NASA & US Navy Test Demonstrates Water Recovery of Orion Crew Capsule

During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com

During the stationary recovery test of Orion at Norfolk Naval Base on Aug. 15, 2013, US Navy divers attached tow lines and led the test capsule to a flooded well deck on the USS Arlington. Credit: Ken Kremer/kenkremer.com.
Story updated with additional test Video and images[/caption]

NAVAL STATION NORFOLK,VA – When American astronauts again venture into deep space sometime in the next decade, their return trip to Mother Earth will end with the splashdown of their Orion capsule in the Pacific Ocean – much like the Apollo lunar landing crews of four decades ago.

But before that can happen, Orion must first pass through a myriad of milestones to insure the safe return of our human crews.

A NASA and U.S. Navy test successfully demonstrated the water recovery of the Orion crew module today (Aug. 15) at Naval Station Norfolk in Virginia – and Universe Today witnessed the entire operation.

“Today’s test was terrific,” Scott Wilson, NASA’s Orion Manager of Production Operations, told Universe Today in a post test interview at Naval Station Norfolk.

“We got all the data we needed and the test was very successful. This was exactly what we wanted to do and we don’t like surprises.”

US Navy divers on four boats attached tow lines and to the Orion test capsule and guide it to the well deck on the USS Arlington during Aug. 15 recovery test Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
US Navy divers on four boats attached tow lines and to the Orion test capsule and guide it to the well deck on the USS Arlington during Aug. 15 recovery test at Norfolk Naval Base, VA.

Credit: Ken Kremer/kenkremer.com

Today’s ‘Orion Stationary Recovery Test’ was conducted to support the upcoming first flight of Orion on the EFT-1 mission due to blastoff in September 2014 from Cape Canaveral, Florida.

“We completed all of our primary and secondary test objectives,” Wilson stated.

Teams of US Navy divers in a flotilla of amphibious boats launched from the USS Arlington approached a test version of the Orion capsule known as the boilerplate test article (BTA). The Arlington was docked against its pier during the test in a benign, controlled environment.

Dive teams attach tow lines to Orion test capsule during Aug. 15 recovery test at Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
Dive teams attach tow lines to Orion test capsule during Aug. 15 recovery test at Norfolk Naval Base, VA. Credit: Ken Kremer/kenkremer.com

Divers attached several tow lines to the capsule, in a coordinated operation with the Arlington, and led the capsule into the ship’s flooded well deck.

The Orion capsule was carefully towed inside the well deck and positioned over the recovery cradle. The sea water was drained and the capsule was attached to the recovery cradle.

Dive teams haul Orion onto the well deck of the USS Arlington during Aug. 15 recovery test at Norfolk Naval Base, VA.  Credit: Ken Kremer/kenkremer.com
Dive teams haul Orion onto the well deck of the USS Arlington during Aug. 15 recovery test at Norfolk Naval Base, VA. Credit: Ken Kremer/kenkremer.com

“During the test there is constant radio communications between the ship and the divers teams in the boats.”

“The operation within the well deck areas are also being controlled as well as the rope and winch handlers on the boat,” Wilson told me.

At the conclusion of the test, myself and the NASA social media participants boarded the USS Arlington and toured the Orion capsule for a thrilling up close look.

Myself and NASA social media participate observed Orion after hauled aboard the well deck and boarded the USS Arlington recovery ship.    Credit: Ken Kremer/kenkremer.com
Myself and NASA social media participants observed Orion after hauled aboard the well deck and boarded the USS Arlington recovery ship. Credit: Ken Kremer/kenkremer.com

“Today marks a significant milestone in the Navy’s partnership with NASA and the Orion Human Space Flight Program,” said Navy Commander Brett Moyes, Future Plans Branch chief, U.S. Fleet in a statement.

“The Navy is excited to support NASA’s continuing mission of space exploration. Our unique capabilities make us an ideal partner for NASA in the recovery of astronauts in the 21st century — just as we did nearly a half century ago in support of America’s quest to put a man on the moon.”

The ocean recovery of Orion will be far different from the Apollo era where the crew’s were first hoisted out of the floating capsule and the capsule then hoisted on deck of a US Navy aircraft carrier.

The next Orion water recovery test will be conducted in the open waters of the Pacific Ocean in January 2014.

Inside up close look at the Orion attached to the recovery cradle in the drained well deck of the USS Arlington recovery ship.    Credit: Ken Kremer/kenkremer.com
Inside up close look at the Orion attached to the recovery cradle in the drained well deck of the USS Arlington recovery ship. Credit: Ken Kremer/kenkremer.com

NASA’s Langley Research Center in nearby Hampton, VA is conducting an extensive drop test program in support of the Orion project.

“The Orion capsule tested today has the same mold line and dimensions as the Orion EFT-1 capsule.”

“The Orion hardware and the Delta IV Heavy booster for the EFT-1 launch are on target for launch in 2014,” Wilson told me.

Watch this NASA Video of the Orion test:

During the unmanned Orion EFT-1 mission, the capsule will fly on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface, farther than any human spacecraft has gone in 40 years.

The EFT-1 mission will provide engineers with critical data about Orion’s heat shield, flight systems and capabilities to validate designs of the spacecraft before it begins carrying humans to new destinations in the solar system, including an asteroid and Mars.

