China Technology Surges Forward with Spectacular First Docking in Space

Photos of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Credit: CMSE

Video Caption: Live Video of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Photos below. Credit: CCTV commentary/CMSE

China’s technological capabilities took a major surge forward with the successful docking in space today for the first time ever of two Chinese built and launched spaceships – orbiting some 343 kilometers in the heavens above at 1:37 a.m. Beijing time Nov. 3(1:37 p.m. EDT, Nov. 2). China’s goal is to build a fully operational space station in Earth orbit by 2020 – about the time when the ISS may be retired.

Today’s space spectacular joining together the Shenzhou-8 unmanned spacecraft and the Tiangong-1 prototype space station was an historic feat for China, which now becomes only the 3rd country to accomplish a rendezvous and docking of spacecraft in Earth orbit.

Shenzhou is China’s manned spaceflight capsule but is flying without a crew for this particular test flight. The prowess demonstrated with this triumph paves the way for further manned Shenzhou’s launches soon.
[/caption]

The remarkable space milestone follows in the footsteps of what the United States and Russia accomplished decades ago but this was carried out with 21st century science, technology and manufacturing abilities developed by China during the nation’s rapid rise over the past few decades to become the world’s 2nd most powerful economy.

Schematic of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Credit: CMSE

Shenzhou 8 has been chasing Tiangong-1 in orbit for two days since it was launched on Nov. 1 atop a Long March 2F booster rocket from the Gobi desert in northwest China.

The Commander-in-chief of China´s manned space program Gen. Chang Wanquan, announced “China’s first rendezvous and docking in space joining together the spacecraft Shenzhou-8 and Tiangong-1 space lab module was a complete success.” Chang leads the China Manned Space Engineering (CMSE) Project and pronounced the achievement at the Beijing Aerospace Control Center.

Chinese President Hu Jintao sent a congratulatory message from the G-20 summit in Cannes, France. “I am very pleased to hear the news and I send congratulations to all who made this possible. This will push China’s manned space program forward.”

Graphic shows the procedure of Shenzhou-8 spacecraft docking with Tiangong-1 space lab module on Nov. 3, 2011. (Xinhua/Lu Zhe)

The landmark rendezvous and docking was carried live by state run CCTV for all the world to watch. The impressive 2 hour long TV broadcast showed simultaneous and breathtaking camera videos from both the unpiloted Shenzhou-8 capsule and the Tiangong-1 space station module as they viewed one another in the cameras field of view and slowly approached together with the lovely Earth as a backdrop.

Mission controllers carefully monitored all spacecraft systems on both Shenzhou-8 and Tiangong-1 as they sped closer at about 20 cm/sec and stopped at several parking points along the way (400 m, 140 m, 30 m) to confirm everything was nominal.

Chinese engineers and on board systems precisely guided the two spaceships and watched for any deviations. In case of any failures they had the capability to radio the vehicles to separate. But no deviations occurred and the autonomous docking proceeded to completion.

The two vehicles will remain docked for 12 days, then unhook and back off about 150 meters and then conduct another practice docking. The second practice docking is being done to gain more expertise and confidence and will be carried out under different conditions and in daylight.

The combined Shenzhou-8/Tiangong-1 orbiting complex weighs about 16 tons, some 8 tons each. Tiangong-1 is 10.4 m in length and 3.3. m in diameter. Shenzhou 8 is 9.2 m in length.

China plans two crewed flights to Tiangong-1 starting in 2012. The multi-person crews aboard Shenzhou 9 & Shenzhou 10 are almost certain to include China’s first female astronaut. The astronauts would float into Tiangong 1 from their Shenzhou capsules and remain on board for a few days or weeks. They will check out the spacecraft systems and conduct medical, space science and technology tests and experiments.

Meanwhile, since the premature retirement of the space shuttle with no successor in place, the US has absolutely no capability to launch astronauts to earth orbit. Therefore the ISS is totally reliant on Russian Soyuz rockets and capsules. US astronauts must hitch a ride to space with the Russians.

The US Senate just passed a NASA budget for 2012 that cuts NASA funding and will delay a replacement manned vehicle even further, likely into 2017. The US House seeks even deeper NASA budget cuts.

Thus China surges powerfully forward in space and science while the US political establishment has directed NASA to delay and retrench and layoff still more workers.

