Soyuz Launches for Holiday Hookup with the International Space Station

A Soyuz rocket provided a little heat to frosty Kazakhstan, sending three new international crew members to the International Space Station. NASA Flight Engineer Don Pettit, Russian Soyuz Commander Oleg Kononenko and European Space Agency Flight Engineer Andre Kuipers of the Netherlands launched aboard their Soyuz TMA-03M craft at 13:16 UTC on Dec. 21 (8:16 a.m. EST, 7:16 p.m. local time), from the Baikonur Cosmodrome in Kazakhstan.

Pettit, Kononenko and Kuipers are scheduled to dock to the Rassvet module of the station at about 13:22 UTC ( 8:22 a.m.) Friday, Dec. 23. They will receive a holiday welcome from station the crew already aboard, Commander Dan Burbank and Flight Engineers Anton Shkaplerov and Anatoly Ivanishin.
Continue reading “Soyuz Launches for Holiday Hookup with the International Space Station”

Soyuz Ready for Wintery Launch to the Space Station

The Soyuz TMA-03M spacecraft is lifted on to the launch pad at the Baikonur Cosmodrome in Kazakhstan, Monday, Dec. 19, 2011. The rocket is being prepared for launch on December 21 to carry the crew of Expedition 30 to the International Space Station. Photo Credit: (NASA/Carla Cioffi)

[/caption]

Brrrr! It was frigid in Kazakhstan yesterday as the next Soyuz to the ISS rolled to the launchpad at the Baikonur Cosmodrome. Thermometers read a frosty 24 degrees below zero C, prompting astronaut Don Pettit to comment, “It is so cold that even microphones have a fur hat.” Pettit, Russian cosmonaut Oleg Kononenko and European Space Agency astronaut Andre Kuipers will launch aboard their Soyuz TMA-03M spacecraft at 13:16 UTC (8:16 a.m. EST) Wednesday, to bring the crew compliment on the ISS back to six.

You can watch the launch on NASA Television (coverage of the launch begins at 12: 30 UTC (7:30 a.m. EST) or on ESA’s website. ESA TV Live coverage starts for a lift-off (at 14:16) with inserts from Baikonur and TSUP Moscow Mission Control Centre and inside Soyuz capsule.

The trio will dock to the Rassvet module of the station on Friday. They will join their Expedition 30 colleagues Commander Dan Burbank from NASA and Russian Flight Engineers Anton Shkaplerov and Anatoly Ivanishin, who have been aboard the ISS since mid-November.

New Plans for ESA’s Experimental Re-entry Vehicle

ESA’s new IXV (Intermediate eXperimental Vehicle) Credit: ESA

[/caption]
ESA and Arianespace have signed a contract planning the launch of ESA’s new IXV (Intermediate eXperimental Vehicle) on Europe’s new Vega Rocket in 2014. Vega is Europe’s new small launch system and it is designed to complement the heavy Ariane 5 and medium Soyuz Rocket systems launched from French Guiana.

The small rocket is capable of a wide range of payloads up to 1.5 tonnes, compared to Ariane 5 which can lift 20 tonnes, making it especially suitable for the commercial space market. The Vega Rocket will launch the IXV into a suborbital trajectory from Europe’s Spaceport in French Guiana, IXV will then return to Earth as if from a low-orbit mission, to test and qualify new critical technologies for future re-entry vehicles.

Vega Rocket Credit: Arianespace

The IXV will reach a velocity of 7.5km/s at an altitude of around 450km and then re-enter the Earth’s atmosphere gathering data about its flight. The vehicle will encounter hypersonic and supersonic speeds and will be controlled with complex avionics, thrusters and flaps.

Once the vehicle’s speed has been reduced enough, it will deploy a parachute, descend and land safely in the Pacific Ocean.

This flight will record data for the next five VERTA missions (Vega Research and Technology Accompaniment – Programme), which will demonstrate the systems re-usable versatility.

Two launches a year are planned for the new programme and construction of infrastructure including mission control and communications networks is currently underway.

Development and completion of the design, manufacturing and assembly is now underway for a flight window between January and September 2014.

VERTA (Vega Research and Technology Accompaniment – Programme) Credit: Arianespace

Source: ESA

Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

NASA's Mars Science Laboratory Curiosity rover will investigate Mars' past or present ability to sustain microbial life. Curiosity is cruising to Mars and has already investigating the lethality of the space radiation environment to humans. Credit: NASA/JPL-Caltech

[/caption]

Barely two weeks into the 8 month journey to the Red Planet, NASA’s Curiosity Mars Science Lab (MSL) rover was commanded to already begin collecting the first science of the mission by measuring the ever present radiation environment in space.