It will return to Earth at a speed of approximately 20,000 mph for a splashdown in the Pacific Ocean.

Right now its T Minus 1 Year and counting to liftoff of Orion EFT-1.

Ken Kremer

…………….
Learn more about Orion, Cygnus, Antares, LADEE, MAVEN, Mars rovers and more at Ken’s upcoming presentations

Sep 5/6/16/17: LADEE Lunar & Antares/Cygnus ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

Oct 3: “Curiosity, MAVEN and the Search for Life on Mars – (3-D)”, STAR Astronomy Club, Brookdale Community College & Monmouth Museum, Lincroft, NJ, 8 PM

Social media and media including Ken observe the Aug. 15 Orion water recovery test from the pier at Naval Station Norfolk, VA.  Credit: NASA
Social media and media including Ken observe the Aug. 15 Orion water recovery test from the pier at Naval Station Norfolk, VA. Credit: NASA
Scott Wilson, NASA’s Orion production manager and Ken Kremer, Universe Today discuss the Aug. 15 recovery test back dropped by Orion and the USS Arlington.  Credit: Ken Kremer/kenkremer.com
Scott Wilson, NASA’s Orion production manager and Ken Kremer, Universe Today discuss the Aug. 15 recovery test back dropped by Orion and the USS Arlington. Credit: Ken Kremer/kenkremer.com

Spacesuited Astronauts Climb Aboard Boeing CST-100 Commercial Crew Capsule for Key Tests

NASA astronaut Randy Bresnik prepares to enter the CST-100 spacecraft, which was built inside The Boeing Company's Houston Product Support Center. Credit: NASA/Robert Markowitz

A pair of NASA astronauts donned their spacesuits for key fit check evaluations inside a test version of the Boeing Company’s CST-100 commercial ‘space taxi’ which was unveiled this week for the world’s first glimpse of the cabin’s interior.

Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, seeking to restore America’s capability to fly humans to Earth orbit and the space station using seed money from NASA’s Commercial Crew Program (CCP).

Astronauts Serena Aunon and Randy Bresnik conducted a day long series of technical evaluations inside a fully outfitted, full scale mock up of the CST-100, while wearing NASA’s iconic orange launch-and-entry flight suits from the space shuttle era.

During the tests, Boeing technicians monitored the astronauts ergonomic ability to work in the seats and move around during hands on use of the capsules equipment, display consoles and storage compartments.

The purpose of the testing at Boeing’s Houston Product Support Center is to see what works well and what needs modifications before fixing the final capsule design for construction.

“It’s an upgrade,” said astronaut Serena Aunon at the evaluation. “It is an American vehicle, of course it is an upgrade.”

This is an interior view of The Boeing Company's CST-100 spacecraft, which features LED lighting and tablet technology.  Image Credit: NASA/Robert Markowitz
This is an interior view of The Boeing Company’s CST-100 spacecraft, which features LED lighting and tablet technology.
Image Credit: NASA/Robert Markowitz

Former NASA Astronaut Chris Ferguson, the commander of the final shuttle flight (STS-135) by Atlantis, is leading Boeing’s test effort as the director of Boeing’s Crew and Mission Operations.

“These are our customers. They’re the ones who will take our spacecraft into flight, and if we’re not building it the way they want it we’re doing something wrong,” said Ferguson.

“We’ll probably make one more go-around and make sure that everything is just the way they like it.”

The CST-100 is designed to carry a crew of up to 7 astronauts, or a mix of cargo and crew, on missions to low-Earth orbit (LEO) and the International Space Station (ISS) around the middle of this decade.

Although it resembles Boeing’s Apollo-era capsules from the outside, the interior employs state of the art modern technology including sky blue LED lighting and tablet technology.

Check out this video showing the astronauts and engineers during the CST-100 testing

Nevertheless Boeing’s design goal is to keep the flight technology as simple as possible.

“What you’re not going to find is 1,100 or 1,600 switches,” said Ferguson. “When these guys go up in this, they’re primary mission is not to fly this spacecraft, they’re primary mission is to go to the space station for six months. So we don’t want to burden them with an inordinate amount of training to fly this vehicle. We want it to be intuitive.”

The CST-100 crew transporter will fly to orbit atop the venerable Atlas V rocket built by United Launch Alliance (ULA) from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

Boeing is aiming for an initial three day manned orbital test flight of the CST-100 during 2016, says John Mulholland, Boeing vice president and program manger for Commercial Programs.

The 1st docking mission to the ISS would follow in 2017 – depending on the very uncertain funding that Congress approves for NASA.

The Atlas V was also chosen to launch one of Boeing’s commercial crew competitors, namely the Dream Chaser mini shuttle built by Sierra Nevada Corp.

Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com
Boeing CST-100 capsule early mock-up, interior view. Credit: Ken Kremer – kenkremer.com

NASA’s CCP program is fostering the development of the CST-100 as well as the SpaceX Dragon and Sierra Nevada Dream Chaser to replace America’s capability to launch humans to space that was lost following the retirement of NASA’s space shuttle orbiters two years ago in July 2011.