China's unmanned spacecraft Shenzhou-8 blasted off at 5:58 a.m. Beijing Time Nov 1 from the Jiuquan Satellite Launch Center in northwestern desert area. Credit: CMSE

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
China launches Shenzhou-8 bound for Historic 1st Docking in Space
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

Boeing To Use Shuttle Hangar for CST-100 Space Taxi

Boeing has selected Florida to be the base for its commercial crew program office. Image Credit: Boeing

[/caption]
CAPE CANAVERAL, Fla – NASA hosted an event on Monday, Oct. 31, at 10 a.m. EDT at Kennedy Space Center’s Orbiter Processing Facility-3 (OPF-3) to announce a new partnership between NASA, Space Florida and Boeing. Space Florida in turn will lease OPF-3 to Boeing. Under the terms of this arrangement, Boeing will use OPF-3 to manufacture and test Boeing’s “space taxi” the CST-100.

Boeing will use OPF-3 as the firm’s commercial crew program office. The OPF, essentially a hangar, will be converted to construct Boeing’s CST-100 space capsule, which is currently being developed to deliver astronauts to low-Earth-orbit (LEO).

In the past Boeing has issued imagery that displayed its CST-100 launching from a variety of different launch vehicles which call Florida's Space Coast their home. Photo Credit: Boeing

This new partnership was developed following a Notice of Availability that the space agency issued at the beginning of this year. The notice was used to identify interest from industry for space processing and support facilities at Kennedy. With NASA’s fleet of orbiters being decommissioned, NASA was seeking ways to effectively use its existing facilities.

It is hoped that this, and similar partnerships will help create jobs in the region as well as to help the U.S. regain leadership in the global space economy.

Boeing's CST-100 is called a "space-taxi" and is being designed to carry both crew and cargo to both the International Space Station as well and other low-Earth-orbit destnations. Image Credit: Boeing

The CST-100 is currently proposed as a reusable spacecraft that is comprised of two parts – a crew module and service module. It is designed to house up to seven astronauts, but it can also be used to ferry both people and cargo to orbit.

With the space shuttle fleet retired, NASA is completely reliant on Russia for access to the International Space Station. Russia charges the space agency about $63 million a seat on its Soyuz spacecraft.

“Only Congress can determine when we will stop the investment of our nation’s tax dollars into the purchase of continued space transportation services from the Russians – and invest instead in the U.S. work force and commercial industry capabilities,” said Space Florida’s President Frank DiBello.

During the final launch of the shuttle era, Boeing had both a mock-up as well as this test article on display. Photo Credit: Jason Rhian

NASA has worked to keep the public apprised about its efforts to open its doors to private space companies. The space agency held press conferences to announce both the Space Act Agreement (SAA) that NASA had entered into with Alliant Techsystems (ATK) and EADS Astrium concerning the Liberty launch vehicle, as well as the release of the design of the Space Launch System (SLS) heavy-lift rocket (which was announced on the following day).

“Thanks so much John and John, I love what you have done with the place!” said NASA Deputy Administrator Lori Garver referring to OPF-3.

The CST-100 has been proposed as a means of transportation to other future destinations in low-Earth-orbit such as one of the inflatable space station's currently under development by Bigelow Aerospace. Image Credit: Boeing

Space Florida is the organization that works to maintain and cultivate the aerospace industry within the State of Florida. The purpose of NASA’s Commercial Crew Program is to develop U.S. commercial crew space flight capabilities. It is hoped that they will one day allow the U.S. to achieve reliable, safe and cheap access not to just the space station – but other destinations in LEO as well.

“If we’re going to find a way to fund exploration beyond the vicinity of Earth, particularly in today’s fiscally-constrained environment – we’ve got to find a way to do the job of transporting crew to the International Space Station in a more affordable manner,” said Boeing’s John Elbon. “That’s one of the primary purposes of the commercial crew program – to provide affordable access to low-Earth-orbit so that we can use the International Space Station as the great laboratory that it is.”

