Numerous Companies Propose Possible ‘Space Taxis’

Orbital Sciences is one of many space companies that are vying to produce a 'space taxi.' Image Credit: Orbital Sciences Corporation

[/caption]

Once, the field had only had few entries, but now there are several companies vying to send American astronauts into orbit. With NASA’s Commercial Crew Development program, or CCDev 2, and the encouragement of commercial space firms to produce their own vehicles, the number of potential ‘space-taxis’ has swelled, with virtually every established and up-and-coming aerospace company either producing – or proposing one.

SpaceX has successfully demonstrated the capabilities of its Dragon spacecraft. Image Credit: SpaceX

One of the first firms to unveil a potential means of transportation to the International Space Station (ISS) was Space Exploration Technologies (SpaceX). SpaceX launched the first of its Dragon spacecraft on Dec. 8, and shortly thereafter became the first private company to safely recover a spacecraft after it returned from orbit.

Boeing was once of the first companies to unveil its proposal. Image Credit: Boeing

Not to be out done by the ‘new kid on the block’ Boeing unveiled its version of a space taxi this past September. Boeing’s Crew Space Transportation-100 (CST-100) spacecraft which it described could be used for missions to the space station or other ‘LEO platforms.’ One potentially exciting prospect about this endeavor is that any excess seating capacity will be available for purchase through Space Adventures.

Orbital Sciences has proposed using a space plane to ferry astronauts to orbit: Image Credit: Orbital

A step away from what most of these companies are doing, Orbital Sciences has proposed producing a ‘mini-shuttle’ to ferry passengers to and from orbit. Most aerospace companies that have submitted designs and ideas have stepped away from the space plane concept as it is now viewed as too complicated and expensive. However, the U.S. Air Force recently successfully demonstrated the viability of its unmanned X-37B space plane. It was perhaps with this in mind that emboldened Orbital to go a step further and produce a man-rated mini space plane. Orbital images show their spacecraft proposal being lifted to orbit atop a Delta IV Heavy.

Just this month Virgin Galactic also announced its plans to produce a space plane (the company uses a space plane in its sub-orbital commercial efforts – this new space plane appears to be an extension of that).

Sierra Nevada also has proposed using a space plane as an orbital transport vehicle. Image Credit: Sierra Nevada Space

Lastly Sierra Nevada Corp also has thrown its name into the ring proposing a winged spacecraft. Their ‘Dream Chaser’ spacecraft is similar to Orbital’s proposal, a winged spacecraft that would be launched to orbit atop an expendable launch vehicle.

These companies are all vying for the $200 million that NASA has placed into a program to promote ease of access to orbit. While the Orion spacecraft, produced by Lockheed Martin, is part of a NASA program – these other organizations are hoping that by demonstrating the viability of their technology – that they can also secure a strong position in the emerging commercial space market.

Spectacular Night Launch for Soyuz Crew

Expedition 26 Flight Engineer Paolo Nespoli is seated in the Soyuz TMA-20 during its ascent to orbit. Nespoli and Flight Engineers Dmitry Kondratyev (at bottom) and Catherine Coleman (out of frame) launched on time to the International Space Station. Credit: NASA TV

With a spectacular night launch, the remainder of the Expedition 26 crew are now headed to the International Space Station on board a Soyuz TMA-20 spacecraft. NASA astronaut Cady Coleman, Russian cosmonaut Dmitry Kondratyev, and European Space Agency astronaut Paolo Nespoli lifted off from the Baikonur Cosmodrome in Kazakhstan at 2:09 p.m. EST Wednesday (1909 UTC and 1:09 a.m. local in Kazakhstan) on Wednesday, Dec. 16. Video from inside the capsule showed the crew riding comfortably during their ascent.


The trio are scheduled to dock to the station’s Rassvet docking port at 3:12 p.m EST onFriday, Dec. 17. Just in time for the holidays, they will join Expedition 26 Commander Scott Kelly and Flight Engineers Alexander Kaleri and Oleg Skripochka, already on board the ISS.

[/caption]

You can watch the docking on NASA TV, beginning at 2:30 p.m. EST Coverage of the hatches opening and a welcoming ceremony aboard the station will begin at 5:30 p.m.

With a full compliment of six, Expedition 26 will be busy with scientific research and regular maintenance, but there will also be two Russian-segment spacewalks, and a variety of visiting resupply ships: a Japanese HTV cargo ship will arrive at the end of January, a Russian Progress re-supply ship will also come just before, hopefully, space shuttle Discovery arrives in early February — given the repairs of the external tank go well, and then a European Automated Transfer Vehicle, or ATV, arrives at the end of February.

