It took NASA almost the same amount of time as a sitcom episode to send Luca Parmitano back to the airlock when the Italian astronaut experienced a leak in his spacesuit last summer, a new report reveals.
The 23-minute gap of time between when Parmitano first sent a report of water in his helmet, to when NASA told him to go back to safety, exposed the astronaut “to an increased level of risk”, the report said. While Parmitano emerged from the incident safely, in his last minutes inside the spacesuit the water was covering his eyes, getting close to his nose and mouth, and affecting the communications equipment.
“There wasn’t an issue of anything being hidden or surprised. It was a lack of understanding about the severity of the event. It was believed a drink bag caused the leak,” said Chris Hansen, the chair of the mishap investigation board, in a press conference today (Feb. 26).
This misunderstanding, added Hansen (who is also the chief engineer of the International Space Station Program) also led to a problem when a leak occurred in the same suit just the week before.
Parmitano’s water leak occurred July 16 when he and Chris Cassidy were preparing a part of the International Space Station for a new Russian module. Until today, however, few knew about the existence of a second leak in the same spacesuit that happened on July 9, when Cassidy and Parmitano were doing another spacewalk together.
After the conclusion of “EVA 22” on July 9, as NASA called the extra-vehicular activity, Parmitano took off his helmet and crew members discovered between 0.5 and 1 liters (0.13 to 0.26 gallons) of water inside. Cassidy told the ground that he could not see any water during the spacewalk or repressurization, leading NASA to conclude the water got into the helmet in the airlock.
“Also,” the report noted, “[Parmitano] was looking down and leaning forward and likely had pressed on the drink bag with his chest and could have pinched the bite valve open with his chin, releasing water into his helmet. The ground team accepted the crew’s drink bag leak assessment and the presence of excessive water in the helmet was not investigated further … The ground team instructed the crew to use a new drink bag for the upcoming EVA 23, which they did.”
Hanson emphasized that the crew did not make the final call, and that the ground team did ask some questions about what was going on, but the assumption that a drink bag caused the water was also a key feature of the July 16 spacewalk when the leak began to show itself in earnest.
Also, NASA did not well understand the physics of how water worked inside of the suit, assuming there was no way for liquid to make it past a fan pump separator into the helmet unless the fan itself shut off. If that scenario arose, NASA would have kicked into a 30-minute return-to-airlock procedure, and that was in the back of controllers’ minds as they were working through the fault tree during the July 16 spacewalk, officials said in the phone call today.
In the short term, the authors of the report have several “Level 1” or priority recommendations that they should be implemented before normal spacewalks resume. NASA said it’s planning to work through these and “Level 2” recommendations in time for June, with the aim of getting spacewalks going again in July or August.
Emergency spacewalks can still go forward, as the agency has new safety measures in place (including snorkels). This happened in December as the astronauts replaced a faulty ammonia pump.
The agency has no pressing spacewalk tasks at this time. The broken pump, sitting in temporary stowage outside the station, was initially safed to stay there until summer, but further analysis shows that it could sit there for several months more.
You can read the entire 222-page report here. We’ll pull out more highlights tomorrow after we have some time to look over it in more detail, too. The exact cause of the leak is still under investigation.
1st stage of SpaceX Falcon 9 rocket newly equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
Story updated[/caption]
The next commercial SpaceXFalcon 9 rocket that’s set to launch in March carrying an unmanned Dragon cargo vessel will also be equipped with a quartet of landing legs in a key test that will one day lead to cheaper, reusable boosters, announced Elon Musk, the company’s founder and CEO.
The attachment of landing legs to the first stage of SpaceX’s new and more powerful, next-generation Falcon 9 rocket counts as a major step towards the firm’s eventual goal of building a fully reusable rocket.
Before attempting the use of landing legs “SpaceX needed to gain more confidence” in the new Falcon 9 rocket, Musk told me in an earlier interview.
Blastoff of the upgraded Falcon 9 on the Dragon CRS-3 flight is currently slated for March 16 from Cape Canaveral Air Force Station, Florida on a resupply mission to bring vital supplies to the International Space Station (ISS) in low Earth orbit for NASA.
“Mounting landing legs (~60 ft span) to Falcon 9 for next month’s Space Station servicing flight,” Musk tweeted, along with the up close photos above and below.
“SpaceX believes a fully and rapidly reusable rocket is the pivotal breakthrough needed to substantially reduce the cost of space access,” according to the firm’s website.