Through an agreement with Space Florida, NASA will lease Orbiter Processing Facility-3 (OPF-3) to Boeing for its CST-100 space taxi. It is hoped that this and efforts like this one will eventually reduce the cost of sending crews to the International Space Station. Photo Credit: NASA

Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track

The unpiloted ISS Progress 45 cargo craft launches from the Baikonur Cosmodrome in Kazakhstan. Credit: NASA TV

Video caption: Liftoff of unmanned Russian Progress craft atop Soyuz booster on Oct. 30, 2011 from Baikonur Cosmodrome. Credit: NASA TV/Roscosmos.
Photos and rocket rollout video below

The very future of the International Space Station was on the line this morning as the Russian Progress 45 cargo ship successfully launched this morning from the Baikonur Cosmodrome in Kazakhstan at 6:11 a.m. EDT (4:11 p.m. Baikonur time) on Oct. 30, 2011, bound for the ISS.

Today’s (Oct. 30) blastoff of the Soyuz rocket booster that is used for both the Progress cargo resupply missions and the Soyuz manned capsules was the first since the failure of the third stage of the prior Progress 44 mission on August 24 which crashed in Siberia.

[/caption]
The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

Today’s success therefore opens up the door to resumption of crewed flights to the ISS, which were grounded by Russia after the unexpected loss of the Progress 44 mission.

If this Progress flight had failed, the ISS would have had to be left in an uncrewed state for the first time since continuous manned occupation began more than 10 years ago and would have significantly increased the risk for survival of the ISS in the event of a major malfunction and no human presence on board to take swift corrective action.

Liftoff of Soyuz rocket with Progress 45 to ISS from Baikonur Cosmodrome in Kazakhstan.
Credit:RIA Novosti

NASA issued the following statement from Bill Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington, about the launch of the Progress 45 spacecraft.

“We congratulate our Russian colleagues on Sunday’s successful launch of ISS Progress 45, and the spacecraft is on its way to the International Space Station. Pending the outcome of a series of flight readiness meetings in the coming weeks, this successful flight sets the stage for the next Soyuz launch, planned for mid-November. The December Soyuz mission will restore the space station crew size to six and continue normal crew rotations.”

Progress 45 is carrying nearly 3 tons of supplies to the ISS, including food, water, clothing, spare parts, fuel, oxygen and science experiments for use by the resident crews.

The resupply vehicle achieved the desired preliminary orbit after the eight and one half minute climb to space and deployed its solar arrays and communications antennae’s.

After a two day chase, Progress 45 will automatically link up with the ISS at the Pirs Docking Compartment on Nov. 2 at 7:40 a.m (EDT) and deliver 1,653 pounds of propellant, 110 pounds of oxygen and air, 926 pounds of water and 3,108 pounds of spare parts, experiment hardware and other supplies for the Expedition 29 crew.

Progress 45 atop Soyuz-U booster awaits liftoff from Baikonur Cosmodrome in Kazakhstan.
Credit: Roscosmos

The successful launch sets the stage for the launch of the station’s next three residents on Nov. 13. NASA’s Dan Burbank and Russia’s Anton Shkaplerov and Anatoly Ivanishin will arrive at the station Nov. 16, joining NASA’s Mike Fossum, Russia’s Sergei Volkov and Japan’s Satoshi Furukawa for about six days before Fossum, Volkov and Furukawa return home.

Liftoff of Burbank’s crew was delayad from the original date on September 22 following the Progress failure in August. Because of the delayed Soyuz crew launch, the handover period from one crew to the next had to be cut short.

Since the forced retirement of the Space Shuttle, the US has absolutely no way to send human crews to orbit for several years to come at a minimum and is totally reliant on Russia.

The survival of the ISS with humans crews on board is therefore totally dependent on a fully functioning and reliable Soyuz rocket.


Video caption: Rollout of Soyuz rocket and Progress cargo craft to Baikonur launch pad.

Read Ken’s continuing features about Soyuz from South America here:
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Aerojet: Small Space Firm Has Big Space History

In this image an Orion MultiPurpose Crew Vehicle jettison motor or JM, which is produced by Aerojet is test-fired. Photo Credit: Aerojet

[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.

Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.

Universe Today: Hi Julie, thanks for taking the time to chat with us today.

Van Kleeck: “My pleasure!”

Universe Today: How long has Aerojet been in business and what exactly is it that your company produces?

Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”

Aerojet propulsion systems have helped many of NASA's deep-space probes explore the solar system. Image Credit: NASA.gov

Universe Today: What about in terms of human space flight, when did Aerojet get involved with that?

Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”

Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?

Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”

It is Aerojet's solid rocket motors that provide that extra-added “punch” to the versions of the Atlas V launch vehicle that utilize them. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?

Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”

An Aerojet AJ26 rocket engine is prepared for testing in this image. These engines, as well as a license to produce them, were purchased from Russia and were originally designated the NK-33. Picture Credit: Aerojet

Universe Today: Does this mean that Aerojet places more importance on one space flight system over others?

Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”

During a tour of the Vertical Integration Facility, Aerojet's Solid Rocket Motors or SRms -were on full display attached to the Atlas V rocket that is set to send the Mars Science Laboratory rover "Curiosity" to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: When you look back, what is one of the most interesting projects that Aerojet has been involved with?

Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”

In this image an AJ26 liquid rocket engine is tested. These engines are utilized as part of Orbital Science's Taurus II program. Photo Credit: Aerojet

Universe Today: What does the future hold for Aerojet?

Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”

Universe Today: Julie, thanks for taking the time to chat with us today!

Van Kleeck: “No problem at all – it was my pleasure!”

Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.

For a taste of what Aerojet’s SRMs provide – please view the NASA video below.

Astronaut Scholarship Foundation Raising Funds, Awareness With Autograph Show

A light-hearted moment is shared between Apollo 12 Lunar Module Pilot Alan Bean (standing) and Apollo 11 Lunar Module Pilot Buzz Aldrin. Photo Credit: ASF

[/caption]
CAPE CANAVERAL, Fla – It all started – with seven. The original seven Mercury astronauts that is. They wanted to give back to the nation that had allowed them to reach the heights that they had achieved, while at the same time inspiring the nation’s young to follow in their footsteps. What arose was the Astronaut Scholarship Foundation (ASF).

There are more than 80 astronauts that are working with the ASF to ensure that the United States maintains its role as leader in terms of science and technology. The ASF accomplishes this by providing scholarships to students studying engineering, science and math.

Apollo 14 Lunar Module Pilot Edgar Mitchell poses with a guest during a previous ASF astronaut autograph show. Just over his shoulder is former shuttle astronaut Fred Gregory. Photo Credit: ASF

In 1984, the then six surviving Mercury astronauts established the 501 (c) 3 organization along with the widow of the seventh (Betty Grissom, widow of astronaut Virgil “Gus” Grissom. Astronauts Malcolm Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Walter M. Schirra, Alan B. Shepard Jr., and Donald K. (Deke) Slayton were also joined by the Mercury Program’s flight surgeon William Douglas M.D. as well as a local business man, Henry Landwirth.

What started with scholarships of only $1,000 has grown to $10,000 each. Twenty-six of these scholarships are handed out every year for a grand total of $260,000. All total? The ASF has handed out $3 million in scholarships to worthy students. The ASF’s current Chairman of its Board of Directors is Apollo 16 Command Module Pilot Charlie Duke; his vice-chair is shuttle veteran Dan Brandenstein.

Apollo 15 Commander Dave Scott poses with a young guest at the ASF's astronaut autograph show. Photo Credit: ASF

The ASF raises funds by a number of means. Astronaut guest appearance, fund-raisers, donations from different entities both public and private and autograph shows. The next of these is scheduled to take place at the Kennedy Space Center Visitor Complex located in Florida from Nov. 4-6. The annual show contains a wide range of events and tours to allow guests the opportunity to learn about the location’s history while picking up a signed item from an astronaut.

Former shuttle astronaut Robert Springer flew twice on the space shuttle and is a current member of the Astronaut Scholarship Foundation. Photo Credit: NASA.gov

Universe Today recently sat down with two-time shuttle veteran Robert C. Springer about his thoughts regarding ASF. Here is what he had to say:

Universe Today: Hi Bob thanks for chatting with us today.

Springer: “My pleasure, thanks for having me!”

Universe Today: How long have you been affiliated with the ASF and how do you view its activities?

Springer: “I have been associated with the Astronaut Scholarship Foundation for the past ten years. The foundation has had phenomenal success, increasing the number of scholarships to the current level of 26 scholarships, each in the amount of $10,000 awarded annually to young men and women who are pursuing degrees in engineering and scientific fields that are related to space exploration.”

Universe Today: What do you find most rewarding or interesting regarding the ASF’s efforts?

