International Space Station Achieves 15 Years of Continuous Human Presence in Orbit

The International Space Station (ISS) has grown tremendously in size and complexity and evolved significantly over 15 years of continuous human occupation from Nov. 2, 2000 to Nov. 2, 2015. Credit: NASA

The International Space Station (ISS) achieved 15 years of a continuous human presence in orbit, as of today, Nov. 2, aboard the football field sized research laboratory ever since the first Russian/American crew of three cosmonauts and astronauts comprising Expedition 1 arrived in a Soyuz capsule at the then much tinier infant orbiting complex on Nov. 2, 2000.

Today, the space station is host to the Expedition 45 crew of six humans – from America, Russia and Japan – that very symbolically also includes the first ever crew spending one year aboard and that highlights the outposts expanding role from a research lab to a deep space exploration test bed for experiments and technologies required for sending humans on interplanetary journeys to the Martian system in the 2030s.

The ISS was only made possible by over two decades of peaceful and friendly international cooperation by the most powerful nations on Earth on a scale rarely seen.

“I believe the International Space Station should be considered for the Nobel Peace Prize,” said NASA Administrator Charles Bolden last week during remarks to the Center for American Progress in Washington, DC., on October 28, 2015.

“Exploration has taught us more than we have ever known about our Universe and our place in it.”

“The ISS has already taught us what’s possible when tens of thousands of people across 15 countries collaborate so that human beings from different nations can live and work in space together.”

“Yet, for all these accomplishments, when you consider all the possibilities ahead of us you can only reach one conclusion; We are just getting started!”

6 person ISS Expedition 45 Crew celebrates 15 Years of operation with humans on 2 Nov 2015.  Credit: NASA
6 person ISS Expedition 45 Crew celebrates 15 Years of operation with humans on 2 Nov 2015. Credit: NASA

“No better place to celebrate #15YearsOnStation! #HappyBday, @space_station! Thanks for the hospitality! #YearInSpace.” tweeted NASA astronaut Scott Kelly from the ISS today along with a crew portrait.

The space station is the largest engineering and construction project in space combining the funding, hardware, knowhow, talents and crews from 5 space agencies and 15 countries – NASA, Roscomos, ESA (European Space Agency), JAXA (Japan Aerospace and Exploration Agency) and CSA (Canadian Space Agency).

NASA astronaut Tracy Caldwell Dyson, an Expedition 24 flight engineer in 2010, took a moment during her space station mission to enjoy an unmatched view of home through a window in the Cupola of the International Space Station, the brilliant blue and white part of Earth glowing against the blackness of space.  Credits: NASA
NASA astronaut Tracy Caldwell Dyson, an Expedition 24 flight engineer in 2010, took a moment during her space station mission to enjoy an unmatched view of home through a window in the Cupola of the International Space Station, the brilliant blue and white part of Earth glowing against the blackness of space. Credits: NASA

The collaborative work in space has transcended our differences here on Earth and points the way forward to an optimistic future that benefits all humanity.

The station orbits at an altitude of about 250 miles (400 kilometers) above Earth. It measures 357 feet (109 meters) end-to-end and has an internal pressurized volume of 32,333 cubic feet, equivalent to that of a Boeing 747.

The uninterrupted human presence on the station all began when Expedition 1 docked at the outpost on Nov. 2, 2000, with its first residents including Commander William Shepherd of NASA and cosmonauts Sergei Krikalev and Yuri Gidzenko of Roscosmos.

For the first station trio in November 2000, the vehicle included three modules; the Zarya module and the Zvezda service module from Russia and the Unity module from the US.

In this photo, Expedition 1 crew members (from left to right) Commander Bill Shepherd, and Flight Engineers Yuri Gidzenko and Sergei Krikalev pose with a model of their home away from home.  Image Credit: NASA
In this photo, Expedition 1 crew members (from left to right) Commander Bill Shepherd, and Flight Engineers Yuri Gidzenko and Sergei Krikalev pose with a model of their home away from home. Image Credit: NASA

Over the past 15 years, after more than 115 construction and logistics flight, the station has grown by leaps and bounds from its small initial configuration of only three pressurized modules from Russian and America into a sprawling million pound orbiting outpost sporting a habitable volume the size of a six bedroom house, with additional new modules and hardware from Europe, Japan and Canada.

The ISS has been visited by over 220 people from 17 countries.

The “1 Year ISS crew” reflects the international cooperation that made the station possible and comprises current ISS commander NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko, who are now just past the half way mark of their mission.

“Over the weekend, I called NASA astronaut Scott Kelly, who is currently halfway through his one-year mission aboard the International Space Station, to congratulate him on setting the American records for both cumulative and continuous days in space,” Bolden said in a NASA statement released today.

“I also took the opportunity to congratulate Commander Kelly — and the rest of the space station crew — for being part of a remarkable moment 5,478 days in the making: the 15th anniversary of continuous human presence aboard the space station.”

Scott Kelly, U.S. astronaut and commander of the current Expedition 45 crew, broke the US record for time spent in space on Oct. 16, 2015. Credit: NASA
Scott Kelly, U.S. astronaut and commander of the current Expedition 45 crew, broke the US record for time spent in space on Oct. 16, 2015. Credit: NASA

The complete Expedition 45 crew members include Station Commander Scott Kelly and Flight Engineer Kjell Lindgren of NASA, Flight Engineers Mikhail Kornienko, Oleg Kononenko and Sergey Volkov of the Russian Federal Space Agency (Roscosmos) and Flight Engineer Kimiya Yui of the Japan Aerospace Exploration Agency.

For the first nine years, the station was home to crews of two or three. Starting in 2009 the crew size was doubled to a permanent crew of six humans after the habitable volume, research facilities, equipment and supporting provisions had grown sufficiently.

“Humans have been living in space aboard the International Space Station 24-7-365 since Nov. 2, 2000. That’s 15 Thanksgivings, New Years, and holiday seasons astronauts have spent away from their families. 15 years of constant support from Mission Control Houston. And 15 years of peaceful international living in space,” says NASA.

Expedition 45 Crew Portrait: Station Commander Scott Kelly and Flight Engineer Kjell Lindgren of NASA, Flight Engineers Mikhail Kornienko, Oleg Kononenko and Sergey Volkov of the Russian Federal Space Agency (Roscosmos) and Flight Engineer Kimiya Yui of the Japan Aerospace Exploration Agency.  Credit: NASA/Roscosmos/JAXA
Expedition 45 Crew Portrait: Station Commander Scott Kelly and Flight Engineer Kjell Lindgren of NASA, Flight Engineers Mikhail Kornienko, Oleg Kononenko and Sergey Volkov of the Russian Federal Space Agency (Roscosmos) and Flight Engineer Kimiya Yui of the Japan Aerospace Exploration Agency. Credit: NASA/Roscosmos/JAXA

The US contributed and built the largest number of segments of the space station, followed by Russia.

NASA’s Space Shuttles hauled the US segments aloft inside the orbiters huge payload bay, starting from the first construction mission in 1998 carrying the Unity module to the final shuttle flight STS-135 in 2011, which marked the completion of construction and retirement of the shuttles.

With the shuttle orbiters now sitting in museums and no longer flying, the Russian Soyuz capsule is the only means of transporting crews to the space station and back.

The longevity of the ISS was recently extended from 2020 to 2024 after approval from President Obama. Most of the partners nations have also agreed to the extension. Many in the space community believe the station hardware is quite resilient and hope for further extensions to 2028 and beyond.