SpaceX hopes to vastly reduce their already low $54 million launch cost when a reusable version of the Falcon 9 becomes feasible.
Although this Falcon 9 will be sprouting legs, a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers is still planned for this trip.
“However, F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” Musk quickly added in a follow-up twitter message.
In a prior interview, I asked Elon Musk when a Falcon 9 flyback would be attempted?
“It will be on one of the upcoming missions to follow [the SES-8 launch],” Musk told me.
“What we need to do is gain more confidence on the three sigma dispersion of the mission performance of the rocket related to parameters such as thrust, specific impulse, steering loss and a whole bunch of other parameters that can impact the mission.”
“If all of those parameters combine in a negative way then you can fall short of the mission performance,” Musk explained to Universe Today.
When the upgraded Falcon 9 performed flawlessly for the SES-8 satellite launch on Dec 3, 2013 and the Thaicom-6 launch on Jan. 6, 2014, the path became clear to attempt the use of landing legs on this upcoming CRS-3 launch this March.
Atmospheric reentry engineering data was gathered during those last two Falcon 9 launches to feed into SpaceX’s future launch planning, Musk said.
That new data collected on the booster stage has now enabled the approval for landing leg utilization in this March 16 flight.
SpaceX engineers will continue to develop and refine the technology needed to accomplish a successful touchdown by the landing legs on solid ground back at the Cape in Florida.
Extensive work and testing remains before a land landing will be attempted by the company.
Ocean recovery teams will retrieve the 1st stage and haul it back to port much like the Space Shuttle’s pair of Solid Rocket Boosters.
This will be the second attempt at a water soft landing with the upgraded Falcon 9 booster.
The two stage Falcon 9 rocket and Dragon cargo carrier are currently in the final stages of processing by SpaceX technicians for the planned March 16 night time liftoff from Space Launch Complex 40 at 4:41 a.m. that will turn night into day along the Florida Space Coast.
“All four landing legs now mounted on Falcon 9,” Musk tweeted today, Feb. 25.
SpaceX has carried out extensive landing leg and free flight tests of ever increasing complexity and duration with the Grasshopper reusable pathfinding prototype.
SpaceX is under contract to NASA to deliver 20,000 kg (44,000) pounds of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.
To date SpaceX has completed two cargo resupply missions. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013.
The Falcon 9 and Dragon were privately developed by SpaceX with seed money from NASA in a public-private partnership.
The goal was to restore the cargo up mass capability the US completely lost following the retirement of NASA’s space shuttle orbiters in 2011.
SpaceX along with Orbital Sciences Corp are both partnered with NASA’s Commercial Resupply Services program.
This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.
The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.
Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.
Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news – and upcoming launch coverage at Cape Canaveral & the Kennedy Space Center press site.
Following a picture perfect blastoff from NASA’s frigid Virginia spaceport and a flawless docking at the International Space Station (ISS) in mid-January, the privately built Cygnus cargo resupply vehicle has completed its five week long and initial operational station delivery mission and departed the facility early this morning, Tuesday, Feb. 18.
The Expedition 38 crewmembers Michael Hopkins of NASA and Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) demated the Orbital Sciences Cygnus commercial spacecraft from the Earth-facing port of the Harmony node using the Canadian built robotic arm at about 5:15 a.m. EST.
The cylindrically shaped ship was released from the grappling snare on the terminus of the 57 foot long extended arm at about 6:41 a.m. EST and with a slight shove as both vehicles were flying at 17500 mph and some 260 miles (415 km) altitude above Earth over the southern tip of Argentina and the South Atlantic Ocean.
The astronauts were working at a robotics work station in the windowed Cupola module facing the Earth. The arm was quickly pulled back about 5 feet (1.5 m) after triggering the release from the grappling pin.
NASA TV carried the operation live. Station and arm cameras provided spectacular video views of the distinctive grey cylindrical Cygnus back dropped by the massive, cloud covered blue Earth as it was released and sped away.
Cygnus was commanded to fire its jets for the departure maneuvers to quickly retreat away from the station. It was barely a speck only 5 minutes after the arm release maneuver by Wakata and Hopkins.
“The departure was nominal,” said Houston mission control. “Cygnus is on its way.”
The solar powered Cygnus is America’s newest commercial space freighter and was built by Orbital Sciences Corporation with seed money from NASA in a public-private partnership aimed at restoring the cargo up mass capabilities lost following the retirement of NASA’s space shuttles in 2011.
