Update, 10:13 p.m. EDT: Tonight’s docking with the International Space Station will not happen because one of the engine firings scheduled to happen did not take place when it was supposed to. The crew is safe, according to NASA, and going to a standard backup plan that should bring the craft to the station on Thursday (2 days from now). Roscosmos is examining the issue. We will provide updates as warranted.
Update, 6:43 p.m. EDT: The Soyuz is on its way to space after an on-time launch — and by the way, astronauts saw it leave from the space station! It’s en route and NASA is still expecting an arrival around 11:04 p.m. EDT., which you can watch live on NASA TV above.
Despite tensions on the ground between the United States and Russia, officials say that it’s business as usual on the International Space Station. The three people launching to space today, in fact, are from both countries: Alexander Skvortsov and Oleg Artemyev of the Russian Federal Space Agency (Roscosmos), and Steve Swanson from NASA.
As has been the habit lately, the Expedition 39/40 crew will take a faster route to the International Space Station that see launch and docking happen in the same day, should all go to plan. It all begins with the launch at 5:17 p.m. EDT (9:17 p.m. UTC) from the Baikonur Cosmodrome in Kazakhstan, with docking scheduled to happen at 11:04 p.m. EDT (3:04 a.m. UTC).
Bear in mind that schedules are subject to change, so it’s a good idea to watch NASA TV (see video above) well before each milestone to see if things are happening on time. Once the crew arrives at station, one big question is if they’ll do spacewalks when they get there.
Last July, Italian astronaut Luca Parmitano experienced a severe water leak in his NASA spacesuit that sent the crew scrambling back to the station. While Parmitano emerged physically all right, the agency opened an investigation and suspended all non-essential activities. A report was issued in February and the agency pledged to deal with all the urgent items quickly.
Spacewalks are planned for Expedition 40, but only if these urgent items are cleared in time for that. (That expedition begins in May and will include NASA astronauts Alex Gerst, Reid Wiseman and Russian cosmonaut Maxim Suraev.)
Seriously, how cool is this picture? The International Space Station crew caught an incredible view of their three future crewmates rocketing up to meet them today around 5:17 p.m. EDT (9:17 p.m. UTC).
Expedition 39’s Rick Mastracchio (from NASA) shared this on Twitter, casually mentioning that he will expect more crewmates to arrive later today. Upon the rocket were Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos).
Check out the launch video and some NASA pictures of the activities below the jump. (Update, 10:21 p.m. EDT: One of the engine firings did not take place as planned, meaning the astronauts will not dock with the station as planned tonight. The crew is safe and doing a standard backup plan that will bring them to the station on Thursday. We will provide updates as the situation progresses.)
“Here on board the ISS, we turn yesterday’s coffee into tomorrow’s coffee” is a slogan that sounds a little like a Don Draper-led advertising campaign. Seriously, though, it’s a nifty way in which Expedition 39 commander Koichi Wakata describes in this video (also embedded below) how the astronauts drink purified urine on the station.
The water is perfectly hygienic once it runs through the system, and moreover, it could be a useful trick for future space colonists to remember.
Water is heavy, at about 8.3 pounds per gallon (or roughly 1 kg/liter) at room temperature. And astronauts in space do need to go through a lot of it to prevent dehydration and other illnesses. Throw in demanding activities such as exercising two hours a day or going on a spacewalk, and you can see how quickly people in space go through it.
Everything sent into space has an associated launch cost with it, and space engineers are always looking for ways to shave a few grams here or there. By installing the water purification system (which was completed in 2009 with Wakata on board), NASA said it would be able to reduce the amount sent up to station.
When people speak of space colonies on the Moon or Mars, they often talk about landing them near a large source of water ice and then using that to help support the people working there. As NASA once wrote in a worksheet, “Until an orbiting grocery store is opened, recycling of water and air will be crucial for crew survival.”
Check out Wakata’s explanation of the water recycling system below. For more information on recycling water in Mars colonies, one source to start with could be T. A. Heppenheimer’s “Colonies In Space”, published on the National Space Society website.
NASA has actively joined the hunt for the missing Malaysian Airline flight MH-370 that mysteriously disappeared without a trace more than two weeks ago on March 8, 2014.
Sensors aboard at least two of NASA’s unmanned Earth orbiting global observation satellites as well as others flying on the manned International Space Station (ISS) are looking for signs of the jetliner that could aid the investigators from a multitude of nations and provide some small measure of comfort to the grieving families and loved ones of the passengers aboard.
“Obviously NASA isn’t a lead agency in this effort. But we’re trying to support the search, if possible,” Allard Beutel, NASA Headquarters, Office of Communications director, told Universe Today this evening.
