Progress Launches to Supply Station

Image credit: Energia
In compliance with the International Space Station (ISS) flight program and obligations of the Russian Party under the ISS Project rocket and space complex Soyuz-U/Progress M-49 was launched at 16:34:23 Moscow summer time from Baikonur cosmodrome.

The aim of the launch is to deliver necessary cargoes to the ISS to continue operation of the Orbital Complex and create habitation and working conditions for the crew.

According to the ISS assembly program, the Progress M-49 flight designation is 14P.

The refueling compartment of Progress M-49 contains about 640 kg of propellant, 28 kg of oxygen, 20 kg of air, 420 kg of potable water. Its cargo compartment accommodates about 1.2 tons of dry cargoes including food products, equipment and aids for the station onboard systems, individual protection gear, sets of crew procedures, video and photo equipment, parcels for the crew, structural elements, payloads for the US On-Orbit Segment, hardware and materials for space experiments.

The vehicle was launched into orbit with maximum altitude of 252.0 km, minimum altitude of 193.1 km, period of revolution of 88.65 min and inclination of 51.66?.

The vehicle onboard systems operate normally.

The vehicle and ISS docking is scheduled on 27 May 2004 with berthing to the axial docking port of Russian Service Module Zvezda. The estimated time of the docking assembly contact is 17:55. Cargo vehicle Progress M1-11, that has been operating as part of the Orbital Complex since 31 May 2004, cleared the docking port on 24 May 2004. This vehicle that was transferred to a safe distance after the docking will continue its on-orbit flight during the following ten days under a permanent control of MCC-M specialists, supporting performance of the science experiments under the autonomous flight program. Following that, it will be transferred to the descent trajectory and deorbit in the assigned area of the Pacific Ocean.

The decision about complex Soyuz-U/ProgressM-49 launch was taken by the Government Board (co-chairmen: N.F. Moiseev, V.A. Grin’) based on the conclusion of the Technical Management about the readiness of the Space Complex and ground infrastructure components involved in the ISS program implementation.

The prelaunch processing was directly led by the Technical Management (Yu.P. Semenov, Technical Manager of Russian Piloted Space Programs, General Designer of S.P. Korolev RSC Energia, Academician of the Russian Academy of Sciences).

The vehicle and Space Station flight is under control of the Lead Operational Control Team (LOCT) located in the Mission Control Center in Moscow (MCC-M), Korolev, Moscow area (Flight Director is pilot-cosmonaut V.A. Soloviev, S.P. Korolev RSC Energia).

The ISS Orbital Complex operates in orbit with the following parameters: maximum altitude of 385.6 km, minimum altitude of 359.5 km, period of revolution of 91.8 min and inclination of 51.65?. The Russian Segment consists of Functional Cargo Module Zarya, Service Module Zvezda, docking module Pirs, manned transport spacecraft Soyuz TMA-4. The US On-orbit Segment consists of modules Unity and Destiny, airlock Quest, multi-link truss structure with deployed solar arrays. Total mass of the ISS is about 175.2 tons.

According to the telemetry information and reports made by the ISS Expedition 9 crew (ISS-9): Russian cosmonaut Gennady Padalka (commander) and US astronaut Mike Fincke (flight engineer), all station onboard systems operate in the designed modes.

The Space Station is ready for docking with a new cargo vehicle.

Original Source: Energia News Release

Japanese Celebrity Will Visit the Space Station

Image credit: Space Adventures
Space Adventures, Ltd., the world’s leading space experiences company, announced today it has begun working with Dentsu, the world’s largest advertising agency, to send a prominent Japanese figure to the International Space Station (ISS) within the next several years.

As part of the agreement with Dentsu, Space Adventures will dedicate one of the four seats the company has available on the Russian Soyuz TMA spacecraft. Space Adventures currently has a contract with the Federal Space Agency of Russia that provides them with the sole rights to transport the next four private space explorers to the ISS. The first of the four seats has already been contracted by American technology entrepreneur, Greg Olsen, Ph.D., who is currently training at the Yuri Gargarin Training Center in Star City, Russia. His expedition is currently planned for April 2005. With two of the four seats committed, Space Adventures has two seats remaining on the Soyuz.

“I welcome the opportunity to work with Dentsu. They are the world’s premier advertising agency and we are delighted to embark on such an exciting opportunity with them,” said Eric Anderson, president and CEO of Space Adventures. “As Dentsu has cultivated unique artistic designs and opportunities for advertising in today’s marketplace, we, at Space Adventures, are using the same enthusiasm and innovative techniques to open the space frontier to private citizens. Together, we will make history by sending the first Japanese private explorer to space.”