After that, The shuttle Endeavour is scheduled launch in early April along with another Progress later that month.

Soyuz launch on Dec. 15, 2010. Photo credit: NASA/Carla Cioffi

SpaceX Looking to Launch Next Dragon Spacecraft – to the ISS

SpaceX has gathered a long string of successes since its founding in 2002. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]

With the success of the first and second launches of the Falcon 9 rocket as well as the successful recovery of the Dragon spacecraft, Space Exploration Technologies (SpaceX) has stated its intent to accelerate the pace of the Commercial Orbital Transportation Services (COTS) program that the private space firm has with NASA. The company has been inspecting various elements of the Dragon spacecraft that launched to orbit on Dec. 8, to make potential changes to the next Dragon – in preparation for its flight.

The company became the first private organization in history to launch a vehicle into orbit and then have it successfully return safely to Earth. The company has, for some time, been working to step up the pace of the COTS program. Under this program the first three flights of the Dragon would be demonstration flights with the third, and final demonstration flight docking with the International Space Station (ISS).

SpaceX encountered delays in both of its Falcon 9 launches - but forged ahead in a manner reminiscent of the early days of manned space flight. Photo credit: Jason Rhian

SpaceX is, if anything, a young and restless company, a company on the move and as such they want to combine the mission requirements of the second and third flights – into one. In short, SpaceX is hoping to send their next Dragon – to the space station itself, cutting out one demonstration flight in the process. However, while officials at SpaceX and the company’s CEO and CTO Elon Musk are attempting to relive the golden age of manned spaceflight (this effort is somewhat similar to the accelerated launch of the Apollo 8 mission) – NASA appears uncertain about speeding up the process. NASA has stated that if all went well with the first flight of the Dragon that it would consider speeding up the program.

The next flight of the Dragon spacecraft could take place as soon as the middle of next year. According to Musk, there are few differences between the maneuvers that Dragon conducted on Orbit this past Wednesday – and those that would be required if the craft were to rendezvous with the ISS. For a mission to the orbiting outpost, the Dragon would need to be equipped with solar arrays and certain equipment on board the craft would need to be upgraded.

To date, NASA has only stated that it is assessing the possibility of accelerating the program and that it recognizes the successes that SpaceX has enjoyed. Those within the space community note that NASA has a risk-averse philosophy and that the agency will likely want to see the company complete the requirements of the initial contract and fully demonstrate the Dragon’s capabilities.

SpaceX launched the second of its Falcon 9 rockets from Cape Canaveral Air Force Station's launch complex 40 on December 8 at 10:43 p.m. EDT/15:43 UDT. Photo Credit: Alan Walters/awaltersphoto.com

Window to the World

A window to the world on the International Space Station. Credit: NASA

[/caption]

A fish-eye camera view from the Cupola of the International Space Station shows a gorgeous view of Earth from space. Visible are parts of the Atlantic, Gulf of Mexico and Caribbean Sea, as well as the southern portion of the Florida peninsula, including the elongated metropolitan Miami area, Lake Okeechobee and the Florida Keys. This was taken by one of the Expedition 25 crew members on the ISS, from about 350 km (220 miles) above Earth. A 16mm f/2.8D lens gives this image a circular, fish-eye effect. Click on the image for access to higher-resolution versions,

Stunning ISS View of Volcanos on Earth

Several volcanoes in Russia, as seen by astronauts on the ISS. Credit: NASA

[/caption]

What a view! This photograph taken by one of the astronauts on the International Space Station shows several snow-covered volcanoes on Russia’s Kamchatka Peninsula. It also illustrates one of the unique attributes of the ISS —the ability to view landscapes at an angle, rather than the straight-down view typical of many satellite-based sensors. This oblique view, together with shadows cast by the volcanoes and mountains, provides a unique view — as well as a different perspective about the topography of the region.



See more about this image at NASA’s Earth Observatory website.

SpaceX Shoots for Dec. 8 Launch of Falcon 9

SpaceX has decided to try and launch its Falcon 9 rocket on Wednesday, Dec. 8. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL –Engineers with the commercial space company SpaceX have analyzed two small cracks in the rear segment of the second stage engine nozzle. These cracks are located near the end of the nozzle extension where there is very little stress and so it is thought that they in themselves would not cause a flight failure. SpaceX decided that they did warrant further investigation to make sure that these cracks are not symptoms of a far larger problem.

SpaceX must have liked what they saw because the company has decided to go ahead with the launch, now scheduled for Wednesday. The launch window will open at 9 a.m. EDT and will close at 12:22 p.m. EDT.