Engineers powered up the MSL Radiation Assessment Detector (RAD) that monitors high-energy atomic and subatomic particles from the sun, distant supernovas and other sources.

RAD is the only one of the car-sized Curiosity’s 10 science instrument that will operate both in space as well as on the Martian surface. It will provide key data that will enable a realistic assessment of the levels of lethal radiation that would confront any potential life forms on Mars as well as Astronauts voyaging between our solar systems planets.

“RAD is the first instrument on Curiosity to be turned on. It will operate throughout the long journey to Mars,” said Don Hassler, RAD’s principal investigator from the Southwest Research Institute in Boulder, Colo.

These initial radiation measurements are focused on illuminating possible health effects facing future human crews residing inside spaceships.


Video Caption: The Radiation Assessment Detector is the first instrument on Curiosity to begin science operations. It was powered up and began collecting data on Dec. 6, 2011. Credit: NASA

“We want to characterize the radiation environment inside the spacecraft because it’s different from the radiation environment measured in interplanetary space,” says Hassler.

RAD is located on the rover which is currently encapsulated within the protective aeroshell. Therefore the instrument is positioned inside the spacecraft, simulating what it would be like for an astronaut with some shielding from the external radiation, measuring energetic particles.

“The radiation hitting the spacecraft is modified by the spacecraft, it gets changed and produces secondary particles. Sometimes those secondary particles can be more damaging than the primary radiation itself.”

“What’s new is that RAD will measure the radiation inside the spacecraft, which will be very similar to the environment that a future astronaut might see on a future mission to Mars.”

Curiosity Mars Science Laboratory (MSL) Spacecraft During Cruise with Navigation Stars. Artist's concept of Curiosity during its cruise phase between launch on Nov. 26, 2011 and final approach to Mars in August 2012. Credit: NASA/JPL-Caltech

Curiosity’s purpose is to search for the ingredients of life and assess whether the rovers landing site at Gale Crater could be or has been favorable for microbial life.

The Martian surface is constantly bombarded by deadly radiation from space. Radiation can destroy the very organic molecules which Curiosity seeks.

“After Curiosity lands, we’ll be taking radiation measurements on the surface of another planet for the first time,” notes Hassler.

RAD was built by a collaboration of the Southwest Research Institute, together with Christian Albrechts University in Kiel, Germany with funding from NASA’s Human Exploration Directorate and Germany’s national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

“What Curiosity might find could be a game-changer about the origin and evolution of life on Earth and elsewhere in the universe,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington. “One thing is certain: The rover’s discoveries will provide critical data that will impact human and robotic planning and research for decades.”

Curiosity was launched from Florida on Nov. 26. After sailing on a 254 day and 352-million-mile (567-million-kilometer) interplanetary flight from the Earth to Mars, Curiosity will smash into the atmosphere at 13,000 MPH on August 6, 2012 and pioneer a nail biting and first-of-its-kind precision rocket powered descent system to touchdown inside layered terrain at Gale Crater astride a 3 mile (5 km) high mountain that may have preserved evidence of ancient or extant Martian life.

Miraculously, NASA’s Opportunity Mars rover and onboard instruments and cameras have managed to survive nearly 8 years of brutally harsh Martian radiation and arctic winters.

Curiosity MSL science instruments are state-of-the-art tools for acquiring information about the geology, atmosphere, environmental conditions, and potential biosignatures on Mars. Credit: NASA

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

NASA Considers Sending a Telescope to Outer Solar System

ZEBRA (Zodiacal dust, Extragalactic Background and Reionization Apparatus) is a small, passively cooled optical to near-infrared instrument package that could be added to an outer solar system probe. Credit: NASA/JPL/Caltech

[/caption]

Editors note — Science journalist and author Bruce Dorminey spoke to two NASA scientists about the possibility of mounting a telescope on a spacecraft for an outer planets mission.

Light pollution in our inner solar system, from both the nearby glow of the Sun and the hazy zodiacal glow from dust ground up in the asteroid belt, has long stymied cosmologists looking for a clearer take on the early Universe.