About Space Adventures: The world’s leading space flight experiences and space tourism company offers a wide range of programs from Zero-Gravity and Edge of Space flights, cosmonaut training and space flight qualification programs to reservations on future suborbital spacecraft. Headquartered in Arlington, Va., with an office in Moscow, Space Adventures is the only company to have successfully launched private individuals to the ISS. The company’s advisory board comprises Apollo 11 moonwalker Buzz Aldrin, shuttle astronauts Kathy Thornton, Robert (Hoot) Gibson, Charles Walker, Norm Thagard, Sam Durrance and Byron Lichtenberg and Skylab astronaut Owen Garriott.

About Dentsu Inc.: Founded in 1901, Dentsu is the largest advertising agency brand and the fifth largest marketing and communications organization in the world. Based in Tokyo, Dentsu offers national, multinational and global clients the most comprehensive range of advertising and marketing services through its unique “Total Communications Services” approach. Dentsu has pioneered and set global standards for integrated communications, which in latter years have been adopted by a number of major international networks. The group has more than 6,000 clients and 14,245 full-time employees in both Japan and in its offices overseas. Consolidated billings (net sales) for fiscal term 03/04 were recorded at 1,749 billion yen. Dentsu is publicly quoted on the Tokyo Stock Exchange. For more information, please visit www.dentsu.com.

Original Source: Space Adventures News Release

Progress Docks with Station

Image credit: NASA
An unmanned Russian resupply ship smoothly linked up to the International Space Station this morning, delivering 2-1/2 tons of food, fuel, spare parts and supplies to the two residents on board.

With Expedition 8 Commander and NASA Science Officer Mike Foale and Flight Engineer Alexander Kaleri looking on, the ISS Progress 13 docked to the aft port of the Zvezda Service Module at 7:13 a.m. CST (1313 GMT) as the two craft flew 230 statute miles above Central Asia.

Foale and Kaleri were in Zvezda, prepared to take over manual control of the operation if it had been necessary, but the Progress craft automatically docked to the module through pre-programmed computer command with no problem.

The Progress was the first ship to arrive at the ISS since Foale and Kaleri were launched more than 100 days ago. They are well past the midway mark of a planned 6-? month mission on the complex. The next ship to reach the Station will be the Soyuz TMA-4 capsule in April, carrying a new crew to replace Foale and Kaleri.

After leak checks are completed to insure a tight seal between Progress and the ISS, Kaleri will open up the ship?s hatch later today so he and Foale can begin unloading its cargo on Sunday. The cargo includes spare parts for environmental systems and a new flex hose to help vent condensation and air from the Destiny Laboratory?s optically pure viewing window. A small leak in an identical flex hose was found to have caused a slight pressure decay in the ISS earlier this month.

Information on the crew’s activities aboard the Space Station, future launch dates, as well as Station sighting opportunities from anywhere on the Earth, is available on the Internet at:

http://spaceflight.nasa.gov/

Details on Station science operations can be found on an Internet site administered by the Payload Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Ala., at:

http://scipoc.msfc.nasa.gov/

Original Source: NASA News Release

Scientific Equipment Headed to the Station

Image credit: ESA
Preparing for the arrival of the first European Automated Transfer Vehicle. Europe’s scientific utilisation of the International Space Station (ISS) took an important step forward with the launch of an unmanned Russian Progress cargo spacecraft today at 12:58 Central European Time (16:58 local time) from the Baikonur Cosmodrome in Kazakhstan.

The Progress supply vehicle will take two days to reach the International Space Station, carrying experiment hardware for the Delta mission to be carried out by ESA’s Dutch astronaut Andr? Kuipers in April, Matroshka, a European experiment facility for measuring radiation levels to which astronauts are exposed in space, and hardware to allow the European Automated Transfer Vehicle (ATV) to dock with the Station.

Launched by a Soyuz rocket on mission 13P, the Progress spacecraft with the serial number M1-11 is due to dock with the International Space Station on 31 January at 14:19 Central European Time. The Progress-type spacecraft are currently serving as supply vehicles for the International Space Station and are also uploading European hardware and equipment in advance of European missions to be carried out on the International Space Station.