Since 2011, every American astronaut has been 100% dependent on the Russians and their Soyuz capsule to hitch a ride to the ISS.

“We pay one of our [ISS] partners, the Russians, $71 million a seat to fly,” says Ed Mango, CCP’s program manager. “What we want to do is give that to an American company to fly our crews into space.”

Simultaneously NASA and its industry partners are designing and building the Orion crew capsule and SLS heavy lift booster to send humans to the Moon and deep space destinations including Near Earth Asteroids and Mars.

Ken Kremer

Interior view of Boeing CST-100 commercial crew capsule. Credit: NASA
Interior view of Boeing CST-100 commercial crew capsule. Credit: NASA

What’s Going To Happen With the NASA Budget?

 

As NASA’s fiscal 2014 budget proceeds through Congress, it’s still quite the ping-pong ball match to try to figure out where their budget numbers will fall. How do you think the budget will end up? Leave your thoughts in the comments.

Also, be sure to watch the latest markup on the NASA bill occurring today when the House Committee on Science, Space and Technology meets — the webcast is here. It starts at 11:15 a.m. EDT/3:15 p.m. GMT.

Obama administration initial request – $17.7 billion: Unveiled in early April, the $17.7 billion “tough choices” NASA budget was for $50 million less than requested in 2013; the actual FY 2013 budget was $16.6 billion due to cuts and sequestration. While reducing funding opportunities for planetary science, the FY 2014 budget provided funding for a NASA mission to capture an asteroid. The asteroid mission proposal, in later weeks, did not impress at least one subcommittee.

House Appropriations Committee – $16.6 billion. Last week, the committee’s proposal chopped off $1.1 billion from the initial request. The committee passed the Commerce, Justice, and Science appropriations bill with few changes this Wednesday. The $3.6 billion allotted for exploration is $202 million below FY 2013, which critics say will push back NASA’s ability to fund its commercial crew program to bring astronauts into space from American soil. The proposal, however, shields the Multi-Purpose Crew Vehicle and Space Launch System from schedule changes due to budgetary levels. NASA science programs in this budget were at $4.8 billion, $266 million below FY 2013. “This includes funding above the President’s request for planetary science to ensure the continuation of critical research and development programs,” the appropriations committee stated. This document contains a detailed breakdown of its budget for NASA.

Artist's conception of NASA's Space Launch System. Credit: NASA
It appears that NASA’s proposed Space Launch System is getting budgetary support from at least some House members. Credit: NASA

– U.S. Senate Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies – $18 billion: On Tuesday, the Senate subcommittee suggested an allocation to NASA of $18 billion. A press release says the budget level will give “better balance for all of NASA’s important missions, including $373 million more for science that helps us to better understand Earth and own solar system while peering at new worlds way beyond the stars. The Senate also provides $597 million more to let humans explore beyond low earth orbit while safely sending our astronauts to the space station on U.S. made vehicles.”

NASA’s reaction: David Weaver, NASA’s associate administrator for communications, said the agency is “deeply concerned” about the House funding levels. “While we appreciate the support of the Committee, we are deeply concerned that the bill under consideration would set our funding level significantly below the President’s request,” he wrote in a blog post, adding, “We are especially concerned the bill cuts funding for space technology – the “seed corn” that allows the nation to conduct ever more capable and affordable space missions – and the innovative and cost-effective commercial crew program, which will break our sole dependence on foreign partners to get to the Space Station. The bill will jeopardize the success of the commercial crew program and ensure that we continue to outsource jobs to Russia.”

Reaction of Commercial Spaceflight Federation: Much the same as NASA. “Less funding for the commercial

Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
NASA fears there will not be enough money to fund commercial providers such as SpaceX  (Dragon cargo spacecraft pictured) who aim to bring astronauts to the space station themselves. Credit: NASA/CSA/Chris Hadfield

crew program simply equates to prolonged dependence on foreign launch providers,” stated federation president Michael Lopez-Alegria, who is a former NASA astronaut. “As a nation, we should be doing our utmost to regain the capability of putting astronauts in orbit on American vehicles as soon as possible.”

What’s next: The House Committee on Science, Space and Technology markup of the NASA bill takes place starting at 11:15 a.m. EDT/3:15 p.m. GMT (again, watch the webcast at this link.) We’ll keep you posted on what they say. The Planetary Society’s Casey Dreier, who said $16.6 billion is the smallest NASA budget in terms of purchasing power since 1986, points out that the House doesn’t have the final say: “The Senate still needs to weigh in, so this House budget is not the last word in the matter, but it’s deeply troubling. You can’t turn NASA on and off like a spigot. Cuts now will echo through the coming decades.”

Sierra Nevada Dream Chaser Gets Wings and Tail, Starts Ground Testing

Sierra Nevada Corporation's Dream Chaser successfully rolls through two tow tests at NASA's Dryden Flight Research Center in California in preparation for future flight testing

Sierra Nevada Corporation’s Dream Chaser successfully rolls through two tow tests at NASA’s Dryden Flight Research Center in California in preparation for future flight testing later this year.
Watch way cool Dream Chaser assembly video below![/caption]

Sierra Nevada Corporation’s winged Dream Chaser engineering test article is moving forward with a series of ground tests at NASA’s Dryden Flight Research Center in California that will soon lead to dramatic aerial flight tests throughout 2013.