NASA’s airplane search assistance comes in two forms; mining existing space satellite observing data and retargeting space based assets for new data gathering since the incident.
The Malaysian Airline Boeing 777-2H6ER jetliner went missing on March 8 while cruising en route from Kuala Lampur, Malaysia to Beijing, China. See cockpit photo below.
Accurate facts on why MH-370 vanished with 239 passengers aboard have sadly been few and far between.
Last week, the search area shifted to a wide swath in the southern Indian Ocean when potential aircraft debris was spotted in a new series of separate satellite images from Australia and China government officials.
A prior set of official Chinese government satellite images at a different location yielded absolutely nothing.
The area is now focused 2,500 km (1,600 mi) south west of Perth, a city on the western coast of Australia.
NASA’s search support was triggered upon activation of the International Charter on Space and Major Disasters.
Available data from NASA’s Terra and Aqua satellites has already been transmitted to the U.S. Geological Survey and new data are now being collected in the search area.
“In response to activation of the International Charter on Space and Major Disasters last week regarding the missing Malaysia Airlines jetliner, NASA sent relevant space-based data to the U.S. Geological Survey’s Earth Resources Observations and Science Hazard Data Distribution System that facilitates the distribution of data for Charter activations,” according to a NASA statement.
And it’s important to note that NASA satellites and space-based cameras are designed for long-term scientific data gathering and Earth observation.
“They’re really not meant to look for a missing aircraft,” Beutel stated.
“The archive of global Earth-observing satellite data is being mined for relevant images. These include broad-area views from the MODIS [instrument] on NASA’s Terra and Aqua satellites,” Beutel informed me.
The next step was to retarget both satellites and another high resolution camera aboard the ISS.
“In addition, two NASA high-resolution assets have been targeted to take images of designated search areas: the Earth Observing-1 satellite and the ISERV camera on the International Space Station,” Beutel explained.
Aqua and Terra were already gathering new observations with the MODIS instrument in the search area off Australia last week. MODIS measures changes in Earth’s cloud cover.
Here are the satellite observation times and capabilities:
• MODIS on the Aqua satellite observed at about 1:30 p.m. local time as it passes overhead from pole-to-pole
• MODIS on the Terra satellite observed at about 10:30 a.m. local time
• The width (field of view) of a MODIS observation is 2,300 kilometers
• One pixel of a MODIS image – the limit of how small a feature it can see – is about 1 kilometer.
A new set of high resolution Earth imaging cameras are being sent to the ISS and are loaded aboard the SpaceX CRS-3 Dragon resupply capsule now slated for blastoff on March 30.
The newly launchedNASA/JAXAGPM precipitation monitoring satellite which will cover this ocean area in the future is still in the midst of science instrument checkout.
Ships and planes from at least 26 countries have been being dispatched to the new based on the new satellite imagery to search for debris and the black boxes recording all the critical engineering data and cockpit voices of the pilot and copilot and aid investigators as to what happened.
No one knows at this time why the Malaysia Airlines flight mysteriously disappeared.
KENNEDY SPACE CENTER, FL – Following last week’s sudden and late in the processing flow postponement of the SpaceX Falcon 9 rocket launch, SpaceX announced a reset of its next cargo mission launch for NASA to the International Space Station (ISS) to a new target date of Sunday, March 30.
The commercially developed Falcon 9 booster and Dragon cargo vessel are slated for a spectacular night time liftoff from Cape Canaveral Air Force Station in Florida at 10:50 p.m. EDT on March 30, SpaceX announced on Friday.
This mission, soaring to space under a resupply contract to NASA, could ignite a revolution in both rocketry and robotics.
The first stage of the Falcon 9 rocket sports a quartet of never before tried landing legs and the Dragon freighter is loaded with a set of lanky legs to enable mobility in space for NASA’s Robonaut 2 standing at the cutting edge of space robotics technology.
Launch preparations were suddenly halted less than 72 hours prior to the then planned March 16 early morning launch because of unspecified technical issues concerning the sudden discovery of “contamination,” sources told me.
“To ensure the highest possible level of mission assurance and allow additional time to resolve remaining open items, the team is taking additional time to resolve open items and ensure SpaceX does everything possible on the ground to prepare for a successful launch,” according to a statement from SpaceX.
Several sources told me that the problem related to “contamination” that was found in the “unpressurized truck section” at the rear of the Dragon spacecraft.
“An unknown contaminant of unknown origin was found on a blanket in the Dragon trunk,” independent sources said to Universe Today soon after the postponement was announced.
