Pink Floyd and Coldplay Go to Space

An allsky photo of the aurora in February, 2014 as seen from Östersund, Sweden. Credit and copyright: Göran Strand.

Two great music videos published this week feature incredible imagery from space. Above, Pink Floyd released an 20th anniversary video version of their instrumental “Marooned” which uses timelapse video photography taken by astronauts on the International Space Station (which we’ve featured many times, like here and here). For you Pink Floyd-aphiles, the anniversary edition of ‘The Division Bell‘ will be released on June 30th — including a double vinyl edition!

Below, a new video from Coldplay and their song “Sky Full of Stars” uses aurora imagery taken by Swedish astrophotopher Göran Strand, whose work we post frequently:

This version of a “A Sky Full of Stars” was used in the NBC special Coldplay: Ghost Stories. Göran recorded the aurora over Östersund on March 17, 2013. He photographed the aurora for 4 hours and then put all the images together to a movie showing the development of the aurora across the entire sky. See his original aurora video below.

Space Station’s Veggies Are “Grow” to Launch

Expedition 39 flight engineer Steve Swanson activates the Veg-01 experiment (NASA/Koichi Wakata)

In what could become the world’s first orbiting salad bar, NASA’s Veggie experiment was initiated on May 8 after a successful (if slightly delayed) launch to the Space Station on Friday, April 18 aboard a SpaceX Dragon capsule. In development for several years, the LED-powered plant growth experiment is finally getting the chance to put down its roots.

After receiving the experiment on Sunday, April 20, Expedition 39 astronauts Rick Mastracchio and Steve Swanson installed the Veg-01 unit inside ESA’s Columbus module on May 7. The next day Veg-01 was turned on, with a root mat and six small pillows containing “Outredgeous” romaine lettuce seeds within a special fertilized clay inserted inside its collapsible Teflon bellows.

The inside of the Veg-01 unit aboard the ISS (Source)
The inside of the Veg-01 unit aboard the ISS (Source)

The lettuce plants are scheduled to grow for 28 days, during which time they will be periodically photographed, watered, and tested for any microbial growth. The pillows will be thinned down to one plant each, and after the experiment is over the remaining lettuce leaves will be harvested and frozen to be returned to Earth aboard another Dragon capsule later this year. There they’ll be tested and compared with the results of an identical Veggie experiment that’s being conducted at the same time at Kennedy Space Center.

If all goes well, the lettuce will be found to be safe for astronauts to eat. While they await the results, the next experiment can be started.

“My hopes are that Veggie will eventually enable the crew to regularly grow and consume fresh vegetables,” said Dr. Gioia Massa, the NASA science team lead for Veggie.

In addition to providing healthy food, having living plants to care for could be therapeutic for astronauts on long-duration missions in low-Earth orbit and beyond. (Let’s just hope it doesn’t one day end up like Silent Running!)

The Veggie system was developed for NASA by Orbital Technologies Corporation (ORBITEC) in Madison, Wisconsin, via a Small Business Innovative Research Program. Its innovations may eventually lead to better food production not only in space but also in limited-resource regions on Earth. Learn more about the Veg-01 experiment in my previous article here.

Source/more info: NASA news release (Also, see some photos of Veg-01 installed on the ISS here.)

Return of the SpaceX-3 Dragon to Earth Caps Super Science Mission for NASA

SpaceX-3 Dragon cargo freighter was detached from the ISS at 8 AM ET on May 18, 2014 and released by station crew at 9:26 AM for splashdown in the Pacific Ocean with science samples and cargo. Credit: NASA

SpaceX-3 Dragon commercial cargo freighter was detached from the ISS at 8 AM EDT on May 18, 2014 and released by station crew at 9:26 AM for splashdown in the Pacific Ocean with science samples and cargo. Credit: NASA
Story updated[/caption]

The 30 day flight of the SpaceX-3 Dragon commercial cargo freighter loaded with a huge cache of precious NASA science experiments including a freezer packed with research samples ended today with a spectacular departure from the orbiting lab complex soaring some 266 miles (428 km) above Earth.

Update 3:05 PM EDT May 18: SpaceX confirms successful splashdown at 3:05 p.m. EDT today.

“Splashdown is confirmed!! Welcome home, Dragon!”

Robotics officers at Mission Control at NASA’s Johnson Space Center detached Dragon from the Earth-facing port of the Harmony module at 8 a.m. EDT (1300 GMT) this morning, Sunday, May 18, 2014 using the stations Canadian-built robotic arm.

Engineers had earlier unbolted all 16 hooks and latches firmly connecting the vehicle to the station in preparation.