“The International Space Station, which President Obama has extended through 2024, is a testament to the ingenuity and boundless imagination of the human spirit. The work being done on board is an essential part of NASA’s journey to Mars, which will bring American astronauts to the Red Planet in the 2030s,” says Bolden.

“For 15 years, humanity’s reach has extended beyond Earth’s atmosphere. Since 2000, human beings have been living continuously aboard the space station, where they have been working off-the-Earth for the benefit of Earth, advancing scientific knowledge, demonstrating new technologies, and making research breakthroughs that will enable long-duration human and robotic exploration into deep space.”

A key part of enabling long duration space missions to Mars is the 1 Year ISS Mission.

Scott Kelly recently set the US records for most time in space and longest single space mission.

In coming years, additional new pressurized modules and science labs will be added by Russia and the US.

And NASA says the stations crew size will expand to seven after the US commercial Starliner and Dragon space taxis from Boeing and SpaceX start flying in 2017.

NASA is now developing the new Orion crew capsule and mammoth Space Launch System (SLS) heavy lift rocket to send astronauts to deep space destination including the Moon, asteroids and the Red Planet.

In the meantime, Kelly and his crew are also surely looking forward to the arrival of the next Orbital ATK Cygnus resupply ship carrying science experiments, provisions, spare parts, food and other goodies after it blasts off from Florida on Dec. 3 – detailed in my story here.

Infographic: 15 Years of Continuous Human Presence Aboard the International Space Station.  Credit: NASA
Infographic: 15 Years of Continuous Human Presence Aboard the International Space Station. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the final flight to the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

Boulder Extraction and Robotic Arm Mechanisms For NASA’s Asteroid Redirect Mission Start Rigorous Testing at NASA Goddard

Robotic sampling arm and capture mechanism to collect a multi-ton boulder from an asteroid are under development at NASA Goddard and other agency centers for NASA’s unmanned Asteroid Redirect Vehicle and eventual docking in lunar orbit with Orion crew vehicle by the mid 2020s. Credit: Ken Kremer/kenkremer.com

NASA GODDARD SPACE FLIGHT CENTER, MD – Rigorous testing has begun on the advanced robotic arm and boulder extraction mechanisms that are key components of the unmanned probe at the heart of NASA’s Asteroid Redirect Robotic Mission (ARRM) now under development to pluck a multi-ton boulder off a near-Earth asteroid so that astronauts visiting later in an Orion crew capsule can harvest a large quantity of samples for high powered scientific analysis back on Earth. Universe Today inspected the robotic arm hardware utilizing “leveraged robotic technology” during an up close visit and exclusive interview with the engineering development team at NASA Goddard.

“The teams are making great progress on the capture mechanism that has been delivered to the robotics team at Goddard from Langley,” NASA Associate Administrator Robert Lightfoot told Universe Today.

“NASA is developing these common technologies for a suite of missions like satellite servicing and refueling in low Earth orbit as well as autonomously capturing an asteroid about 100 million miles away,” said Ben Reed, NASA Satellite Servicing Capabilities Office (SSCO) Deputy Project Manager, during an exclusive interview and hardware tour with Universe Today at NASA Goddard in Greenbelt, Maryland, regarding concepts and goals for the overall Asteroid Redirect Mission (ARM) initiative.

NASA is leveraging technology originally developed for satellite servicing such as with the Robotic Refueling Mission (RRM) currently on board the International Space Station (ISS) and repurposing them for the asteroid retrieval mission.

“Those are our two near term mission objectives that we are developing these technologies for,” Reed explained.

ARRM combines both robotic and human missions to advance the new technologies required for NASA’s agency wide ‘Journey to Mars’ objective of sending a human mission to the Martian system in the 2030s.

The unmanned Asteroid Redirect Robotic Mission (ARRM) to grab a boulder is the essential first step towards carrying out the follow on sample retrieval with the manned Orion Asteroid Redirect Mission (ARM) by the mid-2020s.

ARRM will use a pair of highly capable robotic arms to autonomously grapple a multi-ton (> 20 ton) boulder off the surface of a large near-Earth asteroid and transport it to a stable, astronaut accessible orbit around the Moon in cislunar space.

“Things are moving well. The teams have made really tremendous progress on the robotic arm and capture mechanism,” Bill Gerstenmaier, NASA Associate Administrator for Human Exploration and Operations, told Universe Today.

Then an Orion crew capsule can fly to it and the astronauts will collect a large quantity of rock samples and gather additional scientific measurements.

“We are working on a system to rendezvous, capture and service different [target] clients using the same technologies. That is what we are working on in a nut shell,” Reed said.

This engineering design unit of the robotic servicing arm is under development to autonomously extract a boulder off an asteroid for NASA’s asteroid retrieval mission and  is being tested at NASA Goddard.   It has seven degrees of freedom and mimics a human arm.   Credit: Ken Kremer/kenkremer.com
This engineering design unit of the robotic servicing arm is under development to autonomously extract a boulder off an asteroid for NASA’s asteroid retrieval mission and is being tested at NASA Goddard. It has seven degrees of freedom and mimics a human arm. Credit: Ken Kremer/kenkremer.com

“Right now the plan is to launch ARRM by about December 2020,” Reed told me. But a huge amount of preparatory work across the US is required to turn NASA’s plan into reality.

Key mission enabling technologies are being tested right now with a new full scale engineering model of the ‘Robotic Servicing Arm’ and a full scale mockup of the boulder snatching ARRM Capture Module at NASA Goddard, in a new facility known as “The Cauldron.”

Capture Module comprising two robotic servicing arms and three boulder grappling contact and restraint system legs for NASA’s Asteroid Redirect Robotic Mission (ARRM).   Credit: NASA
Capture Module comprising two robotic servicing arms and three boulder grappling contact and restraint system legs for NASA’s Asteroid Redirect Robotic Mission (ARRM). Credit: NASA
The ARRM capture module is comprised of two shorter robotic arms (separated by 180 degrees) and three lengthy contact and restraint system capture legs (separated by 120 degrees) attached to a cradle with associated avionics, computers and electronics and the rest of the spacecraft and solar electric power arrays.

“The robotic arm we have here now is an engineering development unit. The 2.2 meter-long arms can be used for assembling large telescopes, repairing a failed satellite, removing orbital debris and capturing an asteroid,” said Reed.

“There are two little arms and three big capture legs.”

“So, we are leveraging one technology development program into multiple NASA objectives.”

“We are working on common technologies that can service a legacy orbiting satellite, not designed to be serviced, and use those same technologies with some tweaking that we can go out with 100 million miles and capture an asteroid and bring it back to the vicinity of the Moon.”

“Currently the [capture module] system can handle a boulder that’s up to about 3 x 4 x 5 meters in diameter.”

Artists concept of NASA’s Asteroid Redirect Robotic Mission capturing an asteroid boulder before redirecting it to a astronaut-accessible orbit around Earth's moon.  Credits: NASA
Artists concept of NASA’s Asteroid Redirect Robotic Mission capturing an asteroid boulder before redirecting it to a astronaut-accessible orbit around Earth’s moon. Credits: NASA

The Cauldron is a brand new Goddard facility for testing technologies and operations for multiple exploration and science missions, including satellite servicing and ARRM that just opened in June 2015 for the centers Satellite Servicing Capabilities Office.

Overall project lead for ARRM is the Jet Propulsion Laboratory (JPL) with numerous contributions from other NASA centers and industrial partners.

“This is an immersive development lab where we bring systems together and can do lifetime testing to simulate what’s in space. This is our robotic equivalent to the astronauts NBL, or neutral buoyancy lab,” Reed elaborated.

