William Shatner, who played Captain James T. Kirk on the original Star Trek television series, provided a very special message to the crew of space shuttle Discovery during the STS-133 Flight Day 12 wakeup call.
With strains of Alexander Courage’s famous theme song from Star Trek playing, Shatner replaced the original television introduction with, “Space, the final frontier. These have been the voyages of the Space Shuttle Discovery. Her 30 year mission: To seek out new science. To build new outposts. To bring nations together on the final frontier. To boldly go, and do, what no spacecraft has done before.”
More impressive ground based images of the STS-133 mission, this time, Amateur astronomer Ralf Vandebergh of the Netherlands took images during one of the spacewalks for the mission, and likely captured astronaut Steve Bowen at work on the end of the Canadarm 2! Click on the image above, or go to Ralf’s website for a better view and more information.
Ralf uses a 10 inch Newtonian telescope with a videocam eyepiece, and manually tracks the ISS and other objects across the sky. He takes most of his images in color to obtain the maximum possible information of the objects.
As the Space Shuttle program quickly winds down, one of the lesser known facts is that the public can get a free bird’s eye view of the ocean retrieval of the mighty Solid Rocket Boosters which power the orbiters majestic climb to space. All you have to do is stand along the canal of Port Canaveral, Florida as the rockets float by on their journey to a processing hanger at Cape Canaveral Air Force Station.
And if you own a boat you can sail right along side for the thrilling ride as the boosters are towed by ship from the Atlantic Ocean into the entrance of Port Canaveral. It’s the same route traveled by the humongous cruise ships setting sail for distant ports on Earth.
The two SRB’s and associated flight hardware are retrieved after they splashdown in the Atlantic Ocean following every shuttle launch by the NASA owed ships named Freedom Star and Liberty Star.
Freedom Star and Liberty Star are stationed about 10 miles from the impact area at the time of splashdown. The ships then sail to the SRB splashdown point and divers are deployed to attach tow lines, haul in the parachutes used to slow the descent and install dewatering equipment.
Each vessel tows one SRB all the way from the Atlantic Ocean into Port Canaveral and then through the locks to Cape Canaveral Air Force Station. After the spent segments are decontaminated and cleaned, they will be transported to Utah, where they will be refurbished and stored, if needed.
The unique ships were specifically designed and constructed to recover the SRB’s. The SRB’s separate from the orbiter about two minutes after liftoff. They impact in the Atlantic about seven minutes after liftoff and some 100 nautical miles downrange from the launch pad off the Florida coastline.
The STS-133 mission was launched from pad 39A at NASA’s Kennedy Space Center on Feb. 24 on Discovery’s 39th and last space flight. Landing is slated for March 8 at 11:36 a.m. at KSC.
The all veteran six person crew has successfully attached the Leonardo storage module and completed two space walks. Leonardo is packed with the R2 humanoid robot and tons of science gear, spare parts, food and water.
Photo album: Recovery and Retrieval of Solid Rocket Boosters from Space Shuttle Discovery’s final flight to space on STS-133 mission.
Run — don’t walk — to astrophotographer Thierry Legault’s website to see his latest incredible video of the International Space Station and a docked space shuttle Discovery. He sent us a note that he had great “seeing” from Weimar, Germany on Monday evening, where he has set up shop in order to capture the orbiting spacecraft as many times as possible during the STS-133 mission. The detail is stunning, — more detail even than his previous video from last weekend — as evidenced in the annotated image above. Legault has even created a 3-D movie — no special 3-D glasses required. He has instructions on his website of how to cross your eyes and squint to get the 3-D effect. “This method may require a bit of training if you are not used to squinting but it gives a very realistic view,” Legault explained. See the videos and find out how he creates these amazing views on his website.
It may seem illogical, but boiling is a very efficient way to cool engineering components and systems used in the extreme environments of space.
An experiment to gain a basic understanding of this phenomena launched to the International Space Station on space shuttle Discovery Feb. 24. The Nucleate Pool Boiling Experiment, or NPBX, is one of two experiments in the new Boiling eXperiment Facility, or BXF.