NASA astronaut Steve Swanson then commanded the gum dropped shaped Dragon capsule’s release from Canadarm2 as planned at 9:26 a.m. EDT (1326 GMT) while the pair were flying majestically over southern Australia.

The undocking operation was shown live on NASA TV.

The SpaceX Dragon commercial cargo craft was in the grips of the Canadarm2 before being released for a splashdown in the Pacific Ocean.  Credit: NASA
The SpaceX Dragon commercial cargo craft was in the grips of the Canadarm2 before being released for a splashdown in the Pacific Ocean. Credit: NASA

Swanson was assisted by Russian cosmonaut Alexander Skvortsov as the US- Russian team were working together inside the domed Cupola module.

Following the cargo ships release by the 57 foot long arms grappling snares, Swanson carefully maneuvered the arm back and away from Dragon as it moved ever so slowly in free drift mode.

It was already four feet distant within three minutes of release.

Three departure burns by the Dragon’s Draco maneuvering thrusters followed quickly in succession and occurred precisely on time at 9:29, 9:30 and 9:38 a.m. EST.

Dragon exited the 200 meter wide keep out zone – an imaginary bubble around the station with highly restricted access – at the conclusion of the 3rd departure burn.

“The Dragon mission went very well. It was very nice to have a vehicle take science equipment to the station, and maybe some day even humans,” Swanson radioed after the safe and successful departure was completed.

“Thanks to everyone who worked on the Dragon mission.”

The private SpaceX Dragon spent a total of 28 days attached to the ISS.

The six person international crew from Russia, the US and Japan on Expeditions 39 and 40 unloaded some 2.5 tons of supplies aboard and then repacked it for the voyage home.

The SpaceX resupply capsule is carrying back about 3500 pounds of spacewalk equipment, vehicle hardware, science samples from human research, biology and biotechnology studies, physical science investigations and education activities, as well as no longer needed trash.

“The space station is our springboard to deep space and the science samples returned to Earth are critical to improving our knowledge of how space affects humans who live and work there for long durations,” said William Gerstenmaier, associate administrator for human exploration and operations.

“Now that Dragon has returned, scientists can complete their analyses, so we can see how results may impact future human space exploration or provide direct benefits to people on Earth.”

Among the research investigations conducted that returned samples in the cargo hold were an examination of the decreased effectives of antibiotics in space, better growth of plants in space, T-Cell activation in aging and causes of human immune system depression in the microgravity environment.

The 10 minute long deorbit burn took place as scheduled at 2:10 p.m. EDT (1810 GMT) today.

Dragon returned to Earth for a triple parachute assisted splash down today at around 3:02 p.m. EDT (19:02 GMT) in the Pacific Ocean – some 300 miles west of Baja California.

Dragon is free flying after release from ISS at 9:26 a.m. EDT on May 18, 2014. Credit: NASA
Dragon is free flying after release from ISS at 9:26 a.m. EDT on May 18, 2014. Credit: NASA

It will be retrieved by recovery boats commissioned by SpaceX. The science cargo will be extracted and then delivered to NASA’s Johnson Space Center within 48 hours.

Dragon thundered to orbit atop SpaceX’s powerful new Falcon 9 v1.1 rocket on April 18, from Cape Canaveral, Fla.

This unmanned Dragon delivered about 4600 pounds of cargo to the ISS including over 150 science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), the laser optical communications experiment (OPALS), the VEGGIE lettuce growing experiment as well as essential gear, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard in low Earth orbit.

Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer - kenkremer.com
Robonaut 2 engineering model equipped with new legs like those delivered to the ISS on the SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer – kenkremer.com

It reached the ISS on April 20 for berthing.

Dragon is the only unmanned resupply vessel supply that also returns cargo back to Earth.

The SpaceX-3 mission marks the company’s third resupply mission to the ISS under the $1.6 Billion Commercial Resupply Services (CRS) contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

The SpaceX Dragon is among a trio of American vehicles, including the Boeing CST-100 and Sierra Nevada Dream Chaser vying to restore America’s capability to fly humans to Earth orbit and the space station by late 2017, using seed money from NASA’s Commercial Crew Program (CCP) in a public/private partnership. The next round of contracts will be awarded by NASA about late summer 2014.

Another significant milestone was the apparently successful attempt by SpaceX to accomplish a controlled soft landing of the Falcon 9 boosters first stage in the Atlantic Ocean for eventual recovery and reuse. It was a first step in a guided 1st stage soft landing back at the Cape.