“So with this same robotic arm that can cut wires and thermal blankets and refuel an Earth sensing satellite, we can now have that same arm go out on a different mission and be able to travel out and pick up a multi-ton boulder and bring it back for astronauts to harvest samples from.”

“So that’s quite a technical feat!”

The Robotic Servicing Arm is a multi-jointed powerhouse designed to function like a “human arm” as much as possible. It builds on extensive prior research and development investment efforts conducted for NASA’s current Red Planet rovers and a flight-qualified robotic arm developed for the Defense Advanced Research Projects Agency (DARPA).

“The arm is capable of seven-degrees-of-freedom to mimic the full functionally of a human arm. It has heritage from the arm on Mars right now on Curiosity as well as ground based programs from DARPA,” Reed told me.

“It has three degrees of freedom at our shoulder, two at our elbow and two more at the wrist. So I can hold the hand still and move the elbow.”

The arm will also be equipped with a variety of interchangeable “hands” that are basically tools to carry out different tasks with the asteroid such as grappling, drilling, sample gathering, imaging and spectrometric analysis, etc.

View of the robotic arm above and gripper tool below that initially grabs the asteroid boulder before the capture legs wrap around as planned for NASA’s upcoming unmanned ARRM Asteroid Redirect Robotic Mission that will later dock with an Orion crew vehicle. Credit: Ken Kremer/kenkremer.com
View of the robotic arm above and gripper tool below that initially grabs the asteroid boulder before the capture legs wrap around as planned for NASA’s upcoming unmanned ARRM Asteroid Redirect Robotic Mission that will later dock with an Orion crew vehicle. Credit: Ken Kremer/kenkremer.com

The ARRM spacecraft will carefully study, characterize and photograph the asteroid in great detail for about a month before attempting the boulder capture.

Why does the arm need all this human-like capability?

“When we arrive at an asteroid that’s 100 million miles away, we are not going to know the fine local geometry until we arrive,” Reed explained to Universe Today.

“Therefore we need a flexible enough arm that can accommodate local geometries at the multi-foot scale. And then a gripper tool that can handle those geometry facets at a much smaller scale.”

“Therefore we chose seven-degrees-of-freedom to mimic humans very much by design. We also need seven-degrees-of-freedom to conduct collision avoidance maneuvers. You can’t do that with a six-degree-of-freedom arm. It has to be seven to be a general purpose arm.”

How will the ARRM capture module work to snatch the boulder off the asteroid?

“So the idea is you come to the mother asteroid and touch down and make contact on the surface. Then you hold that position and the two arms reach out and grab the boulder.”

“Once its grabbed the boulder, then the legs straighten and pull the boulder off the surface.”

“Then the arms nestle the asteroid onto a cradle. And the legs then change from a contact system to become a restraint system. So the legs wrap around the boulder to restrain it for the 100 million mile journey back home.

“After that the little arms can let go – because the legs have wrapped around and are holding the asteroid.”

“So now the arm can also let go of the gripper system and pick up a different tool to do other things. For example they can collect a sample with another tool. And maybe assist an astronaut after the crew arrives.”

“During the 100 million mile journey back to lunar orbit they can be also be preparing the surface and cutting into it for later sample collection by the astronauts.”

Be sure to watch this video animation:

Since the actual asteroid encounter will occur very far away, the boulder grappling will have to be done fully autonomously since there will be no possibility for real time communications.

“The return time for communications is like about 30 minutes. So ‘human in the loop’ control is out of the question.

“Once we get into hover position over the landing site we hit the GO button. Then it will be very much like at Mars and the seven minutes of terror. It will take awhile to find out if it worked.”

Therefore the team at Goddard has already spent years of effort and practice sessions just to get ready for working with the early engineering version of the arm to maximize the probability of a successful capture.

“In this facility we put systems together to try and practice and rehearse and simulate as much of the mission as is realistically possible.”

“It took a lot of effort to get to this point, in the neighborhood of four years to get the simulation to behave correctly in real time with contact dynamics and the robotic systems. So the arm has to touch the boulder with force torque sensors and feed that into a computer to measure that and move the actuators to respond accordingly.”

“So the capture of the boulder is autonomous. The rest is teleoperated from the ground, but not the capture itself.”

How realistic are the rehearsals?

“We are practicing here by reaching out with the arm to grasp the client target using autonomous capture [procedures]. In space the client [target] is floating and maybe tumbling. So when we reach out with the arm to practice autonomous capture we make the client tumble and move – with the inertial properties of the target we are practicing on.”

“Now for known objects like satellites we know the mass precisely. And we can program all that inertial property data in very accurately to give us much more realistic simulations.”

“We learned from all our astronaut servicing experiences in orbit is that the more we know for the simulations, the easier and better the results are for the astronauts during an actual mission because you simulated all the properties.”

“But with this robotic mission to an asteroid there is no backup like astronauts. So we want to practice here at Goddard and simulate the space environment.”

ARRM will launch by the end of 2020 on either an SLS, Delta IV Heavy or a Falcon Heavy. NASA has not yet chosen the launch vehicle.

Several candidate asteroids have already been discovered and NASA has an extensive ongoing program to find more.

Orion crew capsule docks to NASA’s asteroid redirect vehicle grappling captured asteroid boulder orbiting the Moon. Credit: NASA
Orion crew capsule docks to NASA’s asteroid redirect vehicle grappling captured asteroid boulder orbiting the Moon. Credit: NASA

Again, this robotic technology was selected for development for ARRM because it has a lot in common with other objectives like fixing communications satellites, refueling satellites and building large telescopes in the future.

NASA is also developing other critical enabling technologies for the entire ARM project like solar electric propulsion that will be the subject of another article.

Therefore NASA is leveraging one technology development program into multiple spaceflight objectives that will greatly assist its plans to send ‘Humans to Mars’ in the 2030s with the Orion crew module launched by the monster Space Launch System (SLS) rocket.

The maiden uncrewed launch of the Orion/SLS stack is slated for November 2018.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

At NASA Goddard robotics lab Ben Reed/NASA Satellite Servicing Capabilities Office (SSCO) Deputy Project Manager and Ken Kremer/Universe Today discuss the robotic servicing arm and asteroid boulder capture mechanism being tested for NASA’s upcoming unmanned ARRM Asteroid Redirect Robotic Mission that will dock with an Orion crew vehicle in lunar orbit by the mid 2020s for sample return collection. Credit: Ken Kremer/kenkremer.com
At NASA Goddard robotics lab Ben Reed/NASA Satellite Servicing Capabilities Office (SSCO) Deputy Project Manager and Ken Kremer/Universe Today discuss the robotic servicing arm and asteroid boulder capture mechanism being tested for NASA’s upcoming unmanned ARRM Asteroid Redirect Robotic Mission that will dock with an Orion crew vehicle in lunar orbit by the mid 2020s for sample return collection. Credit: Ken Kremer/kenkremer.com

NASA’s Space Launch System Passes Critical Design Review, Drops Saturn V Color Motif

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC
Story/imagery updated[/caption]

The SLS, America’s first human-rated heavy lift rocket intended to carry astronauts to deep space destinations since NASA’s Apollo moon landing era Saturn V, has passed a key design milestone known as the critical design review (CDR) thereby clearing the path to full scale fabrication.

NASA also confirmed they have dropped the Saturn V white color motif of the mammoth rocket in favor of burnt orange to reflect the natural color of the SLS boosters first stage cryogenic core. The agency also decided to add stripes to the huge solid rocket boosters.