Nucleate boiling is bubble growth from a heated surface and the subsequent detachment of the bubble to a cooler surrounding liquid. As a result, these bubbles can efficiently transfer energy from the boiling surface into the surrounding fluid. This investigation provides an understanding of heat transfer and vapor removal processes that happen during nucleate boiling in microgravity. Researchers will glean information to better design and operate space systems that use boiling for efficient heat removal.
Bubbles in microgravity grow to different sizes than on Earth. This experiment will focus on the dynamics of single and multiple bubbles and the associated heat transfer.
NPBX uses a polished aluminum wafer, powered by heaters bonded to its backside, and five fabricated cavities that can be controlled individually. The experiment will study single and/or multiple bubbles generated at these cavities. It will measure the power supplied to each heater group, and cameras will record the bubble dynamics. Analysis of the heater power data and recorded images will allow investigators to determine how bubble dynamics and heat transfer differ in microgravity.
“With boiling, the size and weight of heat exchange equipment used in space systems can be significantly reduced,” said Vijay Dhir, the experiment’s principal investigator at the University of California, Los Angeles. “Boiling and multiphase heat transfer is an enabling technology for space exploration missions including storage and handling of cryogenic, or extremely low temperature liquids, life support systems, power generation and thermal management.”
“The cost of transporting equipment to space depends on the size and weight of the equipment,” added David Chao, the project scientist from NASA’s Glenn Research Center in Cleveland. “The knowledge base that will be developed through the experiment will give us the capability to achieve cooling of various components and systems used in space in an efficient manner and could lead to smaller and lighter spacecraft.”
The international partners have decided against an historic ‘fly-about’ of the International Space Station, which would have provided one-of-a-kind images of the nearly completed ISS with space shuttle Discovery and an assortment of vehicles from the different participating space agencies docked to the station.
“This morning, our Russian colleagues, after doing their own independent review processes … have determined that they are not in position to recommend doing the fly about, because this particular vehicle is what they consider a new vehicle, the Series 700 vehicle, which is in its maiden flight,” said Kenneth Todd, a manager for Mission Integration and Operations at NASA, speaking at a mission briefing this morning.
The Russians felt they didn’t have the time or opportunity to fully understand, review and work through all the risks of the request of flying the Soyuz around the ISS, an idea which was presented only recently, and after the new Soyuz had already launched to orbit.
“From a MMT perspective, we knew it was critical for all partners to go through their processes,” Todd said. “It wasn’t necessarily what we were hoping to get back, but at the same point I applaud the Russians for doing the right thing, for not disregarding their own processes and making sure they do their own due diligence the way they should. I accepted the recommendation.”
Mission Control in Houston radioed up to ISS commander Scott Kelly and STS-133 Commander Steve Lindsey that the possible Soyuz fly about was a no-go, even though mission managers had already approved an extra day extension of the shuttle mission.
“We’ll now use that extra day for transfer work between the PMM (Permanent Multipurpose Module) and the ISS, to leave the station and crew in the best possible shape when Discovery undocks.” said Capcom Stan Love. “The fly about will not happen during this flight.”
The fly-about –- only proposed about two weeks ago — would have had cosmonauts Alexander Kaleri and Oleg Skripochka along with Kelly to undock from the Russian Poisk module in the Soyuz TMA-01M spacecraft, back away from the ISS so they could show the ISS in its nearly completed configuration, with the shuttle attached, along with the Russian Progress and Soyuz, the European ATV and the Japanese HTV-1.
Todd said the images would not only be historic from an aesthetic perspective, but also provide valuable engineering views and data.
“There are multiple reasons this was going to be a good thing, to do this photo documentation,” he said. “Everytime we do one of these things we learn a lot, and we get a lot of good data about our ability to do this type of function, not just on our side but on the Russian side. I don’t see our review of this as wasted time or effort, and if we ever need to do this in the future, we will have to assess that at the time.”
Todd added that they should be able to get most of the images and data they were hoping for when the shuttle undocks and departs from the ISS next week – save for the historic aspect of having a shuttle docked to the station, along with all the other visiting vehicles.
Earlier today, the crews of STS-133 and the space station successfully installed the Leonardo Permanent Multipurpose Module, essentially storage space (a “float-in” closet – which has also been referred to as a potential Man-cave) which includes supplies. Also tucked inside is Robonaut-2, the first human-like robot to serve on board the space station.
Discovery’s landing is currently set for 11:36 am EST on Tuesday, March 8, 2011.