The next unmanned US cargo mission to the ISS is set for early morning on June 10 with the launch of the Orbital Sciences Cygnus freighter atop an Antares booster from a launch pad at NASA’s Wallops Flight Facility on the eastern shore of Virginia.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, Boeing, commercial space, Orion, Chang’e-3, LADEE, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

Assembling and Launching Boeing’s CST-100 Private Space Taxi – One on One Interview with Chris Ferguson, Last Shuttle Commander; Part 2

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Story updated[/caption]

KENNEDY SPACE CENTER, FL – Boeing expects to begin “assembly operations of our commercial CST-100 manned capsule soon at the Kennedy Space Center,” Chris Ferguson, commander of NASA’s final shuttle flight and now director of Boeing’s Crew and Mission Operations told Universe Today in an exclusive one-on-one interview about Boeing’s space efforts. In part 1, Ferguson described the maiden orbital test flights to the ISS set for 2017 – here.

In part 2, we focus our discussion on Boeings’ strategy for building and launching the CST-100 ‘space taxi’ as a truly commercial space endeavor.

To begin I asked; Where will Boeing build the CST-100?

“The CST-100 will be manufactured at the Kennedy Space Center (KSC) in Florida inside a former shuttle hanger known as Orbiter Processing Facility 3, or OPF-3, which is now [transformed into] a Boeing processing facility,” Ferguson told me. “Over 300 people will be employed.”

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

During the shuttle era, all three of NASA’s Orbiter Processing Facilities (OPFs) were a constant beehive of activity for thousands of shuttle workers busily refurbishing the majestic orbiters for their next missions to space. But following Ferguson’s final flight on the STS-135 mission to the ISS in 2011, NASA sought new uses for the now dormant facilities.

So Boeing signed a lease for OPF-3 with Space Florida, a state agency that spent some $20 million modernizing the approximately 64,000 square foot hanger for manufacturing by ripping out all the no longer needed shuttle era scaffolding, hardware and equipment previously used to process the orbiters between orbital missions.

Boeing takes over the OPF-3 lease in late June 2014 following an official handover ceremony from Space Florida. Assembly begins soon thereafter.

When will CST-100 spacecraft manufacturing begin?

“The pieces are coming one by one from all over the country,” Ferguson explained. “Parts from our vendors are already starting to show up for our test article.

“Assembly of the test article in Florida starts soon.”

The CST-100 is being designed at Boeing’s Houston Product Support Center in Texas.

It is a reusable capsule comprised of a crew and service module that can carry a mix of cargo and up to seven crew members to the International Space Station (ISS) and must meet stringent safety and reliability standards.

How will the pressure vessel be manufactured? Will it involve friction stir welding as is the case for NASA’s Orion deep space manned capsule?

“There are no welds,” he informed.

“The pressure vessel is coming from Spincraft, an aerospace manufacturing company in Massachusetts.”

Spincraft has extensive space vehicle experience building tanks and assorted critical components for the shuttle and other rockets.

“The capsule is produced by Spincraft using a weld-free process. It’s made as a single piece by a proprietary spun form process and machined out from a big piece of metal.”

The capsule measures approximately 4.56 meters (175 inches) in diameter.

“The service module will be fabricated in Florida.”

The combined crew and service modules are about 5.03 meters (16.5 feet) in length.

“In two years in 2016, our CST-100 will look like the Orion EFT-1 capsule does now at KSC, nearly complete [and ready for the maiden test flight]. Orion is really coming along,” Ferguson beamed while contemplating a bright future for US manned spaceflight.

He is saddened that it’s been over 1000 days since his crew’s landing inside shuttle Atlantis in July 2011.

Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL.   Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

With Boeing’s long history in aircraft and aerospace manufacturing, the CST-100 is being designed and built as a truly commercial endeavor.

Therefore the spacecraft team is able to reach across Boeing’s different divisions and diverse engineering spectrum and draw on a vast wealth of in-house expertise, potentially giving them a leg up on commercial crew competitors like SpaceX and Sierra Nevada Corp.

Nevertheless, designing and building a completely new manned spaceship is a daunting task for anyone. And no country or company has done it in decades.

How hard has this effort been to create the CST-100? – And do it with very slim funding from NASA and Boeing.

“Well any preconceived notion I had on building a human rated spacecraft has been completely erased. This is really hard work to build a human rated spacecraft!” Ferguson emphasized.

“And the budget is very small – without a lucrative government contract as used in the past to build these kind of spacecraft.”

“Our budget now is an order of magnitude less than to build the shuttle – which was about $35 to $42 Billion in 2011 dollars. The budget is a lot less now.”

Read more about the travails of NASA’s commercial crew funding situation in Part 1.

The team size now is just a fraction of what it was for past US crewed spaceships.

“So to support this we have a pretty small team.”

“The CST-100 team of a couple hundred folks works very hard!”

“For comparison, the space shuttle had 30,000 people working on it at the peak. By early 2011 there were 11,000. We flew on STS-135 with only 4,000 people in July 2011.”

NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011.   From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer - kenkremer.com
NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011. From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS).
Credit: Ken Kremer – kenkremer.com

Boeing’s design philosophy is straightforward; “It’s a simple ride up to and back from space,” Ferguson emphasized to me.

Next we turned to the venerable Atlas V rocket that will launch Boeing’s proposed space taxi. But before it can launch people it must first be human rated, certified as safe and outfitted with an Emergency Detection System (EDS) to save astronauts lives in a split second in case of a sudden and catastrophic in-flight anomaly.

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

United Launch Alliance (ULA) builds the two stage Atlas V and is responsible for human rating the vehicle which has a virtually unblemished launch record of boosting a wide array of advanced US military satellites and NASA’s precious one-of-a-kind robotic science explorers like Curiosity, JUNO, MAVEN and MMS on far flung interplanetary voyages of discovery.

What modifications are required to man rate the Atlas V to launch humans on Boeing’s CST-100?

“We will launch on an Atlas V that’s being retrofitted to meet NASA’s NPR human rating standards for redundancy and the required levels of fault tolerance,” Ferguson explained.

“So the rocket will have all the safety NASA wants when it flies humans.”

“Now with the CST-100 you can do all that in a smaller package [compared to shuttle].”

“The Atlas V will also be modified by ULA to include an Emergency Detection System (EDS). It’s a system not unlike what Apollo and Gemini had, which was much more rudimentary but quite evolved for its day.”

“Their EDS would monitor critical parameters like pitch, roll, yaw rates, critical engine parameters. It measures the time to criticality. You know the time to criticality for certain failures is so short that they didn’t think humans could react to it in time. So it was essentially automated.”

“So if it [EDS] sensed large pitch or yaw excursions, it would self jettison. And the escape system would kick in automatically.”

The Atlas V is already highly reliable. The EDS is one of the few systems that had to be added for human flights?

“Yes.”

“We also wanted a better abort system performance to go with the two engine Centaur upper stage we elected to use instead of the single engine Centaur.”

The purpose is to shut down the Centaur engine firing [in an emergency].”

“The two engine Centaur has flown many times. But it has never flown on an Atlas V. So there is a little bit of recertification and qualification to be done by ULA to go along with that also.”

Does that require a lot of work?

“ULA doesn’t seem to think the work to be done is all that significant. There is some work to be done.”

So it’s not a showstopper. Can ULA meet your 2017 launch schedule?

“Yes.”

“Before an engine fails it vibrates. So when you talk about automated ‘Red Lines’ you have to be careful that first you “Do No Harm” – and not make the situation even worse.”

“So we’ll see how ULA does building this,” Ferguson stated.

Artist's concept shows Boeing's CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing
Artist’s concept shows Boeing’s CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing

The future of the CST-100 project hinges on whether NASA awards Boeing a contract to continue development and assembly work in the next round of funding (dubbed CCtCAP) from the agency’s Commercial Crew Program (CCP). The CCP seed money fosters development of a safe, reliable and new US commercial human spaceship to low Earth orbit as a public/private partnership.

NASA’s announcement of the CCP contract winners is expected around late summer 2014.

Based on my discussions with NASA officials, it seems likely that the agency could select at least two winners to move on – to spur competition and thereby innovation – from among the trio of American aerospace firms competing.

Besides Boeing’s CST-100, the SpaceX Dragon and Sierra Nevada Dream Chaser vehicles are also in the running for the contract to restore America’s capability to fly humans to Earth orbit and the International Space Station (ISS) by 2017.

In Part 3 we’ll discuss with Chris Ferguson the requirements for how many and who will fly aboard the CST-100 and much more. Be sure to read Part 1 here.

Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Boeing CST-100 space taxi launch atop Atlas V booster will resemble this photo of NASA’s Mars bound MAVEN spacecraft launched by Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com

Astrophoto: Space Station Creates a Zipper on the Sun

A mosaic of 46 images showing the transit of the ISS across the sun visible from southwest London on May 16, 2014 at 06:23 UT. Credit and copyright: Roger Hutchinson.

“I’ve been wanting to get one of these for ages!” said astrophotographer Roger Hutchinson from London, England. This awesome image of the International Space Station transiting across the Sun earlier today — which creates a “zipper”-like effect on the Sun’s surface – is a composite of 46 images, taken from Southwest SW London on May 16, 2014 at 06:23 UT. Roger used a Lunt LS60 Ha telescope and a Skyris 274C camera.