But a team at NASA, JPL and Caltech has been looking into the possibility of hitching an optical telescope to a survey spacecraft on a mission to the outer solar system.

Escaping our Inner Solar System’s Polluted Purple Haze

The idea is to use the optical telescope in cruise phase to get a better handle on extragalactic background light; that is, the combined optical background light from all sources in the Universe. They envision the telescope’s usefulness to kick in around 5 Astronomical Units (AU), about the distance of Jupiter’s orbit. The team then wants to correlate their data with ground-based observations.

One goal is to shed light on the early universe’s epoch of reionization. Reionization refers to the time when ultraviolet (UV) radiation from the universe’s first stars ionized the intergalactic medium (IGM) by stripping electrons from the IGM’s gaseous atoms or molecules. This period of reionization is thought to have taken place no later than 450 million years after the Big Bang.

ZEBRA, the Zodiacal dust, Extragalactic Background and Reionization Apparatus, is a NASA JPL concept that calls for a $40 million dollar telescope comprised of three optical/near-infrared instruments; consisting of a 3 cm wide-field mapper and a 15 cm high-resolution imager. However, NASA has yet to select the ZEBRA proposal for one of its missions.

But to learn more, we spoke with the ZEBRA Concept lead and instrument cosmologist Jamie Bock and astronomer Charles Beichman, both of NASA JPL and Caltech.

In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the "false dawn," this light appears in this artist's concept as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light). Credit: NASA/JPL-Caltech/R. Hurt (SSC)

Dorminey: What is zodiacal light?

Beichman: It’s a bright source of diffuse light in our own solar system from dust grains that emit because they have been heated by the sun and are radiating by themselves
or reflect sunlight. If you go out on a very clear dark moonless light, you can see the band of this light from this dust. It follows the plane of the ecliptic. That dust mostly originates from material in the asteroid belt that gets ground up into little particles after some big collision.

Charles Beichman. Credit: NASA

Dorminey: What would getting past this zodiacal dust mean for observations?

Beichman: Imagine sitting in the Los Angeles basin and you’ve got all this smog and haze and you want to measure how clear the air is out at Palm Springs. You have to be able to subtract off all the haze between here and there and there’s just no way to do it with any accuracy. You have to drive out of the basin to get out of the smog.

Dorminey: How would this help in studying this extragalactic background?

Bock: The Extragalactic Background Light (EBL) measures the total energy density of light coming from outside our galaxy. This light gives the sum of the energy produced by stars and galaxies, and any other sources, over the history of cosmic time. The total background can be used to check if we correctly understand the formation history of galaxies. We expect a component of the background light from the first stars to have a distinct spectrum that peaks in the near-infrared; this can tell us how bright and how long the epoch was when the first stars were forming. Unfortunately, zodiacal light is much brighter than this background. But by going to the orbit of Jupiter, the zodiacal light is 30 times fainter than at Earth, and at the orbit of Saturn it is 100 times fainter.

Dorminey: Would you have to hitchhike on a NASA mission or could it be a partnership with another space agency, like ESA for instance?

Bock: We have been exploring the cheapest incremental cost approach, partnering with a NASA planetary mission. But we could partner with another space agency. The European Jupiter Icy Moons Explorer (formerly JGO) is now competing for the next L-class mission launch in the early 2020’s and is an attractive possibility for a contributed cruise-phase science instrument. Each approach comes with a different cost and partnership environment.

Dorminey: Is the prime driver for the EBL telescope to get beyond the zodiacal dust or does 5 AU also offer an observational advantage in terms of achieving faintness of magnitude?

James Bock. Credit: JPL

Bock: There is an observing advantage due to the [darker solar system] background. With such a small telescope, we are not trying to exploit this benefit but future observatories could. We will measure the zodiacal brightness to Jupiter and beyond, and this may motivate astronomical observations with telescopes in the outer solar system in the future.

Dorminey: What sort of data downlink challenges would you encounter?

Bock: The data requirements are perhaps smaller than one might first expect, because our images are obtained with long [observational] integrations at moderate spatial resolution. For the planetary proposal we studied in detail, the total data volume was 230 gigabytes, with about 65 percent of this data being returned from Jupiter and out to Saturn. The telescope pointings operate autonomously.

Dorminey: What about radiation from Jupiter interfering with the optics and CCD cameras on the telescope?

Beichman: What you’d do is stop making the EBL observations while close to Jupiter. The radiation problems are significant, so you would only do observations before and after passing Jupiter.

Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. The image is derived from the 2MASS Extended Source Catalog (XSC)--more than 1.5 million galaxies, and the Point Source Catalog (PSC)--nearly 0.5 billion Milky Way stars. Credit: Thomas Jarrett, et al/Caltech. Click image for more information.

Dorminey: What would your instruments do that NASA’s planned James Webb Space Telescope (JWST) wouldn’t?

Bock: JWST will likely detect the brightest first galaxies, and depending exactly how galaxies formed, will miss most of the total radiation due to the contribution of many faint galaxies. Measuring the extragalactic background gives the total radiation from all the galaxies and provides the total energy. Furthermore, we don’t need a large telescope; 15 cm is sufficient.

Dorminey: What about planetary science with the telescope?

Bock: Our instrument specializes in making low surface-brightness measurements. We made specific design choices to map the zodiacal dust cloud from the inner to the outer solar system. A 3-Dimensional view will let us trace the origins of interstellar dust to comets and asteroid collisions. We know there are Kuiper-belt objects beyond the orbit of Neptune, and it is likely there is dust associated with them as well.

Dorminey: How long would this telescope function?

Bock: After the prime observations complete, it would certainly be possible that the original team or an outside party could propose to operate the telescope. One exciting science case is parallax micro-lensing observations; observations that use the parallax between Earth and Saturn to study the influence of exo-planets orbiting the stars producing a micro-lensing event. Other science opportunities include maps of the Kuiper Belt in the near-infrared; stellar occultations by Kuiper Belt Objects; and mapping more EBL fields for comparison with other surveys.

Dorminey: How would the telescope’s initial observations potentially shake up theoretical cosmology?

Beichman: Whenever you do a measurement that’s a factor of a hundred times better than before, you always get a surprise.

NASA Terminates Power, Locks Cargo Doors on Retiring Shuttle Discovery

In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, space shuttle Discovery’s payload bay is moments away from being concealed from view as its doors swing shut with the aid of yellow-painted strongbacks, hardware used to support and operate the doors when the shuttle is not in space. Discovery was powered down and the doors were closed for the final time during Space Shuttle Program transition and retirement activities. Discovery is being prepared for public display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va., in 2012. Credit: NASA/Kim Shiflett

[/caption]

Space Shuttle Discovery was powered down forever and the payload bay doors were locked tight for the final time on Friday, Dec. 16, by technicians at NASA’s Kennedy Space Center (KSC) in Florida.

Take a good last glimpse inside the retiring Discovery’s payload bay as the clamshell like doors seal off all indigenous US human spaceflight capability for several years at a minimum.

The historic “Power Down” came after both of the 60 foot long cargo bay doors were swung shut this morning for the last time inside the shuttle hanger known as Orbiter Processing Facility-1 (OPF-1) – in the shadow of the cavernous Vehicle Assembly Building (VAB).

Workers at KSC are in the final stages of the transition and retirement activities that will soon lead to Discovery departing her Florida launch pad forever on her final voyage. They are converting the orbiter from active duty flight status to display as a nonfunctional and stationary museum piece.

Kennedy Space Center Director Robert Cabana, a former space shuttle commander, formally marked the final power down and sealing of Discovery’s payload bay doors at a ceremony in OPF-1 with the skeleton force of remaining shuttle personnel engaged in the decommissioning efforts.

Discovery’s payload bay is glimpsed for the final time as its doors swing shut with the aid of yellow-painted strongbacks, hardware used to support and operate the doors when the shuttle is not in space. Discovery's doors were closed and the vehicle was powered down for the final time. Discovery is being prepared for public display at the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va., in 2012. Credit: NASA/Kim Shiflett

Discovery was the Fleet leader and NASA’s oldest orbiter having flown the most missions. All told Discovery soared 39 times to space from her maiden flight in 1984 to her last touchdown on the STS-133 mission in March 2011.

In between, Discovery deployed the iconic Hubble Space Telescope, launched the Ulysses solar probe and numerous other science satellites and Department of Defense surveillance platforms, conducted the first shuttle rendezvous with Russia’s Mir Space Station and delivered key components to the International Space Station including the last habitable module.

Discovery payload bay and doors sealed for History inside Orbiter Processing Facility-1 at KSC. Credit: NASA/Kim Shiflett

Discovery flew both ‘return to flight’ missions following the Challenger and Columbia tragedies as well as the second flight of Astronaut and Senator John Glenn, first American to orbit the Earth.