[/caption]NASA’s Space Shuttle Program is inexorably and swiftly headed towards its finale.
With shuttle Discovery orbiting some 200 miles overhead on her final flight, launch preparations for the final flight of Space Shuttle Endeavour moved into high gear.
Endeavour was rolled a few hundred yards from her processing hanger at the Kennedy Space Center to the Vehicle Assembly Building (VAB) where she will be attached to the external fuel tank (ET) and twin solid rocket boosters (SRB) which will power her final trip to space. See photo album below from Alan Walters and Ken Kremer.
NASA plans to transport Endeavour to Launch Pad 39 A on March 9 for the STS-134 missionand her 25th and final flight. Launch is set for April 19.
Endeavour and her six person crew will deliver the Alpha Magnetic Spectrometer, a $1.5 Billion particle physics detector designed to search for dark matter and determine the origin of the Universe. The crew will also deliver a platform that carries spare parts platform parts that will sustain station operations once the shuttles are retired later this year.
The quarter mile trip on a 76 wheeled transporter began about 7 AM this morning (Feb 28). The orbiter was backed tail first out of the processing hanger known as the Orbiter Processing Facility and then ‘rolled over’ to the VAB and parked close to the entrance doors.
Rollover marks the start of the final phase of launch preparations for the STS-134 mission. Hundreds of Shuttle workers who process the orbiters for flight were invited to witness the event and pose for photo ops with the spaceship. Most KSC employees never get the chance to glimpse the orbiters up close.
The next major milestone is for Endeavour to be hoisted and mated to the External Tank on Tuesday and prepare for rollout to the launch pad.
Award winning photographer Theirry Legault sent us a note about some amazing new video he shot of the space shuttle Discovery getting ready to dock with the space station. Legault took the video on Saturday evening (Feb. 26, 2011) at 18:40 UT from Germany, showing Discovery and the ISS about a hundred meters apart, 30 minutes before docking. The image above is a still frame from the video, which can be seen on Legault’s website here. “It’s sunset on the ISS at the end of the video sequence,” Legault wrote. “The video is accelerated 2.5 times (acquisition at 10 fps, video at 25 fps). The altitude of the ISS is 360 km (200 miles)… and the speed of ISS is 17,000 miles per hour (27,350 kph) and its angular speed at zenith is 1.2° per second.”
Flash is required to see the video. The 900 frames of the sequence has been registered and combined by groups of 10 (processing with Prism and VirtualDub), Legault said. Find out more about Legault’s photography and tracking equipment at this page on his website.
CAPE CANAVERAL – Most people struggle to find a new path when their primary career ends unexpectedly. Some say that it’s hard to get ahead in this world. Then there are those that prove it is possible to have a vibrant second career and that it is possible to make it – in spades. Leland Melvin is one of those people.
Back in 1986 it seemed he would be a wide receiver for the NFL. Then an injury sidelined him when he was training with the Detroit Lions. He tried again the following spring with the Dallas Cowboys – but the same injury resurfaced and dashed his NFL hopes. Few manage to pull off a second high-caliber career after such a setback. But Melvin did just that – he went on to join one of America’s most elite clubs – he became an astronaut.
He went on to fly on two space shuttle missions, STS-122 and STS-129, both onboard Atlantis, both to the International Space Station (ISS).
He didn’t start out with the plan to be an astronaut however; in fact he really didn’t think that he would work for the space agency. A job fair, of all things, helped him become an engineer at NASA’s Langley Research Center.
“I really didn’t think I wanted to be with NASA,” Melvin said during an interview at NASA’s Kennedy Space Center just before the shuttle Discovery launched on its final mission. “This one lady would have none of it. I helped her with her bags and she helped me with my career.”
Melvin got accepted as an astronaut in 1998. However, he never drifted far from his roots – and those were firmly planted in education. After he completed his missions to space, his mind and his path went back to education. In October of 2010 he was selected as NASA’s Associate Administrator for Education.
Since selected he has worked to make NASA’s education elements a more hands-on affair. Melvin has become a tireless advocate of NASA’s Summer of Innovation, Explorer Schools as well as the numerous other education programs that the space agency supports. One of his responsibilities is to raise public awareness about how much NASA does to support education. It was in that capacity that he was at Kennedy Space Center on launch day.