Amazing.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Moscow Delivers Double Whammy to US Space Efforts – Bans Rocket Engines for Military Use, Won’t Prolong ISS Work

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014. Credit: Ken Kremer – kenkremer.com

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.
Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

Moscow delivered a double whammy of bad news to a broad range of US space efforts today by banning the use of Russian made rocket engines for US military national security launches and by declining to prolong cooperation on the International Space Station (ISS) – says Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries.

Rogozin was quoted in a story prominently featured today, May 13, on the English language website of Russia Today, a Russian TV news and cultural network.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” said Rogozin according to the Russia Today report.

Virtually every aspect of the manned and unmanned US space program – including NASA, other government agencies, private aerospace company’s and crucial US national security payloads – are highly dependent on Russian & Ukrainian rocketry and are clearly at risk amidst the current Ukrainian crisis as tensions continue to escalate with deadly new clashes reported today in Ukraine – with global repercussions.

The engines at issue are the Russian made RD-180 engines – which power the first stage of the venerable Atlas V rocket built by United Launch Alliance (ULA) and are used to launch a wide array of US government satellites including top secret US military spy satellites for the US National Reconnaissance Office, like NROL-67, as well as science satellites for NASA like the Curiosity Mars rover and MAVEN Mars orbiter.

The dual nozzle RD-180 engines are manufactured in Russia by NPO Energomash. Rogozin’s statement effectively blocks their export to the US.

Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti
Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti

“We proceed from the fact that without guarantees that our engines are used for non-military spacecraft launches only, we won’t be able to supply them to the US,” Rogozin said.

So although the launch of NASA science missions might preliminarily appear to be exempt, they could still be at serious risk based on a qualifier from Rogozin, pertaining to RD-180 engines already delivered.

“If such guarantees aren’t provided the Russian side will also be unable to perform routine maintenance for the engines, which have been previously delivered to the US, he added.

A ULA spokesperson told me that the company has a two year supply of RD-180 engines already stockpiled in the US.

Rogozin’s statements today are clearly in retaliation to stiffened economic sanctions imposed by the US and Western nations in response to Russia’s actions in the ongoing crisis in Ukraine and the annexation of Crimea; as I reported earlier here, here and here.

Therefore, US National Security spy satellite and NASA science launches are left lingering with uncertainty and potential disarray.

Rogozin is specifically named on the US economic sanctions target list.

He was also named by SpaceX CEO Elon Musk in his firms attempt to block the importation of the RD-180 engines by ULA for the Atlas V as a violation of US sanctions.

Federal Judge Susan Braden initially imposed a temporary injunction blocking the RD-180 imports on April 30. She rescinded that order last Thursday, May 8, after receiving written communications clarifications from the US Justice and Commerce departments that the engine import did not violate the US government imposed sanctions.

Rogozin went on to say that “Moscow also isn’t planning to agree to the US offer of prolonging operation of the International Space Station (ISS) [to 2024].

“We currently project that we’ll require the ISS until 2020,” he said. “We need to understand how much profit we’re making by using the station, calculate all the expenses and depending on the results decide what to do next.”

“A completely new concept for further space exploration is currently being developed by the relevant Russian agencies”.

NASA announced early this year the agency’s intention to extend ISS operations to at least 2024, and is seeking agreement from all the ISS partners including Russia.

Since the shutdown of the Space Shuttle program in 2011 before a replacement crew vehicle was available, American astronauts are now 100% dependent on the Russian Soyuz capsule for rides to the ISS and back.

Congress has also repeatedly slashed NASA’s commercial crew program budget, forcing at least an 18 month delay in its start up and thus continued reliance on the Soyuz for years to come at over $70 million per seat.

NASA thus has NO immediate alternatives to Russia’s Soyuz – period.

The Atlas V is also planned as the launcher for two of the three companies vying for the next round of commercial crew contracts aimed at launching US astronauts to the ISS. The commercial crew contracts will be awarded by NASA later this year.

In a previous statement regarding the US sanctions against Russia, Rogozin said that sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida.  Credit: Ken Kremer
NASA’s Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Atlas V 1st stage is powered by Russian made RD-180 engines.
Credit: Ken Kremer – kenkremer.com

Watch for Ken’s articles as the Ukraine crisis escalates with uncertain and potentially dire consequences for US National Security and NASA.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

The International Space Station (ISS) in low Earth orbit.  Credit: NASA
The International Space Station (ISS) in low Earth orbit.
The sole way for every American and station partner astronaut to fly to space and the ISS is aboard the Russian Soyuz manned capsule since the retirement of NASA’s Space Shuttles in 2011. There are currently NO alternatives to Russia’s Soyuz. Credit: NASA

Watch Live As Three People Return From Space Today

The Expedition 39 crew gathers near a globe in the International Space Station in May 2014. Expedition 39 Commander Koichi Wakata is at bottom center. Clockwise from Wakata are Alexander Skvortsov, Mikhail Tyurin, Steve Swanson, Rick Mastracchio and Oleg Artemyev. Credit: NASA

It’s time to come home! Expedition 39 astronauts Rick Mastracchio, Koichi Wakata and Mikhail Tyurin will climb into a Russian Soyuz spacecraft later today to make the trip back to Earth from the International Space Station. Much of the activity will play out on NASA TV, which you can watch above. Below are details about when to watch.