Cygnus, as well as the SpaceX Dragon cargo vessel, functions as an absolutely indispensable “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.
The freighter delivered a treasure trove of 1.5 tons of vital research experiments, crew provisions, two dozen student science projects, belated Christmas presents, fresh fruit and more to the million pound orbiting lab complex and its six man crew.
The milestone flight dubbed Orbital 1, or Orb-1, began with the flawless Jan. 9 blast off of Cygnus mounted atop Orbital Sciences’ two stage, private Antares booster on the maiden operational launch from NASA’s Wallops Flight Facility along Virginia’s eastern shore. See a gallery of launch photos and videos – here and here.
“Today’s launch gives us the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle astronaut.
And NASA’s commercial cargo initiative is even more important following the recent extension of station operations to at least 2024.
“I think it’s fantastic that the Administration has committed to extending the station,” Culbertson told me following the launch at NASA Wallops.
“So extending it gives not only commercial companies but also researchers the idea that Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”
Following a two day orbital chase the Cygnus spacecraft reached the station on Jan. 12.
The ship is named in honor of NASA shuttle astronaut C. Gordon Fullerton who passed away in 2013.
Science experiments weighing 1000 pounds accounted for nearly 1/3 of the cargo load.
Among those were 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.
The students are participants of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).
Over 20 of the students attended the launch at Wallops. The student experiments selected are from 6 middle school and high school teams from Washington, DC, Traverse, MI, Downingtown and Jamestown, PA, North Charleston, SC and Hays County, TX.
“More than half the student experiments were activated within four days of arrival,” Dr. Jeff Goldstein, Director of the NCESSE, told Universe Today exclusively.
Ant colonies from three US states were also on board to study “swarm behavior.” The “ants in space” experiment was among the first to be unloaded from Cygnus to insure they are well fed for their expedition on how they fare and adapt in zero gravity.
33 cubesats were also aboard. Several of those were deployed last week from the Japanese Experiment Module airlock.
The Orbital-1 mission was the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA to deliver 20,000 kg (44,000 pounds) of cargo through 2016.
Cygnus was berthed at the ISS for some 37 days.
After fully unpacking the 2,780 pounds (1,261 kilograms) of supplies packed inside Cygnus, the crew reloaded it with all manner of no longer need trash and have sent it off to a fiery and destructive atmospheric reentry to burn up high over the Pacific Ocean on Feb. 19.
“The cargo ship is now a trash ship,” said NASA astronaut Cady Coleman.
“Getting rid of the trash frees up a lot of valuable and much needed space on the station.”
When it reaches a sufficiently safe separation distance from the ISS, mission controllers will fire its engines two times to slow the Cygnus and begin the final deorbit sequence starting at about 8:12 a.m. on Wednesday.
Two additional Antares/Cygnus flights are slated for this year.
They are scheduled to lift off around May 1 and early October, said Culbertson.
Indeed there will be a flurry of visiting vehicles to the ISS throughout this year and beyond – creating a space traffic jam of sorts.
Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
While the world is having a good time watching Olympic sports in Sochi, about a day’s drive north in Russia there are a bunch of astronauts using their evenings for a different purpose: reading an 18-inch high stack of Soyuz spacecraft textbooks.
“So let’s study all this real quick, let’s learn everything, we’ll learn everything we have to learn, and then let’s go to sim[ulation],” says European astronaut Thomas Pesquet in a new video from living quarters in training facility Star City, near Moscow.
“Okay, but I think it takes about a year,” answers fellow European astronaut Andreas Mogensen.
“Oh … so we better get started,” Pesquet says, handing gobs of books to his colleague.
Mogensen has his hands full in other ways as well as he shows us around Star City: there’s a new baby in his family, as you see at the beginning. We doubt he’s getting a lot of sleep right now, but this will certainly be a memorable time as he prepares to be the first Dane in space in 2015.
For more information on the Gagarin Cosmonaut Training Center at Star City, check out this link.
The issue of “what to wear?” takes on an extra dimension of life and death when it comes to space travel. Upon exiting a spacecraft on a spacewalk, an astronaut becomes his very own personal satellite in orbit about the Earth and must rely on the flimsy layer of his suit to provide them with a small degree of protection from radiation and extreme fluctuations of heat and cold.