NASA announced that the Space Launch System (SLS) has “completed all steps needed to clear a critical design review (CDR)” – meaning that the design of all the rockets components are technically acceptable and the agency can continue with full scale production towards achieving a maiden liftoff from the Kennedy Space Center in Florida in 2018.

“We’ve nailed down the design of SLS,” said Bill Hill, deputy associate administrator of NASA’s Exploration Systems Development Division, in a NASA statement.

Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC
Artist concept of the SLS Block 1 configuration on the Mobile Launcher at KSC. Credit: NASA/MSFC

Blastoff of the NASA’s first SLS heavy lift booster (SLS-1) carrying an unmanned test version of NASA’s Orion crew capsule is targeted for no later than November 2018.

Indeed the SLS will be the most powerful rocket the world has ever seen starting with its first liftoff. It will propel our astronauts on journey’s further into space than ever before.

SLS is “the first vehicle designed to meet the challenges of the journey to Mars and the first exploration class rocket since the Saturn V.”

Crews seated inside NASA’s Orion crew module bolted atop the SLS will rocket to deep space destinations including the Moon, asteroids and eventually the Red Planet.

“There have been challenges, and there will be more ahead, but this review gives us confidence that we are on the right track for the first flight of SLS and using it to extend permanent human presence into deep space,” Hill stated.

The core stage (first stage) of the SLS will be powered by four RS-25 engines and a pair of five-segment solid rocket boosters (SRBs) that will generate a combined 8.4 million pounds of liftoff thrust in its inaugural Block 1 configuration, with a minimum 70-metric-ton (77-ton) lift capability.

Overall the SLS Block 1 configuration will be some 10 percent more powerful than the Saturn V rockets that propelled astronauts to the Moon, including Neil Armstrong, the first human to walk on the Moon during Apollo 11 in July 1969.

Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC
Graphic shows Block I configuration of NASA’s Space Launch System (SLS). Credits: NASA/MSFC

The SLS core stage is derived from the huge External Tank (ET) that fueled NASA Space Shuttle’s for three decades. It is a longer version of the Shuttle ET.

NASA initially planned to paint the SLS core stage white, thereby making it resemble the Saturn V.

But since the natural manufacturing color of its insulation during fabrication is burnt orange, managers decided to keep it so and delete the white paint job.

“As part of the CDR, the program concluded the core stage of the rocket and Launch Vehicle Stage Adapter will remain orange, the natural color of the insulation that will cover those elements, instead of painted white,” said NASA.

There is good reason to scrap the white color motif because roughly 1000 pounds of paint can be saved by leaving the tank with its natural orange pigment.

This translates directly into another 1000 pounds of payload carrying capability to orbit.

“Not applying the paint will reduce the vehicle mass by potentially as much as 1,000 pounds, resulting in an increase in payload capacity, and additionally streamlines production processes,” Shannon Ridinger, NASA Public Affairs spokeswomen told Universe Today.

After the first two shuttle launches back in 1981, the ETs were also not painted white for the same reason – in order to carry more cargo to orbit.

“This is similar to what was done for the external tank for the space shuttle. The space shuttle was originally painted white for the first two flights and later a technical study found painting to be unnecessary,” Ridinger explained.

Artist concept of the Block I configuration of NASA’s Space Launch System (SLS). The SLS Program has completed its critical design review, and the program has concluded that the core stage of the rocket will remain orange along with the Launch Vehicle Stage Adapter, which is the natural color of the insulation that will cover those elements.  Credits: NASA
Artist concept of the Block I configuration of NASA’s Space Launch System (SLS). The SLS Program has completed its critical design review, and the program has concluded that the core stage of the rocket will remain orange along with the Launch Vehicle Stage Adapter, which is the natural color of the insulation that will cover those elements. Credits: NASA

NASA said that the CDR was completed by the SLS team in July and the results were also further reviewed over several more months by a panel of outside experts and additionally by top NASA managers.

“The SLS Program completed the review in July, in conjunction with a separate review by the Standing Review Board, which is composed of seasoned experts from NASA and industry who are independent of the program. Throughout the course of 11 weeks, 13 teams – made up of senior engineers and aerospace experts across the agency and industry – reviewed more than 1,000 SLS documents and more than 150 GB of data as part of the comprehensive assessment process at NASA’s Marshall Space Flight Center in Huntsville, Alabama, where SLS is managed for the agency.”

“The Standing Review Board reviewed and assessed the program’s readiness and confirmed the technical effort is on track to complete system development and meet performance requirements on budget and on schedule.”

The final step of the SLS CDR was completed this month with another extremely thorough assessment by NASA’s Agency Program Management Council, led by NASA Associate Administrator Robert Lightfoot.

“This is a major step in the design and readiness of SLS,” said John Honeycutt, SLS program manager.

The CDR was the last of four reviews that examine SLS concepts and designs.

NASA says the next step “is design certification, which will take place in 2017 after manufacturing, integration and testing is complete. The design certification will compare the actual final product to the rocket’s design. The final review, the flight readiness review, will take place just prior to the 2018 flight readiness date.”

“Our team has worked extremely hard, and we are moving forward with building this rocket. We are qualifying hardware, building structural test articles, and making real progress,” Honeycutt elaborated.

Numerous individual components of the SLS core stage have already been built and their manufacture was part of the CDR assessment.

The SLS core stage is being built at NASA’s Michoud Assembly Facility in New Orleans. It stretches over 200 feet tall and is 27.6 feet in diameter and will carry cryogenic liquid hydrogen and liquid oxygen fuel for the rocket’s four RS-25 engines.

On Sept. 12, 2014, NASA Administrator Charles Bolden officially unveiled the world’s largest welder at Michoud, that will be used to construct the core stage, as I reported earlier during my on-site visit – here.

The first stage RS-25 engines have also completed their first round of hot firing tests. And the five segment solid rocket boosters has also been hot fired.

NASA decided that the SRBs will be painted with something like racing stripes.

“Stripes will be painted on the SRBs and we are still identifying the best process for putting them on the boosters; we have multiple options that have minimal impact to cost and payload capability, ” Ridinger stated.

With the successful completion of the CDR, the components of the first core stage can now proceed to assembly of the finished product and testing of the RS-25 engines and boosters can continue.

“We’ve successfully completed the first round of testing of the rocket’s engines and boosters, and all the major components for the first flight are now in production,” Hill explained.

View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop  Mobile Launcher at the Kennedy Space Center in Florida.  Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com
View of NASA’s future SLS/Orion launch pad at Space Launch Complex 39B from atop Mobile Launcher at the Kennedy Space Center in Florida. Former Space Shuttle launch pad 39B is now undergoing renovations and upgrades to prepare for SLS/Orion flights starting in 2018. Credit: Ken Kremer/kenkremer.com

NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.

The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center (KSC).

The SLS/Orion stack will roll out to pad 39B atop the Mobile Launcher now under construction – as detailed in my recent story and during visit around and to the top of the ML at KSC.

Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars.   The ML will support NASA's Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA's Kennedy Space Center in Florida.  Credit: Ken Kremer/kenkremer.com
Looking up from beneath the enlarged exhaust hole of the Mobile Launcher to the 380 foot-tall tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft during Exploration Mission-1 at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014.  Credit: Ken Kremer – kenkremer.com
Wide view of the new welding tool at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans at a ribbon-cutting ceremony Sept. 12, 2014. Credit: Ken Kremer – kenkremer.com

NASA Astronaut Scott Kelly Sets US Record for Most Time in Space – At the ‘Speed of Sound’: Video

NASA Astronaut Scott Kelly works inside the U.S. Destiny Laboratory. Destiny is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies contributing to health, safety and quality of life for people all over the world. Credit: NASA

Video Caption: See NASA astronaut Scott Kelly’s extraterrestrial exploits as he breaks US record for time in space in this music video set to the song ‘Speed of Sound’ by Coldplay. Credit: NASA/Coldplay

NASA astronaut Scott Kelly has just broken the American record for most time spent in space – at 383 days and counting – as part of his groundbreaking yearlong mission living aboard the International Space Station (ISS), where he currently serves as station commander.