Springer: “One of the most interesting aspects of the fund raising effort, is the diversity of individuals who have contributed to the foundation. It has been both a national and international group of individuals who truly believe that we need to continue to invest in our future by providing funding assistance to talented and motivated students to enable them to continue their studies in selected fields.”

Universe Today: So your experience with these folks is rewarding?

Springer: “They are great, but it’s really wonderful to meet the recipients of these scholarships – each year we have the opportunity to hear from some of the individuals who have been awarded the scholarships, and it is remarkable to hear their stories and to understand the kinds of contributions they are making today and have the potential to make in the future.”

Universe Today: I bet that must be really gratifying. It seems we have to wrap, but I wanted to thank you for telling us a bit about your experiences.

Springer: “It was great talking with you!”

For more information regarding the Astronaut Scholarship Foundation’s annual autograph show visit: astronautscholarship.org or call: 321-455-7016.

The ASF astronaut autograph show is normally held during the first week in November and serves to raise funds for scholarships. Photo Credit: ASF

SpaceX Completes Crucial Milestone Toward Launching Astronauts

With the completion of the fourth CCDEV milestone, Space Exploration Technologies is one step closer to launching astronauts into orbit. Photo Credit: SpaceX

[/caption]

Space Exploration Technologies (SpaceX) is now one more step closer to sending astronauts to orbit. The commercial space firm announced today that it has completed a successful review of the company’s launch abort system (LAS). SpaceX’s LAS, dubbed “DragonRider” is designed differently than abort systems that have been used in the past.

The first review of the system’s design and its subsequent approval by NASA represents a step toward the realization of the space agency’s current objective of having commercial companies provide access to the International Space Station (ISS) while it focuses on sending astronauts beyond low-Earth-orbit (LEO) for the first time in four decades.

The DragonRider launch abort system would allow astronauts to be safely pulled away from the Falcon 9 launch vehicle in the advent of an emergency. Image Credit: SpaceX

“Each milestone we complete brings the United States one step closer to once again having domestic human spaceflight capability,” said former astronaut Garrett Reisman, who is one of the two program leads who are working on SpaceX’s DragonRider program.

With the space shuttle program over and its fleet of orbiters headed to museums, the United States is paying Russia an estimated $63 million per seat on its Soyuz spacecraft. SpaceX has estimated that, by comparison, flights on a man-rated version of its Dragon spacecraft would cost approximately $20 million. Despite the dramatically lower cost, SpaceX has emphatically stated that safety is one of the key drivers of its spacecraft.

NASA, who currently lacks the capacity to launch astronauts on its own, has to pay fellow space station program partner $63 million a seat on its Soyuz spacecraft. SpaceX has estimated by comparison that flights on a man-rated Dragon would cost around $20 million. Photo Credit: NASA.gov

“Dragon’s integrated launch abort system provides astronauts with the ability to safely escape from the beginning of the launch until the rocket reaches orbit,” said David Giger, the other lead on the DragonRider program. “This level of protection is unprecedented in manned spaceflight history.”

SpaceX had already met three of NASA’s milestones under the Commercial Crew Development (CCDev) contract that the company has signed into with the U.S. space agency. With the Preliminary Design Review or PDR completed of the abort system SpaceX can now rack up another milestone that it has met.

SpaceX is currently working to see that the next flight of its Dragon spacecraft tentatively scheduled for late this year will incorporate mission objectives of both the second and third COTS demonstration flights and be allowed to dock with the International Space Station. Image Credit: SpaceX

Unlike conventional abort systems, which are essentially small, powerful rockets that are attached to the top of the spacecraft, Dragon’s LAS is actually built into the walls of the Dragon. This is not an effort just to make the spacecraft’s abort system unique – rather it is meant as a cost-cutting measure. The Dragon is intended to be reusable, as such its abort system needed to be capable of being reused on later flights as well. Traditional LAS simply do not allow for that. With every successful launch by conventional means – the LAS is lost.

SpaceX is also working to see that this system not only can save astronaut lives in the advent of an emergency – but that it can actually allow the spacecraft to conduct pinpoint landings one day. Not just on Earth – but possibly other terrestrial bodies – including Mars.