Among other cargo, Progress is transporting scientific equipment which will be used during the upcoming Delta mission (Dutch Expedition for Life science, Technology and Atmospheric research). Andr? Kuipers, who on 19 April flies out to the ISS on a 10-day mission, will be employing this equipment to carry out a programme of scientific and educational activities. The Delta experiments on board Progress are:

* ARGES: This experiment will study high-intensity discharge (HID) lamps, which are used in all kinds of outdoor illuminations, making use of the absence of gravity to get new insights into how these lamps work and help develop more efficient lamps in future.
* HEAT: This experiment will be testing heat transfer properties in a section of a heat pipe with the aim of developing more efficient heat distribution systems for satellites and space vehicles in future.
* PROMISS-3: The experiment aims to analyse the growth of protein crystals in weightlessness, which cannot be observed to the same extent and with the same homogeneity on the ground.
* SUIT: The aims of this technology demonstration are to improve the orientation capabilities of astronauts and reduce space sickness. The experiment involves the astronaut wearing a special vest containing vibrating elements to assist his awareness of his position.
* ETD: This is a human physiology experiment which uses an eye-tracking device to determine eye movements in weightlessness and compare how they differ from eye movements on Earth and hence determine the effect the body?s balance system has on eye movements. This has an important bearing on balance disorders on the ground as well as in space.
* SAMPLE: This is a study into the composition and physiology of microbe species at different points around the ISS and also from the astronauts. The experiment will take samples from the chosen locations and further analyse how the different microbes found adapt to weightlessness.
* MOT: The aim of MOT is to calibrate accelerometers to be used to measure acceleration in three directions. Once calibrated the accelerometers will be incorporated into radio sensitive abdominal implants in mice for measuring acceleration, heart rate and body temperature.

Specialised containers called “biokits” are also part of the Progress cargo. They will be used to return the samples from the biological experiments taking place on the Delta mission.

Also on board Progress is a Russian spectrum analyser, not part of the Delta mission, to perform a dedicated in-orbit checkout on the European Global Transmission Services (GTS) experiment on the ISS. It will analyse the quality of the radio frequency cables of the GTS experiment, which might be the cause of the weaker than expected transmission signals received on the ground so far.

Another experiment on board Progress in addition to the Delta mission is the Matroshka experimental facility, which will be placed on the outside of the Russian Zvezda module. It will measure radiation levels experienced by astronauts in space. The facility has a human shape, consisting of a head and torso. It is made of natural bone and a synthetic material similar to human tissue. Sensors measuring radiation will be placed at various key external and internal positions on the model such as the areas of the stomach, lungs, kidney, colon and eyes. The facility will remain outside the ISS for a year. Matroshka is an ESA payload under the project leadership of DLR, the German Aerospace Centre in Cologne.

This flight is also carrying elements of the rendezvous and docking system of the Automated Transfer Vehicle (ATV), the European unmanned ISS supply spacecraft, similar in function – but not in size – to the Russian Progress. It will carry up to three times the cargo of the Progress vehicles, i.e. up to 7500kg.

The ATV-related equipment flown to the ISS consists of the following items:

* the videometer target assembly,
* laser retroreflectors,
* a container for old laser retroreflectors,
* two communication antennas,
* several cables.

This equipment from Russia and from ESA is required for the rendezvous between the first ATV, called Jules Verne, and the ISS early next year. The videometer, which will be located on the ATV spacecraft, will enable rendezvous operations in orbit to be carried out with a degree of precision never yet attained. This instrument will analyse the laser light emitted by the ATV and reflected back to it by the retroreflectors. These retroreflectors make up part of the videometer target assembly, serving as targets on the docking side of the service module. Two sets of different patterns of retroreflectors will enable the ATV ? from a distance of 300m onwards – to know its distance from and angular orientation to the ISS precisely.

The two antennas are needed for voice and data communications between the Russian Zvezda Module and the ATV. This sophisticated antenna system made in Russia will require six more, to be flown out later by other Progress ships.

All these ATV-related elements will be installed on the rear side of the Zvezda module during extravehicular activities scheduled for this July. Some old ATV retroreflectors, installed on Zvezda before its launch in 1998, will be brought back to Earth for material analysis.

The remaining experiment equipment for the Delta mission will be launched to the ISS together with Andr? Kuipers in the manned Soyuz TMA-4. This is scheduled for launch from Baikonur as mission 8S on 19 April. Kuipers is currently training for the mission at Star City near Moscow.

Original Source: ESA News Release