See Kelly break the US spaceflight endurance record on the ISS at the “SPEED OF SOUND” in the beautifully space themed music video (above) set to the worldwide hit song by rock band Coldplay.

The video recounts a flurry of highlights from the yearlong space station mission with his partner, Russian cosmonaut Mikahail Kornienko, and the rest of the rotating cast of international crewmates.

On October 16, 2015, Kelly surpassed the US time in space record of 382 days previously held by NASA astronaut Mike Fincke.

The ‘1 Year ISS mission’ is aimed at conducting research to explore the impact of long term stays in space on the human body and aid NASA’s long term plans for a human ‘Journey to Mars’ in the 2030s.

“Records are meant to be broken. Look fwd to one of my colleagues surpassing my end 500+ days on our #JourneyToMars!’ Kelly tweeted from the ISS about his record breaking achievement.

As of today, October 20, Kelly has reached the 206 day mark aboard the ISS, of his planned 342 days in space. He’s now about a month past the half way mark.

In addition to his scientific research, Kelly has been a prolific photographer of all things space – including natural wonders and natural disasters like Hurricane Joaquin.

Here’s his newly released photo titled ‘Earth Art From Australia.’

‘Earth Art From Australia.’ @StationCDRKelly captured 17 pics from @Space_Station during a single flyover of Australia from 12/13 Oct 2015.  Credit: NASA/Scott Kelly
‘Earth Art From Australia.’ @StationCDRKelly captured 17 pics from @Space_Station during a single flyover of Australia from 12/13 Oct 2015. Credit: NASA/Scott Kelly

See the NASA graphic herein showing the US astronauts who have accumulated the most spaceflight experience to date.

Station Commander Scott Kelly passed astronaut Mike Fincke, also a former station commander, on Oct. 16, 2015, for most cumulative days living and working in space by a NASA astronaut (383 days and counting). Kelly is scheduled to come home March 2, 2016, for a record total 522 days in space.  Credit: NASA
Station Commander Scott Kelly passed astronaut Mike Fincke, also a former station commander, on Oct. 16, 2015, for most cumulative days living and working in space by a NASA astronaut (383 days and counting). Kelly is scheduled to come home March 2, 2016, for a record total 522 days in space. Credit: NASA

Kelly accumulated his time in space during multiple spaceflights. Altogether this is his fourth mission and second long duration stay aboard the ISS. This flight also marks his second stint as station commander – as a member of the current Expedition 45 crew.

To be sure, Kelly is not merely passing Fincke’s record days but actually smashing through it by many months because he still has a long way to go until he returns home to Earth.

At the conclusion of his yearlong mission when he plummets back home in a Russian Soyuz capsule – along with Kornienko – on March 2, 2016, he will have compiled 522 total days living in space.

Kelly will also become the first American to spend a year in space, a feat previously achieved by only four Russian cosmonauts – all in the 1980s and 1990s aboard Russia’s Mir space station.

Next week on Thursday, Oct. 29, Kelly will break another American record for the single-longest spaceflight.

“On Oct. 29 on his 216th consecutive day in space, he will surpass astronaut Michael Lopez-Alegria’s record for the single-longest spaceflight by an American. Lopez-Alegria spent 215 days in space as commander of the Expedition 14 crew in 2006.”

Scott Kelly, U.S. astronaut and commander of the current Expedition 45 crew, broke the US record for time spent in space on Oct. 16, 2015. Credit: NASA
Scott Kelly, U.S. astronaut and commander of the current Expedition 45 crew, broke the US record for time spent in space on Oct. 16, 2015. Credit: NASA

Kelly and Kornienko are spending a year aboard the ISS, “testing the limits of human research, space exploration and the human spirit,” says NASA officials.

The pair launched to the ISS in March 2015 along with Russian cosmonaut Gennady Padalka. He recently returned to Earth in September 2015 after setting the record for most time spent in space by any Earthling – with an accumulated total of 879 days living and working in space.

During their 342 days in space, Kelly and Kornienko are specifically “participating in studies in space that provide new insights into how the human body adjusts to weightlessness, isolation, radiation and stress of long-duration spaceflight. Kelly’s twin brother, former astronaut Mark Kelly, will participate in parallel twin studies on Earth to help scientists compare the effects on the body and mind in space.”

“The investigations in progress on the space station will help scientists better understand how to protect astronauts as they travel into deep space and eventually on missions to the Red Planet. The strong U.S.-Russian collaboration during the one-year mission is an example of the global cooperation aboard the space station that is a blueprint for international partnerships to advance shared goals in space exploration. Strengthening international partnerships will be key in taking humans deeper into the solar system,” according to NASA.

Hurricane Joaquin captured on Oct. 2, 2015 by NASA Astronaut Scott Kelly from the International Space Station. Credit: NASA/Scott Kelly
Hurricane Joaquin captured on Oct. 2, 2015 by NASA Astronaut Scott Kelly from the International Space Station. Credit: NASA/Scott Kelly

Kelly and the crew are also surely looking forward to the arrival of the Orbital ATK resupply ship carrying science experiments, provisions, spare parts, food and other goodies after it blasts off from Florida on Dec. 3 – detailed in my story here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Morning Aurora From the Space Station. NASA astronaut Scott Kelly (@StationCDRKelly) captured this photograph of the green lights of the aurora from the International Space Station on Oct. 7, 2015. Credit: NASA
Morning Aurora From the Space Station. NASA astronaut Scott Kelly (@StationCDRKelly) captured this photograph of the green lights of the aurora from the International Space Station on Oct. 7, 2015. Credit: NASA

NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise  the first ever ISS 1 Year Crew
NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise the first ever ISS 1 Year Crew

Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December

Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled Ultraflex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida. Credit: Orbital ATK
Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled Ultraflex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida.    Credit: Orbital ATK
Cygnus service module built by Orbital ATK in their Dulles, Virginia cleanroom is shown here with unfurled UltraFlex solar panels that will fly for the first time with mated pressurized module on the OA-4 ISS resupply mission on ULA Atlas V rocket on Dec. 3, 2015 from Cape Canaveral, Florida. Credit: Orbital ATK
See OA-4 mission patch and hardware photos below

The biggest and heaviest Cygnus commercial cargo craft ever built by Orbital ATK is coming together at the Kennedy Space Center as the launch pace picks up steam for its critical ‘Return to Flight’ resupply mission to the space station for NASA. Cygnus is on target for an early December blastoff from Florida and the Orbital ATK team is “anxious to get flying again.”

“We are very excited about the upcoming [OA-4] cargo mission and returning to flight,” said Frank DeMauro, Orbital ATK Vice President for Human Spaceflight Systems Programs, in an exclusive interview with Universe Today. Continue reading “Cygnus Cargo Craft Comes Together for Space Station ‘Return to Flight’ Blastoff in December”

Borderline Cat 5 Hurricane Joaquin Spied from International Space Station

Hurricane Joaquin captured on Oct. 2, 2015 by NASA Astronaut Scott Kelly from the International Space Station. Credit: NASA/Scott Kelly

As the powerful category 4 Hurricane Joaquin was pounding the Bahamas and packing winds of over 130 mph, NASA astronaut Scott Kelly captured a stunning photo of Joaquin on Friday morning, Oct. 2 from his perch aboard the International Space Station (ISS). As of today, Oct. 3. Joaquin has gained strength to 150 mph and is a borderline Cat 5 storm!