These are the descriptions from NASA about when the major events of the day occur. Bear in mind that all of these times are subject to change as circumstances warrant.

3 p.m. EDT / 7 p.m. UTC — Farewells and hatch closure (hatch closure scheduled at 3:15 p.m. / 7:15 p.m. UTC )
6:15 p.m. EDT / 10:15 p.m. UTC — Undocking (undocking scheduled at 6:33 p.m. / 10:33 p.m. UTC)
8:45 p.m. EDT / 12:45 a.m. UTC — Deorbit burn and landing (deorbit burn scheduled at 9:03 p.m. EDT /1:03 a.m. UTC landing scheduled at 9:57 p.m. EDT / 1:57 a.m. UTC)

The crew is expected to land near Dzhezkazgan in Kazakhstan. After doing some quick medical checks on site, the crew will be flown out separately to do more detailed testing at their local medical centers.

With Wakata flying home, the station is now under the command of Expedition 40 NASA astronaut Steve Swanson, who will oversee activities there along with Alexander Skvortsov and Oleg Artemyev. The rest of the Expedition 40 crew should fly to station May 28, if all goes to plan.

Last Chance: Hadfield’s ‘Space Oddity’ Video Coming Down Soon

Canadian astronaut Chris Hadfield in a screenshot from his "Space Oddity" video recorded on board the International Space Station. Credit: Chris Hadfield / YouTube

After one turn around the sun, it’s time for Chris Hadfield’s ultimate space music video to go to that great graveyard in the sky.

The astronaut tweeted earlier today (May 13) that singer David Bowie gave permission for Hadfield’s “Space Oddity” to be online for a year, and that the video is coming down today. So be sure to watch on YouTube above while you have the chance.

Update (6/25/14): A clarification on this story. The Ottawa Citizen newspaper clarified that it wasn’t David Bowie that only gave a year’s use of the song: “Space Oddity was the only one of more than 300 songs he has written and recorded for which he did not own or control the copyright. Mr. Bowie offered to have his people call the publisher and convey his strong support, but he had no ability to personally dictate any of the terms of the license or even require the publishers to issue one.”

Hadfield also tweeted today that ” Our Oddity will be back online soon.” We’ll repost it when it becomes available.

The Canadian’s homage to Bowie — with slightly altered lyrics — garnered more than 22.4 million views as of this morning, Eastern time. It was filmed on board the International Space Station and produced by Hadfield’s son, Evan. Music was recorded on Earth.

The video capped five months of intense public outreach that Hadfield did during Expedition 34/35 in 2012-13. During Expedition 35, he was the first Canadian commander on station, but still found time to record videos and music showcasing his time in space.

Since returning to Earth, Hadfield has already penned one best-selling book — An Astronaut’s Guide To Life On Earth — and is now working on a second that will include photos from his mission.

Why Earth’s Spores Could Survive A Trip to Mars

Artist's conception of Mars, with asteroids nearby. Credit: NASA

Here’s a finding to give planetary protectionists pause: two species of spores mounted on the International Space Station’s hull a few years back showed a high survival rate after 18 months in space.

Providing that they are shielded against solar radiation, it appears the spores are quite hardy and could easily transport on a spacecraft headed for Mars — which is concerning since so many scientific investigations there these days are focused on habitability of Martian life (whether past or present). The experiment was published in 2012, but highlighted in a recent NASA press release about planetary protection.

The experiment was called PROTECT (an acronym of Resistance of spacecraft isolates to outer space for planetary protection purposes) and studied spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032. B. pumilus spores were found in an air lock between a “clean room” and entrance floor at NASA’s Jet Propulsion Laboratory, and in previous studies were shown to be more resistant to UV radiation and hydrogen peroxide than “wild” strains. B. subtilis is a spore that has been studied in other space environment experiments.

Samples of both spores were mounted on the EXPOSE-E facility on the space station, which provides up to two years of space exposure. The major goal of this European Space Agency experiment is to study “the origin, evolution and distribution of life in the universe,” NASA states, adding that anything mounted outside of there has to survive “cosmic radiation, vacuum, full-spectrum solar light including UV-C, freezing/thawing cycles [and] microgravity.”