SpaceX is hopeful that if all goes well with its DragonRider system that it could one deay be developed to land future versions of the company's spacecraft on other terrestrial bodies - including the planet Mars. Image Credit: SpaceX

To date, SpaceX has launched two of its Falcon 9 launch vehicles. The first occurred on June 4 of 2010 and the second, and the first under the Commercial Orbital Transportation Services (COTS) contract took place six months later on Dec. 8. This second mission was the first to include a Dragon spacecraft, which was recovered in the Pacific Ocean off the coast of California after successfully completing two orbits.

“We have accomplished these four milestones on time and budget, while this is incredibly important, it is business as usual for SpaceX,” said SpaceX’s Vice-President for Communications Bobby Block during an interview. “These are being completed under a Space Act Agreement that demonstrates the innovative and efficient nature of what can be accomplished when the commercial sector and NASA work together.”

SpaceX's Vice-President for Communications, Bobby Block, said that the fact that SpaceX has accomplished these milestones on time and budget should show what can happen when NASA and the private industry work together. Photo Credit: Alan Walters/awaltersphoto.com

All Together Now!

Six main rocket engines from the Endeavour and Atlantis shuttles. Credit: NASA/Dimitri Gerondidakis

[/caption]

That’s a lot of power under one roof! For the first time in… well, ever… all fifteen Space Shuttle Main Engines (SSMEs) are together inside NASA’s Engine Shop at Kennedy Space Center. They will be prepped for shipment to Stennis Space Center in Mississippi where they’ll become part of the propulsion used on NASA’s next generation heavy-lift rocket: the Space Launch System.

The engines, built by Pratt & Whitney Rocketdyne, are each 14 feet (4.2 meters) long & 7.5 feet (2.3 meters) in diameter at the end of its nozzle, and weighs approximately 7,000 lbs (3175 kg).

Photo from a test firing of an SSME at the Stennis Space Center in 1981. Credit: NASA.

Each engine is capable of generating a force of nearly 400,000 pounds (lbf) of thrust at liftoff, and consumes 350 gallons (1,340 liters) of fuel per second. They are engineered to burn liquid hydrogen and liquid oxygen, creating exhaust composed primarily of water vapor.

The engines will be incorporated into the Space Launch System (SLS), which is designed to carry the Orion Multi-Purpose Crew Vehicle – also currently in development – as well as serve as backup for commercial and international transportation to the ISS. By utilizing current technology and adapting it for future needs, NASA will be able to make the next leap in human spaceflight and space exploration – while getting the most “bang” out of the taxpayers’ bucks.

“NASA has been making steady progress toward realizing the president’s goal of deep space exploration, while doing so in a more affordable way. We have been driving down the costs on the Space Launch System and Orion contracts by adopting new ways of doing business and project hundreds of millions of dollars of savings each year.” 

–  NASA Deputy Administrator Lori Garver

Nine of the 15 SSMEs await shipment inside NASA's Engine Shop. Each weighs approximately 7,000 lbs. Credit: NASA.

While it’s sad to see these amazing machines removed from the shuttles, it’s good to know that they still have plenty of life left in them and will soon once again be able to take people into orbit and beyond!

Read more about the Space Launch System here.

Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

1st Russian Soyuz poised for blastoff from Europe’s Spaceport in South America. Soyuz VS01, the first Soyuz flight from Europe’s Spaceport in French Guiana is scheduled to liftoff on 20 October 2011. Credit: ESA - S. Corvaja

[/caption]

A Russian Soyuz-2 rocket sits poised for its first ever blast off in less than 24 hours from a brand new launch pad built in the jungles of French Guiana, South America by the European Space Agency (ESA) .

The payload for the debut liftoff of the Soyuz ST-B booster consists of the first pair of operational Galilieo satellites, critical to Europe’s hopes for building an independent GPS navigation system in orbit.

Soyuz VS01, the first Soyuz flight from Europe’s Spaceport in French Guiana, will lift off on 20 October 2011. The rocket will carry the first two satellites of Europe’s Galileo navigation system into orbit. Credit:ESA - S. Corvaja

The Soyuz VS01 mission is set to soar on Thursday, Oct. 20 at 6:34 a.m. EDT (1034 GMT ) from Europe’s new South American pad, specially built for the Soyuz rocket. The three stage rocket was rolled out 600 meters horizontally to the launch pad and vertically raised to its launch position.