Coincidentally, Kelly snapped the photo within hours of the milestone 100th straight successful rocket launch by United Launch Alliance (ULA) on Oct. 2, of the firms Atlas V rocket carrying Mexico’s next generation Morelos-3 communications satellite from Florida to orbit.

Kelly’s spectacular storm photo shows the eye of Hurricane Joaquin over the Caribbean and off the US eastern seaboard with the limb of the Earth and our atmosphere in beautiful detail.

Huge thunderstorms can been off to the north of the immense category 4 storm.

And as of today, Saturday, Oct. 3, Hurricane Joaquin has further strengthened and is now packing maximum sustained winds of 150 MPH or 240 KM/H, according to the latest advisory issued by the National Hurricane Center (NHC) as of 5 p.m. EDT.

Kelly posted the Oct. 2 photo of Joaquin with this caption on his twitter account:

“Early morning shot of Hurricane #Joaquin from @space_station before reaching #Bahamas. Hope all is safe. #YearInSpace.”

Two of the stations solar panels are seen in the photo as well as portions of the US east coast including Florida.

The latest NHC forecast shows Joaquin veering away from the US East Coast. But it’s still creating hurricane force winds and high waves that is threatening Bermuda.

“SEVERE HURRICANE JOAQUIN THREATENING BERMUDA,” said the NHC today.

It is moving northeast at 45 degrees at 17 MPH or 28 KM/H.

Kelly snapped another telling view of Joaquin on Thursday, Oct. 1 showing the Bahamas and Miami in the field of view.

Kelly tweeted; “#HurricaneJoaquin churns over the #Bahamas with #Miami in the field of view from @Space_Station.”

#HurricaneJoaquin churns over the #Bahamas with #Miami in the field of view from @Space_Station #YearInSpace.  Credit: NASA/Scott Kelly
#HurricaneJoaquin churns over the #Bahamas with #Miami in the field of view from @Space_Station #YearInSpace. Credit: NASA/Scott Kelly

Scott Kelly is a member of the first ever 1 year ISS mission crew comprising Kelly and Russian cosmonaut Mikhail Kornienko.

They arrived at the ISS in March and had just reached the midpoint of their nearly 12 month stay aimed at conducting research to explore the impact of long term stays in space on the human body and aid NASA’s long term plans for a human ‘Journey to Mars’ in the 2030s.

NASA and NOAA satellites are keeping constant watch on the progress of the powerful Hurricane Joaquin, that earlier had the potential to barrel towards tens of millions of US coastal residents.

Here’s another stunning view of Hurricane Joaquin taken by the GOES-West satellite on Oct. 1.

This stunning image of Hurricane Joaquin is from NOAA's GOES West satellite on Oct. 1 2015. Many portions of the eastern U.S. are currently experiencing heavy rains and gusty winds associated with a frontal system.   Credit: NOAA
This stunning image of Hurricane Joaquin is from NOAA’s GOES West satellite on Oct. 1 2015. Many portions of the eastern U.S. are currently experiencing heavy rains and gusty winds associated with a frontal system. Credit: NOAA

This visible image from NASA’s Aqua satellite shows Hurricane Joaquin over Bahamas on Oct. 1.

NASA's Aqua satellite captured this visible image of Hurricane Joaquin over Bahamas on Oct. 1 at 17:55 UTC (1:55 p.m. EDT).  Credits: NASA Goddard MODIS Rapid Response Team
NASA’s Aqua satellite captured this visible image of Hurricane Joaquin over Bahamas on Oct. 1 at 17:55 UTC (1:55 p.m. EDT). Credits: NASA Goddard MODIS Rapid Response Team

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Matt Damon of ‘The Martian’ Explains NASA’s Journey to Mars – ISS Crew Previews Film on Orbit

Watched @MartianMovie on @Space_Station last night! Today working towards our #JourneyToMars during my #YearInSpace!” Credit: NASA/Scott Kelly

Video caption: ‘The Martian’ Star Matt Damon Discusses NASA’s Journey to Mars. Credit: NASA

The excitement is building for the worldwide movie premiere of ‘The Martian’ on Oct. 2.

Based on the bestselling book by Andy Weir, ‘The Martian’ tells the story of how NASA astronaut Mark Watney, played by Matt Damon, is accidentally stranded on the surface of Mars during a future manned expedition, after a sudden and unexpectedly fierce dust storm forces the rest of the crew to quickly evacuate after they believe he is dead.

In the video above, Matt Damon discusses NASA’s ongoing real life efforts focused on turning science fiction dreams into reality and sending astronauts to Mars.

Watney actually survived the storm but lost contact with NASA. The film recounts his ingenious years long struggle to survive, figure out how to tell NASA he is alive and send a rescue crew before he starves to death on a planet where nothing grows. Watney’s predicament is a survival lesson to all including NASA.

‘The Martian’ was written by Andy Weir in 2010 and has now been produced as a major Hollywood motion picture starring world famous actor Matt Damon and directed by the world famous director Ridley Scott from 20th Century Fox.

NASA’s overriding strategic goal is to send humans on a ‘Journey to Mars’ by the 2030s.

‘The Martian’ is a rather realistic portrayal of how NASA might accomplish the ‘Journey to Mars.’

“Sending people to Mars and returning them safely is the challenge of a generation,” says Damon in the video.

“The boot prints of astronauts will follow the rover tracks [of NASA’s Curiosity rover] thanks to innovations happening today.”

“NASA’s Journey to Mars begins on the International Space Station (ISS) .. where we are learning how humans can thrive over long periods without gravity.”

The current six person crew serving aboard the ISS even got a sneak preview of The Martian this past weekend!

Gleeful NASA astronaut Scott Kelly, commander of the Expedition 45 crew, just tweeted a photo of the crew watching ‘The Martian’ while soaring some 250 miles (400 kilometers) above Earth.

“Watched @MartianMovie on @Space_Station last night! Today working towards our #JourneyToMars during my #YearInSpace!” tweeted NASA astronaut Scott Kelly.

Kelly comprises one half of the first ever ‘1 Year ISS Crew’ along with Russian cosmonaut Mikhail Kornienko, aimed at determining the long term physical and psychological effects on the human body of people living and working in the weightlessness of space.

The 1 Year ISS mission is an important data gathering milestone on the human road to Mars since the round trip time to the Red Planet and back will take approximately 3 years or more.

In order to send astronauts to the Red Planet, NASA is now developing the mammoth Space Launch System (SLS) heavy lift booster and the Orion crew capsule to propel astronauts farther than ever before on the Journey to Mars.

The first unmanned test flight of SLS/Orion is slated for Nov. 2018. The first manned flight could occur between 2021 and 2023 – read my new report here.

“The Journey to Mars will forever change our history books … and expand our human presence deeper into the solar system,” says Damon.

THE MARTIAN features a star studded cast that includes Matt Damon, Jessica Chastain, Kristen Wiig, Kate Mara, Michael Pena, Jeff Daniels, Chiwetel Ejiofor, and Donald Glover.