Pathfinding tow tests on Dryden’s concrete runway aim to validate the performance of the vehicles’ nose skid, brakes, tires and other systems to prove that it can safely land an astronaut crew after surviving the searing re-entry from Earth orbit.

The Dream Chaser is one of the three types of private sector ‘space taxis’ being developed with NASA seed money to restore America’s capability to blast humans to Earth orbit from American soil – a capability which was totally lost following the forced shutdown of NASA’s Space Shuttle program in 2011.

Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS
Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

For the initial ground tests, the engineering test article was pulled by a tow truck at 10 and 20 MPH. Later this month tow speeds will be ramped up to 40 to 60 MPH.

Final assembly of the Dream Chaser test vehicle was completed at Dryden with installation of the wings and tail, following shipment from SNC’s Space Systems headquarters in Louisville, Colo.

Watch this exciting minute-long, time-lapse video showing attachment of the wings and tail:

In the next phase later this year, Sierra Nevada will conduct airborne captive carry tests using an Erickson Skycrane helicopter.

Atmospheric drop tests of the engineering test article in an autonomous free flight mode for Approach and Landing Tests (ALT) will follow to check the aerodynamic handling.

The engineering test article is a full sized vehicle.

Dream Chaser is a reusable mini shuttle that launches from the Florida Space Coast atop a United Launch Alliance Atlas V rocket and lands on the shuttle landing facility (SLF) runway at the Kennedy Space Center, like the Space Shuttle.

“It’s not outfitted for orbital flight. It is outfitted for atmospheric flight tests,” said Marc Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman, to Universe Today.

“The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight,” Sirangelo told me.

NASA’s Dryden Flight Research Center welcomes SNC’s Dream Chaser shrink wrapped engineering test article for a flight test program in collaboration with NASA’s Commercial Crew Program this summer. Winds and tail were soon joined and ground testing has now begun. Credit: NASA/Tom Tschida Read more: http://www.universetoday.com/102020/sierra-nevada-dream-chaser-gets-wings-and-tail-starts-ground-testing/#ixzz2Yw1peNRJ
NASA’s Dryden Flight Research Center welcomes SNC’s Dream Chaser shrink wrapped engineering test article for a flight test program in collaboration with NASA’s Commercial Crew Program this summer. Winds and tail were soon joined and ground testing has now begun. Credit: NASA/Tom Tschida

Sierra Nevada Corp, along with Boeing and SpaceX are working with NASA in a public-private partnership using a combination of NASA seed money and company funds.

Each company was awarded contracts under NASA’s Commercial Crew Integrated Capability Initiative, or CCiCap, program, the third in a series of contracts aimed at kick starting the development of the private sector ‘space taxis’ to fly US and partner astronauts to and from low Earth orbit (LEO) and the International Space Station (ISS).

“We are the emotional successors to the shuttle,” says Sirangelo. “Our target was to repatriate that industry back to the United States, and that’s what we’re doing.”

The combined value of NASA’s Phase 1 CCiCap contracts is about $1.1 Billion and runs through March 2014.

Phase 2 contract awards will eventually lead to actual flight units after a down selection to one or more of the companies.

Everything depends on NASA’s approved budget, which seems headed for steep cuts in excess of a billion dollars if the Republican dominated US House has its way.

Dream Chaser awaits launch atop Atlas V rocket
Dream Chaser awaits launch atop Atlas V rocket

The Commercial Crew program’s goal is to ensure the nation has safe, reliable and affordable crew transportation systems to space.

“Unique public-private partnerships like the one between NASA and Sierra Nevada Corporation are creating an industry capable of building the next generation of rockets and spacecraft that will carry U.S. astronauts to the scientific proving ground of low-Earth orbit,” said William Gerstenmaier, NASA’s associate administrator for human exploration and operations in Washington, in a statement.

“NASA centers around the country paved the way for 50 years of American human spaceflight, and they’re actively working with our partners to test innovative commercial space systems that will continue to ensure American leadership in exploration and discovery.”

All three commercial vehicles – the Boeing CST-100; SpaceX Dragon and Sierra Nevada Dream Chaser – are designed to carry a crew of up to 7 astronauts and remain docked at the ISS for more than 6 months.

The first orbital flight test of the Dream Chaser is not expected before 2016 and could be further delayed if NASA’s commercial crew budget is again slashed by the Congress – as was done the past few years.

In the meantime, US astronauts are totally dependent on Russia’s Soyuz capsule for rides to the ISS. NASA must pay Russia upwards of $70 million per seat until the space taxis are ready for liftoff – perhaps in 2017.

“We have got to get Commercial Crew funded, or we’re going to be paying the Russians forever,” said NASA Administrator Charles Bolden at Dryden. “Without Commercial Crew, we probably won’t have exploration.”