Discovery has been thoroughly cleansed and cleared of all hazardous materials in preparation for making the vehicle safe for public display at her new and final resting place, the Smithsonian’s National Air and Space Museum Steven F. Udvar-Hazy Center in Chantilly, Va..

Technicians re-installed the three power generating fuel cells after draining and purging all the toxic materials and fuels from the fuel lines and assemblies. Three replica space shuttle main engines were also installed last week.

The "vehicle powered" sign is momentarily lit as KSC technicians prepare to power down space shuttle Discovery for the last time. Credit: NASA/Kim Shiflett
The "vehicle powered" sign is turned off following the final power down of space shuttle Discovery. Credit: NASA/Kim Shiflett

In 2012, the 100 ton orbiter will be hoisted piggyback atop NASA’s specially modified 747 carrier aircraft. Discovery will take flight for the last time in April and become the center piece at her new home inside the Smithsonian’s spaceflight exhibition in Virginia.

To make way for Discovery, the prototype shuttle Enterprise currently housed at the Smithsonian will be hauled out and flown to New York City for display at the Intrepid, Sea, Air and Space Museum.

Altogether, Discovery spent 365 days in space during the 39 missions, orbited Earth 5,830 times and traveled 148,221,675 miles during a career spanning 27 years.

There is nothing on the horizon comparable to NASA’s Space Shuttles. Their capabilities will be unmatched for several decades to come.

America is now totally dependent on the Russians for launching US astronauts to space until privately built ‘space taxis’ from firms like SpaceX, Boeing and Sierra Nevada are ready in perhaps 4 to 6 years.

Liftoff of Space Shuttle Discovery on the STS-133 mission from the Kennedy Space Center on 39th and historic final flight to space. Credit: Ken Kremer
Space Shuttle Discovery rolling to the Vehicle Assembly Building during summer 2011 as it's being processed for retirement before transport to permanent home at the Smithsonian Air & Space Museum in Virginia. Thrusters, OMS pods and main engines were removed for cleaning of toxic components and fuels. Credit: Ken Kremer

NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

SpaceX Dragon spacecraft approaches ISS on Test Flight set for Feb. 7, 2012 launch. During the SpaceX COTS 2/3 demonstration mission in February 2012, the objectives include Dragon demonstrating safe operations in the vicinity of the ISS. After successfully completing the COTS 2 rendezvous requirements, Dragon will receive approval to begin the COTS 3 activities, gradually approaching the ISS from the radial direction (toward the Earth), to within a few meters of the ISS. Astronauts will reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into place over several hours of operations. Credit: NASA / SpaceX.

[/caption]

Make or break time for NASA’s big bet on commercial space transportation is at last in view. NASA has announced Feb. 7, 2012 as the launch target date for the first attempt by SpaceX to dock the firms Dragon cargo resupply spacecraft to the International Space Station (ISS), pending final safety reviews.

The Feb. 7 flight will be the second of the so-called Commercial Orbital Transportation Services (COTS) demonstration flights to be conducted by Space Exploration Technologies, or SpaceX, under a contact with NASA.

Several months ago SpaceX had requested that the objectives of the next two COTS flights, known as COTS 2 and COTS 3, be merged into one very ambitious flight and allow the Dragon vehicle to actually dock at the ISS instead of only accomplishing a rendezvous test on the next flight and waiting until the third COTS flight to carry out the final docking attempt.

The Dragon will remain attached to the ISS for about one week and astronauts will unload the cargo. Then the spacecraft will depart, re-enter the Earth atmosphere splashdown in the Pacific Ocean off the coast of California.

“The cargo is hundreds of pounds of astronaut provisions,” SpaceX spokeswoman Kirstin Grantham told Universe Today.

SpaceX Dragon approaches the ISS
Astronauts can reach it with the robotic arm and berth it at the Earth facing port of the Harmony node. Illustration: NASA /SpaceX

“SpaceX has made incredible progress over the last several months preparing Dragon for its mission to the space station,” said William Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Mission Directorate. “We look forward to a successful mission, which will open up a new era in commercial cargo delivery for this international orbiting laboratory.”

Since the forced retirement of NASA’s Space Shuttle following the final fight with orbiter Atlantis in July 2011 on the STS-135 mission, the US has had absolutely zero capability to launch either supplies or human crews to the massive orbiting complex, which is composed primarily of US components.