Matt Damon stars as NASA astronaut Mark Watney in ‘The Martian.' Credit: 20th Century Fox
Matt Damon stars as NASA astronaut Mark Watney in ‘The Martian.’ Credit: 20th Century Fox

“NASA has endorsed “The Martian’” Jim Green, NASA’s Director of Planetary Sciences, told Universe Today. Green served as technical consultant on the film.

I have read the book (I’m a professional chemist) and highly recommend it to everyone.

The Martian is all about how Watney uses his botany and chemistry skills to “Science the Sh.. out of it” to grow food and survive.

Learning how to live of the land will be a key hurdle towards enabling long term space voyages.

Kelly and his ISS cremates took a big first step towards putting that theory into practice when they recently grew, harvested and ate the first space grown NASA lettuce on the ISS using the Veggie experimental rack – detailed in my recent story here.

NASA Astronauts Kjell Lindgren (center) and Scott Kelly (right) and Kimiya Yui (left) of Japan consume space grown food for the first time ever, from the aboard the  from the Veggie plant growth system on the International Space Station.  Credit: NASA TV
NASA Astronauts Kjell Lindgren (center) and Scott Kelly (right) and Kimiya Yui (left) of Japan consume space grown food for the first time ever, from the Veggie plant growth system on the International Space Station. Credit: NASA TV

Here’s the second official trailer of “The Martian:

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Veggie demonstration apparatus growing red romaine lettuce under LED lights in the Space Station Processing Facility at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Veggie demonstration apparatus growing red romaine lettuce under LED lights in the Space Station Processing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Spectacular Image Showcases Space Station Transiting the Sun with 9 Member Crew

The International Space Station transits the sun on Sunday, Sept. 6, 2015 with an enhanced crew of nine, as seen from Shenandoah National Park, Front Royal, VA in this composite image by NASA photographer Bill Ingalls. Credit: NASA/Bill Ingalls

The International Space Station transits the sun on Sunday, Sept. 6, 2015 with an enhanced crew of nine, as seen from Shenandoah National Park, Front Royal, VA in this composite image by NASA photographer Bill Ingalls. Credit: NASA/Bill Ingalls
Story/photos updated[/caption]

A spectacular new image taken from Earth showcases the International Space Station (ISS) transiting our Sun this past weekend, as the orbiting outpost is temporarily home to an enlarged crew of nine persons hailing from five nations.

The beautiful composite view of the ISS transiting the sun is shown above. It was released by NASA today, Sept. 8, and was created by combining a rapid fire series of five images taken on Sunday, Sept. 6, 2015 from Shenandoah National Park, Front Royal, VA, by renowned NASA photographer Bill Ingalls.

Ingalls is NASA’s top photographer for numerous space launches and NASA events worldwide.

Exquisitely careful planning is required to capture events such as this solar transit which is over in barely the wink of an eye.

The ISS was hurtling along at about 5 miles per second which has a rarely beef up complement of nine humans serving aboard for a short period of barely a week time.

The cosmonauts and astronaut crew currently aboard comprises two Americans, four Russians, and one each from Japan, Denmark and Kazakhstan; namely NASA astronauts Scott Kelly and Kjell Lindgren: Russian Cosmonauts Gennady Padalka, Mikhail Kornienko, Oleg Kononenko, Sergey Volkov, Japanese astronaut Kimiya Yui, Danish Astronaut Andreas Mogensen, and Kazakhstan Cosmonaut Aidyn Aimbetov.

The nine-member space station crew takes questions from journalists around the world on Sept. 8, 2015. Credit: NASA TV
The nine-member space station crew takes questions from journalists around the world on Sept. 8, 2015. Credit: NASA TV

They arrived aboard three different Russian Soyuz capsules.

Among the crew are the first ever 1 year ISS mission crew comprising Scott Kelly and Mikhail Kornienko.

They arrived at the ISS in March and are now about half way through their nearly 12 month stay aimed at conducting research to explore the impact of long term stays in space on the human body and aid NASA’s long term plans for a human ‘Journey to Mars’ in the 2030s.

Kelly assumed command of the ISS on Saturday when it was formally handed over in a ceremony by Cosmonaut Gennady Padalka – who will soon depart for the voyage back home after completing his six month stint.

This marks Kelly’s second time serving as ISS commander. He was also a NASA Space Shuttle commander.

Mogensen and Aimbetov are first time space flyers and part of a short term 10 day taxi mission.

Along with Soyuz commander Sergey Volkov of Roscosmos, they launched to the ISS aboard the Soyuz TMA-18M from the Baikonur Cosmodrome in Kazakhstan this past Wednesday, Sept. 2, 2015 and docked two days later on Friday, Sept. 4.

Mogensen and Aimbetov will undock from the station on Friday, Sept. 11 along with Cosmonaut Gennady Padalka as Soyuz commander, the human with the distinction of the most time in space. Altogether Padalka will have accumulated 879 days in space over five missions, four on the space station and one on Russia’s Mir.

Sergey Volkov of Roscosmos, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency launched aboard Soyuz TMA-18M from the Baikonur Cosmodrome in Kazakhstan at 12:37 a.m. EDT on Wednesday (10:37 a.m. in Baikonur).  Credits: NASA TV
Sergey Volkov of Roscosmos, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency launched aboard Soyuz TMA-18M from the Baikonur Cosmodrome in Kazakhstan at 12:37 a.m. EDT on Wednesday (10:37 a.m. in Baikonur). Credits: NASA TV

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

Boeing and SpaceX are now building America’s next human spaceships under contracts awarded by NASA.

‘Starliner’ is the new name of Boeing’s CST-100 commercial crew transportation spaceship – as announced during the Grand Opening event for the craft’s manufacturing facility held at the Kennedy Space Center on Friday, Sept 4. 2015 and attended by Universe Today. Read my story – here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing ‘Starliner’ Crew Spaceship; America’s Next Ride to Space Takes Shape

First view of the Boeing CST-100 'Starliner' crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

First view of the Boeing CST-100 ‘Starliner’ crewed space taxi at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. These are the upper and lower segments of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
Story/photos updated[/caption]

KENNEDY SPACE CENTER, FL – ‘Starliner’ is the new name of America’s next spaceship destined to launch our astronauts to orbit. The new commercial craft from Boeing will restore America’s capability to launch American astronauts from American soil to the International Space Station (ISS) in 2017 – and the magnificent looking first capsule is already taking shape!

Built by The Boeing Company, ‘Starliner’ was officially announced by Boeing and NASA as the new name of the company’s CST-100 commercial crew transportation spacecraft during the Grand Opening event for the craft’s manufacturing facility held at the Kennedy Space Center on Friday, Sept 4. 2015 and attended by Universe Today.

‘Starliner’ counts as history’s first privately developed ‘Space Taxi’ to carry humans to space – along with the Crew Dragon being simultaneously developed by SpaceX.

“Please welcome the CST-100 Starliner,” announced Chris Ferguson, the former shuttle commander who now is deputy manager of operations for Boeing’s Commercial Crew Program, at the Grand Opening event hosting numerous dignitaries.

The CST-100 ‘Starliner’ is at the forefront of ushering in the new commercial era of space flight and will completely revolutionize how we access, explore and exploit space for the benefit of all mankind.

Starliner will be mostly automated for ease of operation and is capable of transporting astronaut crews of four or more to low Earth orbit and the ISS as soon as mid 2017 if all goes well and Congress approves the required funding.

“One hundred years ago we were on the dawn of the commercial aviation era and today, with the help of NASA, we’re on the dawn of a new commercial space era,” said Boeing’s John Elbon, vice president and general manager of Space Exploration.