Concurrently, NASA is developing the Orion Crew capsule for missions to the Moon, Asteroids and beyond to Mars and other destinations in our Solar System -details here.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon.
Credit: Ken Kremer/kenkremer.com
Sierra Nevada Corp.'s Dream Chaser spacecraft landing on a traditional runway. Dream Chaser is being developed in collaboration with NASA's Commercial Crew Program during the Commercial Crew Integrated Capability initiative (CCiCAP).  Credit: Sierra Nevada Corp.
Sierra Nevada Corp.’s Dream Chaser spacecraft landing on a traditional runway. Dream Chaser is being developed in collaboration with NASA’s Commercial Crew Program during the Commercial Crew Integrated Capability initiative (CCiCAP). Credit: Sierra Nevada Corp.

NASA Alters 1st Orion/SLS Flight – Bold Upgrade to Deep Space Asteroid Harbinger Planned

NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 - attached to European provided service module – on an enhanced m mission to Deep Space where an asteroid could be relocated as early as 2021. Credit: NASA

NASA Orion spacecraft blasts off atop 1st Space Launch System rocket in 2017 – attached to European provided service module – on an ambitious mission to explore Deep Space some 40,000 miles beyond the Moon, where an asteroid could be relocated as early as 2021. Credit: NASA
Story updated with further details[/caption]

NASA managers have announced a bold new plan to significantly alter and upgrade the goals and complexity of the 1st mission of the integrated Orion/Space Launch System (SLS) human exploration architecture – planned for blastoff in late 2017.

The ambitious first flight, called Exploration Mission 1 (EM-1), would be targeted to send an unpiloted Orion spacecraft to a point more than 40,000 miles (70,000 kilometers) beyond the Moon as a forerunner supporting NASA’s new Asteroid Redirect Initiative – recently approved by the Obama Administration.

The EM-1 flight will now serve as an elaborate harbinger to NASA’s likewise enhanced EM-2 mission, which would dispatch a crew of astronauts for up close investigation of a small Near Earth Asteroid relocated to the Moon’s vicinity.

Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA
Orion crew module separates from Space Launch System (SLS) upper stage. Credit: NASA

Until recently NASA’s plan had been to launch the first crewed Orion atop the 2nd SLS rocket in 2021 to a high orbit around the moon on the EM-2 mission, said NASA Associate Administrator Lori Garver in an prior interview with me at the Kennedy Space Center.

Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.
Concept of NASA spacecraft with Asteroid capture mechanism deployed to redirect a small space rock to a stable lunar orbit for later study by astronauts aboard Orion crew capsule. Credit: NASA.

The enhanced EM-1 flight would involve launching an unmanned Orion, fully integrated with the Block 1 SLS to a Deep Retrograde Orbit (DRO) near the moon, a stable orbit in the Earth-moon system where an asteroid could be moved to as early as 2021.

Orion’s mission duration would be nearly tripled to 25 days from the original 10 days.

“The EM-1 mission with include approximately nine days outbound, three to six days in deep retrograde orbit and nine days back,” Brandi Dean, NASA Johnson Space Center spokeswoman told Universe Today exclusively.

The proposed much more technologically difficult EM-1 mission would allow for an exceptionally more vigorous work out and evaluation of the design of all flight systems for both Orion and SLS before risking a flight with humans aboard.

Asteroid Capture in Progress
Asteroid Capture in Progress

A slew of additional thruster firings would exercise the engines to change orbital parameters outbound, around the moon and inbound for reentry.

The current Deep Retrograde Orbit (DRO) plan includes several thruster firings from the Orion service module, including a powered lunar flyby, an insertion at DRO, an extraction maneuver from the DRO and a powered flyby on return to Earth.

Orion would be outfitted with sensors to collect a wide variety of measurements to evaluate its operation in the harsh space environment.

“EM-1 will have a compliment of both operational flight instrumentation and development flight instrumentation. This instrumentation suite gives us the ability to measure many attributes of system functionality and performance, including thermal, stress, displacement, acceleration, pressure and radiation,” Dean told me.

The EM-1 flight has many years of planning and development ahead and further revisions prior to the 2017 liftoff are likely.

“Final flight test objectives and the exact set of instrumentation required to meet those objectives is currently under development,” Dean explained.

Orion is NASA’s next generation manned space vehicle following the retirement of NASA’s trio of Space Shuttles in 2011.

The SLS launcher will be the most powerful and capable rocket ever built by humans – exceeding the liftoff thrust of the Apollo era Moon landing booster, the mighty Saturn V.

“We sent Apollo around the moon before we landed on it and tested the space shuttle’s landing performance before it ever returned from space.” said Dan Dumbacher, NASA’s deputy associate administrator for exploration systems development, in a statement.

“We’ve always planned for EM-1 to serve as the first test of SLS and Orion together and as a critical step in preparing for crewed flights. This change still gives us that opportunity and also gives us a chance to test operations planning ahead of our mission to a relocated asteroid.”

Both Orion and SLS are under active and accelerating development by NASA and its industrial partners.

The 1st Orion capsule is slated to blast off on the unpiloted EFT-1 test flight in September 2014 atop a Delta IV Heavy rocket on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface.

Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com
Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com

It will then reenter Earth’s atmosphere at speeds of about 20,000 MPH (11 km/sec) and endure temperatures of 4,000 degrees Fahrenheit in a critical test designed to evaluate the performance of Orion’s heatshield and numerous spacecraft systems.

Orion EFT-1 is already under construction at the Kennedy Space Center (KSC) by prime contractor Lockheed Martin – read my earlier story here.