Soyuz VS01 on launch pad. Soyuz VS01vehicle was rolled out horizontally on its erector from the preparation building to the launch zone and then raised into the vertical position. The ‘Upper Composite’, comprising the Fregat upper stage, payload and fairing, was also transferred and added onto the vehicle from above, completing the very first Soyuz on its launch pad at Europe’s Spaceport. Soyuz VS01 will lift off on 20 October 2011. The rocket will carry the first two satellites of Europe’s Galileo navigation system into orbit. Credit: ESA - S. Corvaja

The two Galileo satellites were mated to the Fregat-MT upper stage, enclosed inside their payload fairing and then hoisted atop the Soyuz rocket. They should seperate from the upper stage about 3.5 hous after launch.

Because French Guiana is so close to the equator, the Soyuz gains a significant boost in performance from 1.7 tons to 3 tons due to the Earth’s greater spin.

This marks the first time in history that the renowned Soyuz workhorse will blast off from outside of Kazakhstan or Russia and also the start of orbital construction of Europe’s constellation of 30 Gallileo satellites.

28 more of the navigation satellites, built by the EADS consortium based in Germany, will be lofted starting in 2012 aboard the medium class Soyuz rockets.

French Guiana is already home to Europe’s venerable Ariane rocket family and will soon expand further to include the new Vega rocket for smaller class satellites.

ESA will begin live streaming coverage starting about an hour before the planned launch time of 6:34 a.m. EDT (1034 GMT)

Soyuz VS01 poised for launch on Oct. 20, 2011. Credit: ESA - S. Corvaja

Stage Set For SpaceX to Compete for Military Contracts

NASA, the NRO and the U.S. Air Force have signed an agreement that could see smaller space firms competing for large military contracts. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
The United States Air Force has entered into a Memorandum of Understanding or MOU with the National Reconnaissance Office (NRO) and NASA to bring more players into the launch vehicle arena. On Oct. 14, NASA, the NRO and the U.S. Air Force announced plans to certify commercial rockets so that they could compete for future contracts involving Evolved Expendable Launch Vehicle, or EELVs. This means that Space Exploration Technologies’ (SpaceX) could compete for upcoming military contracts.

“This strategy will provide us with the ability to compete in the largest launch market in the world,” said Kirstin Brost Grantham, a spokeswoman with SpaceX. “There are those who are opposed to competition for space launches, they would prefer to see the status quo protected. But SpaceX has shown it is no longer possible to ignore the benefits competition can bring.”

In terms of sheer numbers of launch vehicles purchased – the U.S. Air Force is the largest customer in the world – with the U.S. taxpayer picking up the tab. Therefore it was considered to be in the Air Force’s best interest to find means to reduce this cost. The U.S. Air Force’s requirements are currently handled by United Launch Alliance (ULA) in what is essentially a monopoly (or duopoly considering that ULA is a collective organization – comprised of both Boeing and Lockheed Martin).

The two launch vehicles that ULA provides are the Delta IV and Atlas V family of rockets. Photo Credit: Alan Walters/awaltersphoto.com

“SpaceX welcomes the opportunity to compete for Air Force launches. We are reviewing the MOU, and we expect to have a far better sense of our task after the detailed requirements are released in the coming weeks,” said Adam Harris, SpaceX vice president of government affairs.

The U.S. Department of Defense (DoD) has decided to go ahead with a five-year, 40-booster “block-buy” plan with ULA – despite the fact that the U.S. General Accounting Office’s (GAO) has requested that the DoD rethink that strategy. The GAO stated on Oct. 17, that they are concerned that the DoD is buying too many rockets and at too high of a price.

Under the Evolved Expendable Launch Vehicle Plan, the DoD is set to spend some $15 billion between 2013 and 2017 to acquire some 40 boosters from ULA to send satellites into orbit. For its part, the DoD conceded that it might need to reassess the manner in which it obtained launch vehicles.

As it stand now, United Launch Alliance has a virtual monopoly on providing launch vehicles for the Department of Defense. Photo Credit: Alan Walters/awaltersphoto.com

The new strategy which is set to allow new participants in to bid on DoD and NRO contracts is an attempt to allow the free-market system drive down the cost of rockets. Recently, the price of these rockets has actually increased. The cause for this price increase has been somewhat attributed to the vacuum created by the end of the space shuttle program.