“It’s been such a pleasure to work hand-in-hand with NASA on this commercial crew development, and when we look back 100 years from this point, I’m really excited about what we will have discovered.”

Boeing ‘Starliner’ commercial crew space taxi manufacturing facility marks Grand Opening at the Kennedy Space Center on Sept 4. 2015.   Exterior view depicting newly installed mural for the Boeing Company’s newly named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer /kenkremer.com
Boeing ‘Starliner’ commercial crew space taxi manufacturing facility marks Grand Opening at the Kennedy Space Center on Sept 4. 2015. Exterior view depicting newly installed mural for the Boeing Company’s newly named CST-100 ‘Starliner’ commercial crew transportation spacecraft on the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer /kenkremer.com

The CST-100 ‘Starliner’ will be produced in Boeing’s newly revamped manufacturing facility dubbed the Commercial Crew and Cargo Processing Facility (C3PF) on site at the Kennedy Space Center in Florida.

The CC3P building was previously known as Orbiter Processing Facility-2 (OPF-3) and utilized by NASA to process the agency’s space shuttle orbiters between crewed flights during the three decade long Space Shuttle program.

“When Boeing was looking for the prime location for its program headquarters, we knew Florida had a lot to offer from the infrastructure to the supplier base to the skilled work force,” said Chris Ferguson.

Starliner will launch on an Atlas V from pad 41 at Cape Canaveral Air Force Station in Florida. It has the capability to dock at the ISS within 24 hours. It can stay docked at the station for 6 months.”

Over the past few years, the historic facility has been completely renovated, upgraded and transformed into a state of the art manufacturing site for Boeing’s commercial CST-100 Starliner.

First view of upper half of the Boeing CST-100 '?Starliner?' crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of upper half of the Boeing CST-100 ‘Starliner’ crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 space taxi under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

It is also a key part of NASA’s overarching strategy to send Humans on a “Journey to Mars” in the 2030s.

“Commercial crew is an essential component of our journey to Mars, and in 35 states, 350 American companies are working to make it possible for the greatest country on Earth to once again launch our own astronauts into space,” said NASA Administrator Charles Bolden. “That’s some impressive investment.”

Crew access tunnel and seal for Boeing CST-100 Starliner that attaches to upper dome of the crew module for the Structural Test Article being manufactured at  the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida.  Credit: Ken Kremer /kenkremer.com
Crew access tunnel and hatch for Boeing CST-100 Starliner that attaches to upper dome of the crew module for the Structural Test Article being manufactured at the company’s Commercial Crew and Cargo Processing Facility (C3PF) at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer /kenkremer.com

The commercial crew program is designed to return human spaceflight launches to the United States and end our sole source reliance on Russia and the Soyuz capsule for all manned flights to the ISS and crew rotation missions.

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

Final assembly of both half’s of Starliner will take place in the C3PF – namely the crew command module and the service module.

Boeing is already building the first version of Starliner known as the Structural Test Article (STA) . The STA will be used for extensive prelaunch testing and evaluation to ensure it will be ready and robust and capable of safely launches humans to orbit on a very cost effective basis.

The Starliner STA is rapidly taking shape. The first components have been built and were on display at the C3PF Grand Opening eventy of Sept. 4. They are comprised of the upper and lower halves of the crew command module, the crew access tunnel and adapter.

The shell of Starliner’s first service module was also on display.

“The STA will be completed in early 2016,” said John Mulholland Boeing Vice President, Commercial Programs, at the event.

“Then we start assembly of the Qualification Test Article.”

I asked Mulholland to describe the currently planned sequence of Starliner’s initial uncrewed and crewed flights.

“The first uncrewed flight is expected to occur in May 2017. Then comes the Pad Abort Test in August 2017. The first crewed flight is set for September 2017. The first contracted regular service flight (PCM-1) is set for December 2017,” Mulholland told me.

“It’s all very exciting.”

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

“Kennedy Space Center has transitioned more than 50 facilities for commercial use. We have made improvements and upgrades to well-known Kennedy workhorses such as the Vehicle Assembly Building, mobile launcher, crawler–transporter and Launch Pad 39B in support of Orion, the SLS and Advanced Exploration Systems,” said Robert Cabana, Kennedy’s center director.

“I am proud of our success in transforming Kennedy Space Center to a 21st century, multi-user spaceport that is now capable of supporting the launch of all sizes and classes of vehicles, including horizontal launches from the Shuttle Landing Facility, and spacecraft processing and landing.”

Boeing and NASA managers pose with the Boeing CST-100 Starliner crew module  being assembled into the Structural Test Article at company’s C3PF facility at the Kennedy Space Center in Florida.  From left are John Mulholland, Boeing Vice President Commercial Programs;  Chris Ferguson, former shuttle commander now Boeing deputy manager Commercial Crew Program; John Elbon, Boeing vice president and general manager of Space Exploration; and Robert Cabana, former shuttle commander and now Director NASA’s Kennedy Space Center, on Sept. 4, 2015.
Boeing and NASA managers pose with the Boeing CST-100 Starliner crew module being assembled into the Structural Test Article at company’s C3PF facility at the Kennedy Space Center in Florida. From left are John Mulholland, Boeing Vice President Commercial Programs; Chris Ferguson, former shuttle commander now Boeing deputy manager Commercial Crew Program; John Elbon, Boeing vice president and general manager of Space Exploration; and Robert Cabana, former shuttle commander and now Director NASA’s Kennedy Space Center, on Sept. 4, 2015. Credit: Ken Kremer/kenkremer.com

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander and who now leads Boeings CST-100 program; here and here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing’s commercial CST-100 'Space Taxi' will carry a crew of five astronauts to low Earth orbit and the ISS from US soil.   Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida.  Credit: Ken Kremer - kenkremer.com
Boeing’s commercial CST-100 ‘Space Taxi’ will carry a crew of five astronauts to low Earth orbit and the ISS from US soil. Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com

Thierry Legault Meets His Own Challenge: Image an ISS Transit of a Solar Prominence

A montage of 31 images taken in less than a second as the International Space Station transits the Sun and a solar prominence. Credit and copyright: Thierry Legault.

When you’re Thierry Legault and you want to challenge yourself, the bar is set pretty high.

“This is a challenge I imagined some time ago,” Legault told Universe Today via email, “but I needed all the right conditions.”

The challenge? Capture a transit of the International Space Station of not just the Sun — which he’s done dozens of times — but in front of a solar prominence.

Legault said the transit of the prominence, which he captured on August 21, 2015, lasted 0.8 seconds. His camera was running at 40 frames per second, and he got about 32 shots in that time.

See a video of the transit in real time, and more, below:

We’ve described in our previous articles how Legault determines the exact location where he needs to be to capture the images he wants by considering the width of the visibility path, and trying to be as close to the center of the path as possible. But this challenge was a bit different.

“I took the last transit data from Calsky, the real position of the prominences, and made angles and distances calculations to place my telescope this time not on the central line of the transit but 1 mile north from it,” Legault said, “to have the ISS passing in front of the largest prominence.”

You can see some of Legault’s stunning and sometimes ground-breaking astrophotography here on Universe Today, such as images of the space shuttle or International Space Station crossing the Sun or Moon, or views of spy satellites in orbit.

If you want to try and master the art of astrophotography, you can learn from Legault by reading his book, “Astrophotography,” which is available on Amazon in a large format book or as a Kindle edition for those who might like to have a lit version while out in the field. It is also available at book retailers like Barnes and Noble and Shop Indie bookstores, or from the publisher, Rocky Nook, here.

For additional imagery and information, visit Legualt’s website.