Integration and stacking tests with Orion’s emergency Launch Abort System are also in progress at KSC – details here.

NASA says the SLS is also in the midst of a extensive review process called the Preliminary Design Review (PDR) to ensure that all launch vehicle components and systems will achieve the specified performance targets and be completed in time to meet the 2017 launch date. The PDR will be completed later this summer.

NASA’s goal with Orion/SLS is to send humans to the Moon and other Deep Space destinations like Asteroids and Mars for the first time in over forty years since the final manned lunar landing by Apollo 17 back in 1972.

NASA Headquarters will make a final decision on upgrading the EM-1 mission after extensive technical reviews this summer.

Ken Kremer

Schematic of Orion components. Credit: NASA
Schematic of Orion components. Credit: NASA

NASA Tanks: Not Just Heavy Metal Any More

Artist's conception of NASA's Space Launch System with Orion crewed deep space capsule. Credit: NASA

NASA’s future in fuels will see less heavy metal. Literally.

The agency just finished testing on a composite propellant tank that holds cryogenics, or super-chilled gases that are commonly used as rocket fuel (such as for the space shuttle). The agency brought the test tank down to -423 degrees Fahrenheit, put it through a few cycles and ramped up the internal pressure.

Composites are lighter material than the traditional metals that are used to hold these gases. NASA is excitedly throwing out descriptors such as “game-changing” when it talks about this, and has some reason to do so: composites are lighter than metals.

The light weight of composite tanks makes them lighter to lift off the ground. This reduces the costs of launch, which in turn reduces the overall cost of a mission. That will make penny-counters at the agency happier as the agency battles for funding dollars in fiscal 2014 and beyond.

The first of these tanks is likely to be used in the upper stage of NASA’s Space Launch System rocket, which is under development right now. That’s the rocket that’s supposed to send the Orion spacecraft (aiming for a 2014 test flight) into space in the latter years of this decade.

“The tank manufacturing process represents a number of industry breakthroughs, including automated fiber placement of oven-cured materials, fiber placement of an all-composite tank wall design that is leak-tight, and a tooling approach that eliminates heavy joints,” stated Dan Rivera, the Boeing cryogenic tank program manager at Marshall.

Boeing and NASA are now working on another composite tank that should be tested at Marshall later in 2013.

Source: NASA

Orion takes shape for 2014 Test Flight

Technicians work on mockups of the Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) to simulate critical assembly techniques inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida for the EFT-1 mission due to liftoff in September 2014. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – NASA is picking up the pace of assembly operations for the Orion capsule, America’s next crew vehicle destined to carry US astronauts to Asteroids, the Moon, Mars and Beyond.

Just over a year from now in September 2014, NASA will launch Orion on its first test flight, an unpiloted mission dubbed EFT-1.

At NASA’s Kennedy Space Center in Florida, expert work crews are already hard at work building a myriad of Orion’s key components, insuring the spacecraft takes shape for an on time liftoff.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Powerful quartet of LAS abort motors will fire in case of launch emergency to save astronauts lives. Credit: Ken Kremer/kenkremer.com
Universe Today is reporting on NASA’s progress and I took an exclusive behind the scenes tour inside KSC facilities to check on Orion’s progress.

In 2014 Orion will blast off to Earth orbit atop a mammoth Delta IV Heavy booster, the most powerful booster in America’s rocket fleet following the retirement of NASA’s Space Shuttle orbiters in 2011.

On later flights Orion will blast off on the gargantuan Space Launch System (SLS), the world’s most powerful rocket which is simultaneously under development by NASA.

At the very top of the Orion launch stack sits the Launch Abort System (LAS) – a critically important component to ensure crew safety, bolted above the crew module.

In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts lives.

The LAS is one of the five primary components of the flight test vehicle for the EFT-1 mission.

Astronaut hatch swung open on Orion capsule mock up joined to base of Launch Abort System (LAS) emergency escape tower.   Credit: Ken Kremer/kenkremer.com
Astronaut hatch swung open on Orion capsule mock up joined to base of Launch Abort System (LAS) emergency escape tower. Credit: Ken Kremer/kenkremer.com

Prior to any launch from the Kennedy Space Center, all the rocket components are painstakingly attached piece by piece.

Final assembly for EFT-1 takes place inside the iconic Vehicle Assembly Building (VAB).

To get a head start on assembly with the launch date relentlessly approaching, technicians have been practicing lifting and stacking techniques for several months inside the VAB transfer aisle using the 6 ton LAS pathfinder replica and mock ups of the Orion crew and service modules.

This 175 ton hook and crane system used to maneuver the Orion crew capsule, Service Module and Launch Abort System (LAS) components inside the Vehicle Assembly Building the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com
This 175 ton hook and crane system used to maneuver the Orion crew capsule, Service Module and Launch Abort System (LAS) components inside the Vehicle Assembly Building the Kennedy Space Center (KSC) in Florida. Credit: Ken Kremer/kenkremer.com

Conducting the practice sessions now with high fidelity replicas serves multiple purposes, including anticipating and solving problems now before the real equipment arrives, as well as to keep the teams proficient between the years long launch gap between the finale of the Space Shuttle program and the start up of the Orion/SLS deep space exploration program.