The European Technology Exposure Facility (EuTEF) attached to the Columbus module of the International Space Station. Credit: DLR, Institute of Aerospace Medicine/Dr. Gerda Horneck
The European Technology Exposure Facility (EuTEF) attached to the Columbus module of the International Space Station. Credit: DLR, Institute of Aerospace Medicine/Dr. Gerda Horneck

The experiment found that if the spores were in areas replete with solar UV radiation, most of them were killed. If those rays were filtered out, however, the spores showed a 50 percent survival rate on both space and simulated “Mars” conditions. It is most concerning to scientists when considering a situation where spores could be hiding underneath each other during a spacecraft trip. The ones on the outside would likely die, but the ones on the inside — shielded from solar radiation — could make it there.

One key limitation in this study, however, is that only two types of spores were studied. This does present a case for doing more studies on this matter in the future, however. Space agencies are quite aware of the problem of planetary protection, as evidenced by departments such as NASA’s Office of Planetary Protection and ESA’s Planetary Protection Officer.

Spacecraft designers constantly make decisions to keep the extraterrestrial bodies we study as safe from Earth contamination as possible; one famous example was when the Galileo probe was deliberately sent into Jupiter in 2003 to protect Europa and other potentially life-bearing moons of the giant planet from possible contamination.

Images of Bacillus pumilus SAFR-032 spores (seen in an electron micrograph) on aluminum before and after being exposed to space on an International Space Station experiment. Credit: P. Vaishampayan, et al./Astrobiology
Images of Bacillus pumilus SAFR-032 spores (seen in an electron micrograph) on aluminum before and after being exposed to space on an International Space Station experiment. Credit: P. Vaishampayan, et al./Astrobiology

You can read the entire study (led by DLR’s Gerda Horneck) in Astrobiology. Also note that there are two other EXPOSE-E studies published around the same time: “Survival of Rock-Colonizing Organisms After 1.5 Years in Outer Space” and “Survival of Bacillus pumilus Spores for a Prolonged Period of Time in Real Space Conditions.”

The rock study (led by Tuscia University’s Silvano Onofri) takes the question of the spores in a different direction, which is examining the phenomenon of “lithopanspermia” — how organisms might move between planets (say, on a meteor). Since Mars meteorites have been found on Earth, some researchers have wondered if life could have spread between our two planets. If that were to happen, the researchers cautioned, the spores would have to survive for thousands or millions of years.

The other B. pumilus paper (led by NASA’s Parag A. Vaishampayan) noted that those spores mounted outside of the space station that survived, showed higher concentrations of proteins that could be linked to resisting UV radiation.

Boeing CST-100 Space Taxi Maiden Test Flight to ISS Expected Early 2017 – One on One Interview with Chris Ferguson, Last Shuttle Commander

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

KENNEDY SPACE CENTER, FL – Boeing expects to launch the first unmanned test flight of their commercial CST-100 manned ‘space taxi’ in “early 2017,” said Chris Ferguson, commander of NASA’s final shuttle flight in an exclusive one-on-one interview with Universe Today for an inside look at Boeing’s space efforts. Ferguson is now spearheading Boeing’s human spaceflight capsule project as director of Crew and Mission Operations.

“The first unmanned orbital test flight is planned in January 2017 … and may go to the station,” Ferguson told me during a wide ranging, in depth discussion about a variety of human spaceflight topics and Boeing’s ambitious plans for their privately developed CST-100 human rated spaceship – with a little help from NASA.

Boeing has reserved a launch slot at Cape Canaveral with United Launch Alliance (ULA), but the details are not yet public.

If all goes well, the maiden CST-100 orbital test flight with humans would follow around mid-2017.

“The first manned test could happen by the end of summer 2017 with a two person crew,” he said.

“And we may go all the way to the space station.”

Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, vying to restore America’s capability to fly humans to Earth orbit and the space station by late 2017, using seed money from NASA’s Commercial Crew Program (CCP) in a public/private partnership. The next round of contracts will be awarded by NASA about late summer 2014.

That’s a feat that America hasn’t accomplished in nearly three years.

“It’s been over 1000 days and counting since we landed [on STS-135],” Ferguson noted with some sadness as he checked the daily counter on his watch. He is a veteran of three space flights.

Boeing has selected Florida to be the base for its commercial crew program office. Image Credit: Boeing
Boeing CST-100 commercial crew capsule approaches the ISS in this artist’s concept. Credit: Boeing

Since the shuttles retirement in July 2011 following touchdown of Space Shuttle Atlantis on the last shuttle flight (STS-135) with Ferguson in command, no American astronauts have launched to space from American soil on American rockets and spaceships.

The only ticket to the ISS and back has been aboard the Russian Soyuz capsule.