“After careful review and analysis, engineering teams representing both the ISS and SpaceX have determined Dragon is ready to fly ‘as-is.’ All parties agree that the particular constituents observed in Dragon’s trunk are in line with the previously defined environments levels and do not impose additional risk to the payloads,” SpaceX announced in a new statement.
With the contamination issues now resolved, the launch is back on track.
NASA Television will air live coverage on Sunday.
In case the launch is delayed, the backup launch opportunity is at 9:39 p.m. Wednesday, April 2.
Altogether, this unmanned SpaceX CRS-3 mission will deliver over 5000 pounds of science experiments, a pair of legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment and essential gear, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.
To date SpaceX has completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.
Following the rescheduled March 30 launch and a series of orbit raising and course corrections over the next two days, Dragon will rendezvous and dock at the Earth facing port on the station’s Harmony module on Wednesday, April 2.
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Learn more at Ken’s upcoming presentations at the NEAF astro/space convention on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30
.
And watch for Ken’s upcoming SpaceX launch coverage at Cape Canaveral & the Kennedy Space Center press site.
You wanna talk about fear? This view would likely be many people’s worst nightmare — being in a spacesuit, untethered, floating away from the International Space Station and its relative safety. NASA has astronauts covered for this Gravity-type scenario, however, with a sort of jet backpack that can send astronauts back to safety.
A new video featuring European Space Agency astronaut Alexander Gerst (also embedded below) explains the steps an astronaut would take to swing back to safety. “We actually train how to use that in the virtual reality lab,” he said shortly after the video showed an astronaut floating away.
The key lies in a system called SAFER (Simplified Aid for EVA Rescue), which Gerst has practiced on numerous times (virtually) in preparation for his flight in May, which could involve spacewalks if NASA addresses a spacesuit water leak problem in time.
“You have to train it for a while to operate and actually come back, and not miss the station and fly into the blackness of space,” Gerst said.
The Russian Orlan spacesuit (which Gerst is also trained on) does not have such a system, but Roscosmos gets around that by having a different procedure for spacewalking than the Americans. The Russians mandate a minimum of two attachment points to station at all times, whether it’s a pair of tethers or a tether and a gripped hand.
Gerst emphasizes a floating away scenario is unlikely, in either case — it would involve losing the anchor, losing the tether and also losing your grip all at the same time. While this has never actually happened, NASA did test the SAFER system in space on STS-64 in 1994 with a crew member standing by on the Canadarm robotic arm if something went wrong. In 2000, two astronauts aboard STS-92 each did a 50-foot flight with the system.
In 2006, the SAFER system got a little loose on the back of astronaut Piers Sellers, necessitating a tether fix. NASA emphasized that the system was not in danger of being lost.
You can view the section on SAFER in the video below at around 6 minutes. Gerst recorded this as a summary of his training ahead of Expedition 40/41, which lifts off in May.
When there’s a Dragon spacecraft coming your way at the International Space Station, you’d better be ready to grapple it with a robotic arm. For if there’s a crash, you will face “a very bad day”, as astronaut David Saint-Jacques points out in this new video (also embedded below the jump).
That’s why the Canadian (along with European Space Agency astronaut Andreas Mogensen) was doing robotics training this month at the Canadian Space Agency headquarters near Montreal. The most terrifying thing for astronauts must be the limited view as they do delicate maneuvers with the multi-million dollar Canadarm2.
“All you’ve got, really, while you’re working, is this workstation,” Saint-Jacques said. “You’ve got a couple of camera views to work from. You’ve got your hand controllers to move the arm, and you’ve got some computer displays, and a bunch of switches here on the left.”
“That’s all you’ve got,” he added. “You’ve really got to think ahead: how you’re going to maneuver this arm without crashing into anything.”
The video is the latest in a training series by Mogensen, who will go to the International Space Station in 2015. Saint-Jacques — a fellow 2009 astronaut class selectee — has not been assigned to a flight yet (at least publicly).
The first Canadarm, which cost about $100 million in late 1970s dollars, flew on the second shuttle flight in 1981. Canadarm2 was constructed for space station construction in the 2000s, and is still used today for spacewalks.
Berthing spacecraft is reportedly not what it was originally designed for, but the robotic arm has proved an able tool to pick up the Dragon spacecraft and other visitors to the station.
“There is no problem so bad that you can’t make it worse.” So with that old astronaut principle in mind, what is the best reaction to take when your eyes become blinded while you’re working on the International Space Station, in no more protection than with a spacesuit?