Delicate maneuvers like lifting, rolling, rotating, stacking, gimballing and more of heavy components requiring precision placements is very demanding and takes extensive practice to master.

There is no margin for error. Human lives hang in the balance.

Technicians at work practicing de-stacking operations with full size mockups of the Orion capsule and Launch Abort System components inside the Vehicle Assembly Building at the Kennedy Space Center in Florida. Credit: /Jim Grossmann
Technicians at work practicing de-stacking operations with full size mockups of the Orion capsule and Launch Abort System components inside the Vehicle Assembly Building at the Kennedy Space Center in Florida. Credit: NASA/Jim Grossmann

The same dedicated crews that assembled NASA’s Space Shuttles inside the VAB for 3 decades are assembling Orion. And they are using the same equipment.

“The breakover, taking the LAS from horizontal to vertical, is not as easy as it sometimes seems, but the VAB guys are exceptional, they are really good at what they do so they really didn’t have a problem,” says Douglas Lenhardt, who is overseeing the Orion mock-up and operations planning for the Ground Systems Development and Operations program, or GSDO.

Simulations with computer models are extremely helpful, but real life situations can be another matter.

“Real-life, things don’t always work perfectly and that’s why it really does help having a physical model,” says Lenhardt.

One day our astronauts will climb through an Orion hatch like this for America’s ‘Return to the Moon’ - following in the eternal footsteps of Apollo 11’s Neil Armstrong and Buzz Aldrin.  Credit: Ken Kremer/kenkremer.com
One day our astronauts will climb through an Orion hatch like this for America’s ‘Return to the Moon’ – following in the eternal footsteps of Apollo 11’s Neil Armstrong and Buzz Aldrin.
Credit: Ken Kremer/kenkremer.com

During the unmanned Orion EFT-1 mission, the capsule will fly on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface, farther than any human spacecraft has gone in 40 years.

Ken Kremer

Orion soars skyward in 2014 for the first time. Credit: Ken Kremer/kenkremer.com
Orion soars skyward in 2014 for the first time.
Credit: Ken Kremer/kenkremer.com

Antares Launch Ignites Commercial Space Competition Race

Antares rocket erect at the Eastern shore of Virginia slated for maiden liftoff on April 17. Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pad from the Atlantic Ocean waves and Mother Nature. Credit: Ken Kremer (kenkremer.com)

The commercial space competition race is about to begin, and with a big bang at a most unexpected locale; Virginia’s Eastern shore.

The new and privately developed Antares rocket will ignite a new space race in the commercial arena – if all goes well – when the engines fire for Antares maiden soar to space slated for Wednesday, April 17.

“This is the biggest, loudest and brightest rocket ever to launch from NASA’s Wallops Flight Facility,” said former station astronaut and now Orbital Sciences manager Frank Culbertson, at a media briefing held today (April 16), 1 day prior to liftoff.

The April 17 launch is a test flight of the Antares rocket, built by Orbital Sciences Corp and is due to liftoff at 5 p.m. EDT from Mid-Atlantic Regional Spaceport (MARS) Pad-0A at NASA Wallops.

The weather forecast shows a 45% chance of favorable weather.

The mission is dubbed the A-One Test Launch Mission.

The launch will be visible along portions of the US East Coast from South Carolina to Maine, depending on viewing conditions.

Antares is the most powerful rocket ever to ascend near major American East Coast population centers, unlike anything before – and critical to keeping the ISS fully functioning.

For the past year, SpaceX Corp founded by CEO Elon Musk has monopolized all the commercial space headlines – as the first and only private company to launch a spacecraft that successfully docked at the International Space Station (ISS).

1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 16 April 2013.  Technicians were working at the pad during my photoshoot today. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com)
1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 16 April 2013. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com)

Indeed SpaceX just concluded its 3rd flight to the ISS lofting thousands of pounds (kg) of critically needed supplies to the ISS to keep it functioning – and numerous science experiments to keep the 6 person crew of astronauts busy conducting over 200 active science investigations and fulfill the stations purpose.

Orbital Sciences aims to match and perhaps even exceed the SpaceX Falcon 9 /Dragon architecture with its own ambitious space station resupply system comprising the medium class Antares rocket and Cygnus cargo resupply vehicle.

“The Cygnus can remain docked to the ISS for 30 to 90 days,” said former station astronaut and now Orbital Sciences manager Frank Culbertson at the briefing.

“Cygnus could be upgraded to stay longer perhaps up to a year in orbit,” Culbertson told Universe Today.

“Cygnus is based on the proven MPLM design. It could possibly be converted to a permanent habitation module for the ISS with added shielding and plumbing, if funding is available and if NASA wants to pursue that possibility,” Culbertson told me.

Cygnus could even be sent beyond low Earth orbit on ambitious new missions.

“This is a big event for this area and our country,” said Culbertson.

During the test flight Antares will boost a simulated Cygnus – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares rocket configuration - privately developed by Orbital Sciences Corp.
Antares rocket configuration – privately developed by Orbital Sciences Corp.

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

Antares stands 131 feet tall.

Dozens of technicians were working at the pad during my photoshoot today.