In a NASA statement, Gerstenmaier added, “There is still a significant amount of critical work to be completed before launch, but the teams have a sound plan to complete it and are prepared for unexpected challenges. As with all launches, we will adjust the launch date as needed to gain sufficient understanding of test and analysis results to ensure safety and mission success.”

SpaceX lofted the COTS 1 flight a year ago on Dec. 8, 2010 and became the first private company to successfully launch and return a spacecraft from Earth orbit. SpaceX assembled both the Falcon 9 booster rocket and the Dragon cargo vessel from US built components.

An astronaut operating the robot arm aboard the ISS will move Dragon into position at the berthing port where it will be locked in place at the Harmony node. Illustration: NASA /SpaceX

The new demonstration flight is now dubbed COTS 2/3. The objectives include Dragon safely demonstrating all COTS 2 operations in the vicinity of the ISS by conducting check out procedures and a series of rendezvous operations at a distance of approximately two miles and the ability to abort if necessary.

The European ATV and Japanese HTV cargo vessels carried out a similar series of tests during their respective first flights.

After accomplishing all the rendezvous tasks, Dragon will then receive approval to begin the COTS 3 activities, gradually approaching the ISS from below to within a few meters.

Specially trained astronauts working in the Cupola will then reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into place onto the Earth-facing side of the Harmony node. The operations are expected to take several hours.

The COTS Demo 2/3 Dragon spacecraft at Cape Canaveral. Photo: SpaceX

If successful, the Feb. 7 SpaceX demonstration flight will become the first commercial mission to visit the ISS and vindicate the advocates of commercial space transportation who contend that allowing private companies to compete for contracts to provide cargo delivery services to the ISS will result in dramatically reduced costs and risks and increased efficiencies.

The new commercial paradigm would also thereby allow NASA to focus more of its scarce funds on research activities to come up with the next breakthroughs enabling bolder missions to deep space.

If the flight fails, then the future of the ISS could be in serious jeopardy in the medium to long term because there would not be sufficient alternative launch cargo capacity to maintain the research and living requirements for a full crew complement of six residents aboard the orbiting laboratory.

Feb. 7 represents nothing less than ‘High Stakes on the High Frontier’.

NASA is all about bold objectives in space exploration in both the manned and robotic arenas – and that’s perfectly represented by the agencies huge gamble with the commercial cargo and commercial crew initiatives.

Documentary: A Look Back at the Apollo Missions

If you’ve got a spare 45 minutes and want to take a look back at the Apollo missions to the Moon, this documentary, ‘Journey To The Moon: The Apollo Story’ is well worth it. The film chronicles the Apollo program from its inception in 1961 through Apollo 11’s successful moon landing to the final mission, Apollo 17, which took place 39 years ago this week. You’ll see original footage (and those simple 1960’s era animations that showed how lunar orbit insertion and rendezvous and docking would work) and hear from the astronauts themselves.

Continue reading “Documentary: A Look Back at the Apollo Missions”

Revolutionary Air-Launched Commercial Rocket to Orbit Announced by Microsoft Billionaire Paul Allen

Stratolaunch Systems Carrier Aircraft - Air Launch to Orbit Space Launch System. Developed by Scaled Composites, the aircraft manufacturer and assembler founded by Burt Rutan. The carrier will loft and drop the 500,000 multistage SpaceX rocket that will propel payloads to orbit at dramatically reduced costs. It will be the largest aircraft ever flown with a wing span of 385 feet and weighing 1.2 million pounds. Credit: Stratolaunch Systems. Watch complete video below.

[/caption]

A mega quartet of luminaries led by Microsoft co-founder Paul G. Allen and legendary aerospace designer Burt Rutan have joined forces to create a revolutionary new approach to space travel. This new privately funded venture entails the development of a mammoth air-launched space transportation system that aims to dramatically cut the high costs and risks of launching both cargo and human crews to low Earth orbit.

Allen and Rutan are teaming up with Elon Musk, founder of Space Exploration Technologies Corp, or SpaceX, and Michael Griffin, former NASA Administrator, to build the world’s largest aircraft ever flown and use it as a platform to loft a multi-stage SpaceX rocket that will deliver a payload of some 13,500 pounds into earth orbit, about the same class as a Delta II.

