbit after LOI - Lunar Orbit Insertion- burns on New Year’s weekend 2012. Credit: Ken Kremer