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Over the next 3 to 4 years, eight Cygnus carriers will loft 20,000 kg of supplies, food, water, clothing , replacement parts and science gear to the ISS under a NASA contract valued at $1.9 Billion.

“This represents a new way of doing business for NASA,” said NASA’s commercial crew program manager Alan Lindenmoyer.

NASA Wallops Director Jay Wrobel has granted the formal Authority to Proceed for Orbital Science Corporation’s test launch of its Antares rocket.

Following today’s Flight Readiness review, Orbital managers gave a “GO” to proceed toward launch.

NASA TV launch coverage begins at 4 p.m. EDT on April 17.

Watch for my continuing on-site reports through liftoff of the Antares A-One Test flight.

Ken Kremer

…………….

Learn more about Orion, Antares, SpaceX, Curiosity and NASA robotic and human spaceflight missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus “The Space Shuttle Finale and the Future of NASA – Orion, SpaceX, Antares and more!” NEAF Astronomy Forum, Rockland Community College, Suffern, NY. 3-4 PM Sat & Sunday. Display table all day.

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

NASA Trailer Achieves Crowdfunding Goal to Run Before Star Trek: Into Darkness

Here’s one bit of NASA outreach that won’t be affected by suspensions or sequesters: an edited version of “We Are The Explorers,” a video highlighting the past successes and future goals of the space administration — created by NASA and featuring an inspiring narration by Peter “Optimus Prime” Cullen — will be screened in several major U.S. cities during the premiere of Star Trek Into Darkness thanks to an overwhelmingly successful crowdfunding effort on Indiegogo.com.

Now that the initial goal of $33,000 has been met and the 30-second ad spot can be purchased, the team responsible for the campaign (Aerospace Industries Association of America) will use any funds donated during the next 29 days to reach its next target: getting the ad in at least one theater in every state in America for two weeks. In order for that to happen, a grand total of $94,000 will need to be reached.

Want to help make it so? Find out more about how you can contribute:

According to the Indiegogo campaign page, “If we raise our funding total to $94,000, students, young people, and the general public will see this video from coast to coast. This new goal will expand our reach from 59 movie theater screens to 750 screens!”

That means a lot more chances that the spot will run at the theater where you go to see the new Star Trek film when it comes out on May 17. (Because you know you’re going to go see it, let’s be honest. It’s Star Trek.)

And because it’s Indiegogo you’ll get a “perk” depending on the amount you contribute, ranging from digital copies of the final spot to DVD copies of the excellent HBO series “From Earth to the Moon” (while supplies last.) Because the initial goal has been met, some perks are already sold out… but then, contributing to something as important as space exploration isn’t about the stuff you get, it’s about the message you can give.

“This is more than a fundraiser, it’s a demonstration of support for space exploration programs. By donating to this campaign, you’re making a very powerful statement about the widespread enthusiam that exists for space programs. A crowdfunding campaign is the best vehicle to deliver this message. By reaching our goal, we not only enable a first-of-its-kind ad campaign, we also demonstrate that countless people support a strong space program that’s in development.”

You can contribute here, and be sure to spread the word too. That way, when you’re looking at the video on the big screen, when you see them putting Al Shepard’s gloves on, when you see the fiery exhaust of the Saturn rocket and you hear Cullen’s voice rumble “we are the explorers,” you can know that you helped make it happen — and that somewhere in that same theater a young mind may very well be inspired to continue the exploration.

Maybe that mind might even be be your own.

“Our next destination awaits. We don’t know what new discoveries lie ahead, but this is the very reason we must go.

This crowdfunding campaign is the work of the Aerospace Industries Association (AIA) of America. This campaign is not endorsed by NASA nor is it conducted at their direction or request. Note: by donating you acknowledge that donations are not tax deductible.

NASA: Reaches for New Heights – Greatest Hits Video

Video Caption: At NASA, we’ve been a little busy: landing on Mars, developing new human spacecraft, going to the space station, working with commercial partners, observing the Earth and the Sun, exploring our solar system and understanding our universe. And that’s not even everything.Credit: NASA

Check out this cool action packed video titled “NASA: Reaching for New Heights” – to see NASA’s ‘Greatest Hits’ from the past year

The 4 minute film is a compilation of NASA’s gamut of Robotic Science and Human Spaceflight achievements to explore and understand Planet Earth here at home and the heavens above- ranging from our Solar System and beyond to the Galaxy and the vast expanse of the Universe.

Image caption: Planets and Moons in perspective. Credit: NASA

The missions and programs featured include inspiringly beautiful imagery from : Curiosity, Landsat, Aquarius, GRACE, NuSTAR, GRAIL, Dawn at Asteroid Vesta, SDO, X-48C Amelia, Orion, SLS, Apollo, SpaceX, Sierra Nevada Dream Chaser, Boeing CST-100, Commercial Crew, Hurricane Sandy from the ISS, Robonaut and more !

And even more space exploration thrills are coming in 2013 !

Ken Kremer

IMG_3760a_SpaceX launch 22 May 2012

Image caption: SpaceX Falcon 9 rocket blasts off on May 22, 2012 with Dragon cargo capsule from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. The next launch is set for March 1, 2013. Credit: Ken Kremer