Allen and Rutan hope to build upon the spaceflight revolution that they pioneered with the suborbital SpaceShipOne in 2004, which was the first privately funded spaceship to reach the edge of space, and now take the critical next step and actually vault all the way to orbit.


Video Caption: Stratolaunch Systems is pioneering innovative solutions to revolutionize space transportation to orbit.

To accomplish this innovative leap, Allen and Rutan, announced the formation of a new company, funded by Allen, called Stratolaunch Systems at a press briefing today, Dec. 13, held in Seattle, WA. Allen is a billionaire and philanthropist who has funded a host of projects to advance science,

“Our national aspirations for space exploration have been receding,” Allen lamented at the start of the briefing. “This year saw the end of NASA’s space shuttle program. Constellation, which would have taken us back to the moon, has been mothballed as well. For the first time since John Glenn, America cannot fly its own astronauts into space.”

“With government funded spaceflight diminishing, there’s a much expanded opportunity for privately funded efforts.”

Rutan said that Stratolaunch will build a 1.2 million pound carrier aircraft sporting a wingspan of 385 feet – longer than a football field – and which will be powered by six 747 engines on takeoff. The carrier will be a twin fuselage vehicle, like the WhiteKnight developed by Rutan to launch SpaceShipOne.

Air launch of SpaceX rocket to orbit

The 120 foot long SpaceX rocket, weighing up to 490,000 pounds, will be slung in between and dropped at an altitude of about 30,000 feet for the remaining ascent to orbit.

SpaceX will construct a shorter, less powerful version of the firms existing Falcon 9 rocket, which may be either a Falcon 4 or Falcon 5 depending on specifications.

The new launch system will operate from a large airport or spaceport like the Kennedy Space Center, require a 12,000 feet long runway for takeoff and landing and be capable of flying up to 1,300 nautical miles to the payload’s launch point. Crews aboard the huge carrier aircraft will also conduct the countdown and firing of the booster and will monitor payload blasting to orbit.

“I have long dreamed about taking the next big step in private space flight after the success of SpaceShipOne – to offer a flexible, orbital space delivery system,” Allen said. “We are at the dawn of radical change in the space launch industry. Stratolaunch Systems is pioneering an innovative solution that will revolutionize space travel.”

The goal of Stratolaunch is to “bring airport-like operations to the launch of commercial and government payloads and, eventually, human missions,” according to a company statement.

Plans call for a first orbital flight within five years by around 2016. Test flights could begin around 2015.

“We believe this technology has the potential to someday make spaceflight routine by removing many of the constraints associated with ground launched rockets,” said Mike Griffin. “Our system will also provide the flexibility to launch from a large variety of locations.”

Mike Griffin added that the venture is aiming for the small to medium class payload market similar to what has been served by the venerable Delta II rocket, which is now being retired after decades of service.

“NASA’s science satellites could also be lofted by Stratolaunch.”

“At some point this vehicle could loft a crew of say six people,” Griffin stated.

“This is an exciting day,” concluded Allen.

“Stratolaunch will keep America at the forefront of space exploration and give tomorrow’s children something to search for in the night sky and dream about. Work has already started on our project at the Mojave Spaceport.”

SpaceX Dragon cargo spaceship propels commercial and science payloads to orbit following air-launch from gigantic carrier aircraft. Credit: Stratolaunch Systems

Russian Space Program Prepares for Phobos-Grunt Re-Entry

Configuration of the Phobos-Grunt spacecraft. Credit: NPO Lavochkin
Configuration of the Phobos-Grunt spacecraft. Credit: NPO Lavochkin

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update on the mission for Universe Today.

As last-ditch efforts to recover control of the unpiloted Phobos-Grunt spacecraft continue, officials, engineers, and scientists at the Russian Federal Space Agency (Roscosmos) have shifted their focus to the issue of reentry. Launched November 9 by a Zenit-2 rocket on a mission to return a sample from Phobos, the larger of Mars’ two small moons, the spacecraft reached low Earth orbit. However, since the engine of the upper stage that was to propel it on a trajectory to Mars failed to ignite, the spacecraft continues to orbit Earth in a low orbit. Despite some limited success in communicating with Phobos-Grunt by way of tracking stations that the European Space Agency (ESA) operates in Perth, Australia, and Masplalomas, Canary Islands, the spacecraft remains stranded in an orbit whose decay will take the craft into the atmosphere sometime in early January.
Continue reading “Russian Space Program Prepares for Phobos-Grunt Re-Entry”