The bell shaped Merlin Vacuum nozzle is made out of niobium sheet alloy, and is approximately 9 feet tall and 8 feet at the base. This nozzle thins out to approximately twice the thickness of a soda can near the end. Although it is composed of a refractory alloy metal and has a melting temperature high enough to boil steel, this component is, in geometric terms, the simplest component of the engine.

The niobium nozzle extension works to increase the overall efficiency of the Merlin engine while on-orbit. For this first flight of the Dragon, this efficiency is not required, but the component was placed on the rocket’s second stage by default.

SpaceX is launching the first of its Dragon spacecraft on the first demonstration flight under the $1.6 billion Commercial Orbital Transportation Services (COTS) contract that the space firm has with NASA. Under this contract SpaceX is required to fly three demonstration flights before conducting 12 supply missions to the International Space Station (ISS).

SpaceX is pushing ahead with the launch of its Falcon 9 rocket containing the Dragon spacecraft. Photo Credit: Jason Rhian

How To Dispose of a Space Station

Space Station
The International Space Station in 2010. Credit: NASA

[/caption]

With the life of the International Space Station extended to at least 2020, we don’t have to think about its demise for awhile. But actually, NASA and the international partners do have to think about and plan ahead for how this huge 400-ton structure in space will one day be deorbited and disposed of. Friend and venerable space writer Leonard David has written an article about how NASA is starting to consider how they will organize and execute “dumping the huge facility into select, but remote, ocean waters in one fell swoop.” It ain’t gonna be easy, and that’s why thorough planning is a must. It might take a combination of vehicles (ESA’s ATV, Russian Progess) to send the ISS on a very safe and precise swan dive. Or, another possibility is that some of the modules could be re-used elsewhere.

Check out the article on Space.com

How Many Astronauts Does NASA Need?

The White House is looking into ways to reduce the number of astronauts employed by the U.S. Image Credit: NASA

[/caption]

CAPE CANAVERAL – When we think of NASA, the first thing that most Americans picture is the men and women of the astronaut corps. It turns out that the White House has been thinking about them as well – as maybe something that might need to be cut down. The Obama administration has requested a 10-month long study be held to determine the appropriate ‘size’ of NASA’s astronaut corps.

There are only two (and a potential third) shuttle flights remaining on the current manifest.

Right now, NASA has 64 astronauts, which some might consider a bit much if very few will be flying to space. However, if three NASA astronauts are part of each 6-member, 6-month Expedition on the International Space Station from 2011-2017 (the projected time period when NASA will be unable to launch their own astronauts) that still is 36 astronauts with a mission to space.

But the proposal to cut NASA’s astronaut corps comes on the heels of numerous successive cuts that the space agency has endured over the past year. Many view the loss of the corps as one more blow to both spaceflight experience as well as national prestige.

The White House hopes that commercial space companies such as SpaceX, which is slated to launch the second of its Falcon 9 rockets sometime this week, will emerge to fill the void created by NASA’s absence. However, to date, none of these firms have launched an astronaut into orbit. During the interim, and until NASA can build its own heavy lift vehicle, the US space agency is relying on — and paying — the Russians to bring US astronauts to the ISS via the Soyuz.

There has never been more than 150 astronauts at any given time (the most ever was 149 back in 2000). Although most Americans assume that NASA has a massive budget, for what the agency does and provides, it is incredibly small, about one-seventh of a penny out of every tax dollar helps to pay for the ISS, the shuttle program, the probes and rovers to the planets and the astronaut’s salaries. The agency’s budget is currently $18.7 billion a year. The 47 civilian astronauts earn between $65,000 and $100,000 annually, with the remaining military astronauts being paid through the Department of Defense (DoD) which NASA reimburses.

The National Academies is the organization that will conduct the review of the astronaut corps and they are leaving no stone unturned, even the T-38 ‘Talon’ jets that the astronauts fly in, are coming under scrutiny. These jets are not state-of-the-art fighters, but rather training aircraft that date back to the beginning of the space age. These planes, equipment and facilities used to train astronauts and the current number of astronauts will all be reviewed.

“I still don’t know how many folks are in the queue and were not selected for shuttle, ” said two-time shuttle astronaut Robert Springer. “If you are in the program and there is little or no chance to fly in the next 4-8 years that’s too bad, but it’s not the first time this has happened, and if you like the environment, working with some of the greatest people in the business, it can lead to challenging working on the next great enterprise.”

But some have a different idea of how NASA could cut costs.

“You know, if Obama really wanted to cut waste at NASA – he’d start with headquarters,” said a long-time NASA employee who requested to remain anonymous for fear of retribution. “That place is stocked with GS-15s – who really don’t do much of anything!” He said referring to the government pay grade of many of the high-level officials that work at NASA’s headquarters in Washington D.C.