For some, coming down to a shuttle launch is a perk of the job; Melvin seemed far more interested with getting the word out about NASA’s educational outreach efforts, jumping from one interview to the next.
“People really don’t realize how much of a tremendous investment that NASA truly is,” said Melvin. “Basically, for every dollar they put in – they get eighteen dollars in return. Out of every tax dollar, I think it boils down to one-seventh of one cent goes to NASA – for that the public gets the astronaut corps, the shuttle, space station, all the probes to the planets, on and on…it’s really an incredible deal.”
Melvin’s life has been shaped by education, from his parents, to his experiences in college and now with NASA. Sometimes, Melvin takes a second from the frenetic pace of his job and looks back.
“Education has always been important to me, I got that from my parents,” said Melvin. Both of his parents were teachers, a fact he is reminded about whenever he visits his hometown of Lynchburg, Virginia. “People still come up to me and thank me for what my father did for them.”
The all veteran human crew is comprised of five men and one women including Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists Alvin Drew, Steve Bowen, Michael Barratt and Nicole Stott. For the first time in the history of manned spaceflight, the humans are joined by a robotic companion named R2 or Robonaut 2. R2 is the first humanoid robot in space and will become an official member of the ISS crew.
See Discovery Launch, Docking and Robonaut photo album below.
Discovery docked at the ISS at 2:14 p.m. EST at the Harmony node while flying some 220 miles above western Australia. The shuttle arrived after a two day orbital chase that commenced with a picture perfect blast off on Feb. 24 from the Kennedy Space Center in Florida.
Shuttle Commander Steve Lindsey manually flew Discovery to join the two ships together. They have a combined mass of over 1.2 million pounds. This was Discovery’s 13th and final docking to the orbiting outpost. Discovery also was the first shuttle to dock to the ISS on the STS-96 mission on May 29, 1999.
After allowing the relative motions between the two ships to dampen out, the vehicles were then hard mated together. Hatches between the spacecraft were opened at 4:16 p.m. EST and the six Shuttle astronauts floated through the docking tunnel and into the station. They were welcomed by the six current residents already living and working aboard the ISS and thereby doubled the ISS human population to 12.
Prior to docking, Discovery executed a spectacular head over heels “back flip” with Commander Lindsey at the controls so that ISS crew members Paolo Nespoli and Cady Coleman could take hundreds of high resolution photographs of the shuttles critical heat shield tiles.
Over a period of nine minutes, Discovery rotated backward through a full 360 degrees during the dramatic maneuver with Earth as the backdrop.
The fragile thermal protection system (TPS) tiles protect the orbiter from the scorching heat generated during reentry through the Earth’s atmosphere. Specialists on the ground at the Johnson Space Center will pore over the images to look for any signs of tile damage which may have occurred during launch or on orbit.
Discovery’s cargo bay is loaded with a large new pressurized storage room and critical space parts for the space station. The primary goal of the STS-133 mission is to attach the new Permanent Multipurpose Module named “Leonardo” to the ISS which will provide additional living space for the station crews.
R2 is packed inside Leonardo along with science equipment, spare parts, clothing, food and assorted gear. The robot will serve as an assistant to the ISS astronauts and conduct science experiments and maintenance chores.
See a stunning 360 degree panorama of Robonaut 2 at KSC from nasatech.net at this link
The twin brother of R2 eagerly watched the Feb, 24 blastoff of Discovery and crew live from nearby the famous countdown clock at the Kennedy Space Center.
The 11 day flight includes two spacewalks.
With Discovery safely docked , the ISS is now the biggest it has even been and is currently configured with all vehicles which fly to the station including the newly arrived ATV from Europe, HTV from Japan and Soyuz and Progress spacecraft from Russia.
The ATV itself arrived docked barely 4 hours before Discovery in a critical operation that paved the way for blastoff of the STS-133 mission and reflects the magnitude of the ongoing orbital traffic jam at the ISS.
If all the STS-133 work is successfully accomplished, a Soyuz will undock towards the end of the STS-133 mission and stage a station fly around to capture the ultimate ISS photo op at the biggest it will ever be.
Photo Album: Discovery executes dramatic back flip or Rendezvous Pitch Maneuver (RPM) as it approaches and docks at the ISS on Feb. 26, 2011