The always eloquent Canadian (retired) astronaut Chris Hadfield — commander of Expedition 35 — faced this situation in 2001. He explains the best antidotes to fear: knowledge, practice and understanding. And in this TED talk uploaded this week, he illustrates how to conquer some dangers in space with the simple analogy of walking into a spiderweb.
Say you’re terrified of spiders, worried that one is going to poison you and kill you. The first best thing to do is look at the statistics, Hadfield said. In British Columbia (where the talk was held), there is only one poisonous spider among hundreds. In space, the odds are grimmer: a 1 in 9 chance of catastrophic failure in the first five shuttle flights, and something like 1 in 38 when Hadfield took his first shuttle flight in 1995 to visit the space shuttle Mir.
So how do you deal with the odds? For spiders, control the fear, walk through spiderwebs as long as you see there’s nothing poisonous lurking. For space? “We don’t practice things going right, but we practice things going wrong, all the time so you are always walking through those spiderwebs,” Hadfield said.
Be sure to watch the talk to the end, as Hadfield has a treat for the audience. And as always, listening to Hadfield’s descriptions of space is a joy: “A self propelled art gallery of fantastic changing beauty that is the world itself,” is among the more memorable phrases of the talk.
TED, a non-profit that bills itself as one that spreads ideas, charged a hefty delegate fee for attendees at this meeting (reported at $7,500 each) but did free livestreaming at several venues in the Vancouver area. It also makes its talks available on the web for free.
Hadfield rocketed to worldwide fame last year after doing extensive social media and several concerts from orbit.
If you’ve ever felt insecure about your height, orbit is a great place to be. Astronaut spines lengthen up to 2.75 inches (7 centimeters) while they’re in microgravity. There are big downsides, however. First there’s the backache. Second, you’re four times as likely to get a slipped disc when you return to Earth.
The solution could be as simple as tight clothing. Above you can see French astronaut Thomas Pesquet (already flying high this week after he was publicly named to a flight in 2016) trying out a prototype of the skinsuit. Essentially, it’s so tight that it could prevent you from growing, which in turn would stop the pain and risk of damage.
“The skinsuit is a tailor-made overall with a bi-directional weave specially designed to counteract the lack of gravity by squeezing the body from the shoulders to the feet with a similar force to that felt on Earth. Current prototypes are made of spandex, although new materials are being examined,” the European Space Agency wrote.
The first astronaut to test the suit out in space will be Andreas Mogensen, who will launch to the International Space Station next year.
ESA says if it works, the suit would not only be useful for astronauts, but also could be great for people with back pain on Earth — and possibly, even those with conditions such as cerebral palsy.
Prototypes are being developed between ESA’s Space Medicine Office, King’s College London (United Kingdom), University College London (United Kingdom) and the Massachusetts Institute of Technology (United States).
Three red roses and a white one. The flower bouquet sitting in NASA Mission Control right now in Houston is one of a series that has appeared with every single mission since 1988 — a small gift from a Texas family whose members are long-standing fans of space exploration.
The first bouquet showed up on landing day for the first flight (STS-26) after the shuttle Challenger explosion. And bouquets have continued for every flight since, a gift that NASA is glad to see when it arrives.
“It means a lot to the team here in Houston,” NASA spokesperson Josh Byerly said in the YouTube video above, an excerpt from a broadcast on NASA TV. “We’re big on tradition here at NASA, and we are very happy that this tradition continues.”
Each red rose symbolizes a member of an expedition crew — in this case, Expedition 39/40‘s Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The white one is a symbol of all of the astronauts who have lost their lives, such as those in the Apollo 1, Challenger and Columbia disasters.
“When I first walked into the control room I noticed them right away, because it was so different, and I walked over and read the card,” stated Milt Heflin, who was a shuttle flight director at the time. “It was very simple, saying congratulations and wishing everyone the best on the mission. It was signed but it didn’t have any contact information for the senders.”
Helfin did manage to track down the family — Mark, Terry and daughter MacKenzie — and over the years, the Sheltons received cards of thanks and invitations to see launches and Mission Control.
“I didn’t actually decide to do it until the day the STS-26 mission was to land, and I didn’t know that I even could get it done in time,” Mark Shelton stated, who added he first became interested in space after a childhood visit to the NASA Johnson Space Center in Houston in the 1960s.
“I called information to find a florist near the space center, and then I asked the florist if they could deliver roses to Mission Control. At first they said they couldn’t do it … but then they said they would try.”
The attempt succeeded, obviously, and with each mission new flowers arrive. The bouquets are now including participation from a “second” generation, Byerly said in the video, saying that they now come from the Sheltons and the Murphys.