Chris and the Boeing team hope to change the situation soon. They are chomping at the bits to get Americas back into space from US soil and provide reliable and cost-effective US access to destinations in low Earth orbit like the ISS and the proposed private Bigelow space station.

Boeing wants to send its new private spaceship all the way to the space station starting on the very first unmanned and manned test flights currently slated for 2017, according to Ferguson.

“NASA wants us to provide [crew flight] services by November 2017,” said Ferguson, according to the terms of the CCP contact award.”

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The Boeing CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

The CST-100 will launch atop a man rated Atlas V rocket and carry a mix of cargo and up to seven crew members to the ISS.

“So both the first unmanned and manned test flight will be in 2017. The first unmanned orbital flight test is currently set for January 2017. The first manned test could be end of summer 2017,” he stated.

I asked Chris to outline the mission plans for both flights.

“Our first flight, the CST-100 Orbital Flight Test – is scheduled to be unmanned.”

“Originally it was just going to be an on orbital test of the systems, with perhaps a close approach to the space station. But we haven’t precluded our ability to dock.

“So if our systems mature as we anticipate then we may go all the way and actually dock at station. We’re not sure yet,” he said.

So I asked whether he thinks the CST-100 will also go dock at the ISS on the first manned test flight?

“Yes. Absolutely. We want go to all the way to the space station,” Ferguson emphatically told me.

“For the 1st manned test flight, we want to dock at the space station and maybe spend a couple weeks there.”

“SpaceX did it [docking]. So we think we can too.”

“The question is can we make the owners of the space station comfortable with what we are doing. That’s what it really comes down to.”

“As the next year progresses and the design matures and it becomes more refined and we understand our own capability, and NASA understands our capabilities as the space station program gets more involved – then I’m sure they will put the same rigor into our plan as they did into the SpaceX and Orbital Sciences plans.”

“When SpaceX and Orbital [wanted to] come up for the grapple [rather than just rendezvous], NASA asked ‘Are these guys ready?’ That’s what NASA will ask us.”

“And if we [Boeing] are ready, then we’ll go dock at the station with our CST-100.”

“And if we’re not ready, then we’ll wait another flight and go to the station the next time. It’s just that simple.”

“We looked at it and this is something we can do.”

“There are a lot of ways we have to make NASA and ourselves happy. But as a company we feel we can go do it,” Ferguson stated.

Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing

So the future looks promising.

But the schedule depends entirely on NASA funding levels approved by Congress. And that vital funding has been rather short on supply. It has already caused significant delays to the start of the space taxi missions for all three companies contending for NASA’s commercial crew contracts because of the significant slashes to the agency’s CCP budget request, year after year.

In fact the schedule has slipped already 18 months to the right compared to barely a few years ago.

So I asked Chris to discuss the CCP funding cuts and resulting postponements – which significantly affected schedules for Boeing, SpaceX and Sierra Nevada.

Here it is in a nutshell.

“No Bucks, No Buck Rogers,” explained Ferguson.

“The original plan was to conduct both the unmanned and manned CST-100 test flights in 2015.”

“Originally, we would have flown the unmanned orbital test in the summer of 2015. The crewed test would have been at the end of 2015.”

“So both flights are now a full year and a half later.” Ferguson confirmed.

“For the presidents [CCP] funding requests for the past few years of roughly about $800 million, they [Congress] only approved about half. It was significantly less than the request.”

Now at this very moment Congress is deliberating NASA’s Fiscal 2015 budget.

NASA Administrator Charles Bolden has said he will beg Congress to approve full funding for the commercial crew program this year – on his hands and knees if necessary.

NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011.   From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew will delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer - kenkremer.com
NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011. From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew will delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer – kenkremer.com

Otherwise there will be further delays to the start of the space taxi missions. And the direct consequence is NASA would be forced to continue buying US astronaut rides from the Russians at $70 Million per seat. All against the backdrop of Russian actions in the Ukraine where deadly clashes potentially threaten US access to the ISS in a worst case scenario if the ongoing events spin even further out of control and the West ratchets up economic sanctions against Russia.

The CST-100 is designed to be a “simple ride up to and back from space,” Ferguson emphasized to me.

NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

It is being designed at Boeing’s Houston Product Support Center in Texas.

In Part 2 of my interview, Chris Ferguson will discuss the details about the design, how and where the CST-100 capsule will be manufactured at a newly renovated, former space shuttle facility at NASA’s Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer at emergency M-113 Tank Practice.  Chris brought a special public gift for science aboard the last shuttle mission. Chris and Ken discuss our mutual love of science in the weeks before Atlantis July 8 liftoff.  Credit: Ken Kremer
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com