Firms like SpaceX, which seek to compete for military contracts, will have to meet requirements that are laid out in “new entrant certification guides.”
“Fair and open competition for commercial launch providers is an essential element of protecting taxpayer dollars,” said Elon Musk, SpaceX CEO. “Our American-made Falcon vehicles can deliver assured, responsive access to space that will meet warfighter needs while reducing costs for our military customers.”

Space Exploration Technologies (SpaceX) CEO Elon Musk applauded the recent announcement that could see his company competing for military contracts. Photo Credit: Alan Walters/awaltersphoto.com

Crewed Variant of X-37 Space Plane Proposed

The X-37, versions of which have flown twice into space already, is now being proposed as a potential means of transportation for crews to the International Space Station. Photo Credit: Boeing

[/caption]
As reported online at Space.com, the Boeing Company is already working on the CST-100 space taxi as a means of transportation to and from the International Space Station (ISS). But the aerospace firm is not content with just this simple space capsule and is looking into whether-or-not another of Boeing’s current offerings – the X-37B space plane could be modified to one day ferry crew to and from the orbiting laboratory as well.

proposed variant of the spacecraft, dubbed the X-37C, is being considered for a role that has some similarities to the cancelled X-38 Crew Return Vehicle (CRV). The announcement was made at a conference hosted by the American Institute of Aeronautics and Astronautics (AIAA) and reported on Space.com.

The USAF has already launched two of the X-37B Orbital Text Vehicles (OTV) from Cape Canaveral Air Force Station in Florida. Photo Credit: ULA/Pat Corkery

The X-37B or Orbital Test Vehicle (OTV) has so far been launched twice by the U.S. Air Force from Cape Canaveral Air Force Station in Florida. One of the military space planes completed the craft’s inaugural mission, USA-212, on Apr. 22, 2010. The mini space plane reentered Earth’s atmosphere and conducted an autonomous landing at Vandenberg Air Force on Dec. 3, 2010.

The U.S. Air Force then went on to launch the second of the space planes on mission USA-226 on Mar. 5, 2011. With these two successful launches, the longest-duration stay on orbit by a reusable vehicle and a landing under its belt, some of the vehicle’s primary systems (guidance, navigation, thermal protection and aerodynamics among others) are now viewed as having been validated. The vehicle has performed better than expected with the turnaround time being less than predicted.

If the X-37C is produced, it will be roughly twice the size of its predecessor. The X-37B is about 29 feet long; this new version of the mini shuttle would be approximately 48 feet in length. The X-37C is estimated at being approximately 165-180 percent larger than the X-37B. This increase in the size requires a larger launch vehicle.

This larger size also highlights plans to have the spacecraft carry 5 or 6 astronauts – with room for an additional crew member that is immobilized on a stretcher. The X-38, manufactured by Scaled Composites, was designed, built and tested to serve as a lifeboat for the ISS. In case of an emergency, crew members on the ISS would have entered the CRV and returned to Earth – a role that now could possibly be filled by the X-37C. The key difference being that the CRV only reached the point of atmospheric drop tests – the X-37B has flown into space twice.

Certain elements of the X-37C proposal highlight mission aspects of the cancelled X-38 Crew Return Vehicle. Photo Credit: NASA.gov

The crewed variant of the X-37 space plane would contain a pressurized compartment where the payload is normally stored, it would have a hatch that would allow for astronauts to enter and depart the spacecraft. Another hatch would be located on the main body of the mini shuttle so as to allow access to the vehicle on the ground. The X-37C, like its smaller cousin, would be able to rendezvous, dock, reenter the atmosphere and land remotely, without the need of a pilot. Acknowledging the need for pilots to control their own craft however, the X-37C would be capable of accomplishing these space flight requirements under manual control as well.

As mentioned in the Space.com article, one of the other selling points for the X-37C is its modular nature. Different variants could be used for crewed flights or unmanned missions that could return delicate cargo from the ISS. Neither the Russian Soyuz spacecraft, nor commercially-developed capsules are considered as appropriate means of returning biological or crystal experiments to Earth due to the high rate of acceleration that these vehicles incur upon atmospheric reentry. By comparison the X-37B experiences just 1.5 “g” upon reentry.

The launch vehicle that would send the proposed X-37C to orbit would be the United Launch Alliance Atlas V rocket. In provided images the X-37C is shown utilizing a larger version of the Atlas booster and without the protective fairing that covered the two X-37B space planes that were launched.