We recently had a chance to see the past, present and future of space suit technology in the Smithsonian Institutions’ touring Suited for Space exhibit currently on display at the Tampa Bay History Center in Tampa, Florida.
Tampa Bay History Center Director of Marketing Manny Leto recently gave Universe Today an exclusive look at the traveling display. If you think you know space suits, Suited for Space will show you otherwise, as well as give you a unique perspective on a familiar but often overlooked and essential piece of space hardware. And heck, it’s just plain fascinating to see the design and development of some of these earlier suits as well as videos and stills of astronauts at work – and yes, sometimes even at play – in them.
One of the highlights of the exhibit are some unique x-ray images of iconic suits from space travel history. Familiar suits become new again in these images by Smithsonian photographer Mark Avino, which includes a penetrating view of Neil Armstrong’s space suit that he wore on Apollo 11.
Space suits evolved from pressure suits developed for high-altitude flights in the 1950’s, and Suited for Space traces that progression. It was particularly interesting to see the depiction of Wiley Post’s 1934 suit, complete with steel cylindrical helmet and glass portal! Such early suits resembled diving bell suits of yore — think Captain Nemo in a chemsuit. Still, this antiquated contraption was the first practical full pressure suit that functioned successfully at over 13,000 metres altitude.
No suit that has been into space is allowed to tour due to the fragility of many historic originals that are now kept at the Smithsonian, though several authentic suits used in training during the U.S. space program are on display. We thought it was interesting to note how the evolution of the spacesuit closely followed the development of composites and materials through the mid-20th century. You can see the progression from canvas, glass and steel in the early suits right up though the advent of the age of plastic and modern fabrics. Designs have flirted with the idea of rigid and semi-rigid suits before settling on the modern day familiar white astronaut suit.
Spacesuit technology has also always faced the ultimate challenge of protecting an astronaut from the rigors of space during Extra-Vehicular Activity, or EVA.
Cosmonaut Alexey Leonov performed the first 12 minute space walk during Voskhod 2 back in 1965, and NASA astronaut Ed White became the first American to walk in space on Gemini 4 just months later. Both space walkers had issues with over-heating, and White nearly didn’t make it back into his Gemini capsule.
Designing a proper spacesuit was a major challenge that had to be overcome. In 1962, Playtex (yes THAT Playtex) was awarded a contract to develop the suits that astronauts would wear on the Moon. Said suits had 13 distinct layers and weighed 35 kilograms here on Earth. The Playtex industrial division eventually became known as the International Latex Corporation or ILC Dover, which still makes spacesuits for ISS crewmembers today. It’s also fascinating to see some of the alternate suits proposed, including one “bubble suit” with arms and legs (!) that was actually tested but, thankfully, was never used.
These suits were used by astronauts on the Moon, to repair Hubble, build the International Space Station and much more. Al Worden recounts performing the “most distant EVA ever” on the return from the Moon in his book Falling to Earth. This record will still stand until the proposed asteroid retrieval mission in the coming decade, which will see astronauts performing the first EVA ever in orbit around Earth’s Moon.
And working in a modern spacesuit during an EVA is anything but routine. CSA Astronaut Chris Hadfield said in his recent book An Astronaut’s Guide to Life on Earth that “Spacewalking is like rock climbing, weightlifting, repairing a small engine and performing an intricate pas de deux – simultaneously, while encased in a bulky suit that’s scraping your knuckle, fingertips and collarbone raw.”
And one only has to look at the recent drama that cut ESA astronaut Luca Parmitamo’s EVA short last year to realize that your spacesuit is the only thin barrier that exists between yourself and the perils of space.
“We’re delighted to host our first Smithsonian Institution Travelling Exhibition Service (SITES) and we think that Florida’s close ties to NASA and the space program make it a great fit for us,” said Rodney Kite-Powell, the Tampa Bay History Center’s Saunders Foundation Curator of History.
Be sure to catch this fascinating exhibit coming to a city near you!
-And you can see these suits in action on the up and coming future EVAs for 2014.
-Here’s the schedule for Suited for Space Exhibit tour.
-Astronaut Nicole Stott (veteran of STS-128, -129, -133, & ISS Expeditions 20 and 21) will also be on hand at the Tampa Bay History Center on March 2014 (Date to be Announced) to present Suited for Space: An Astronaut’s View.
– Follow the Tampa Bay History Museum of Twitter as @TampaBayHistory.
Astronauts fired up the International Space Station’s Yard-a-Pult (actually, we mean the Japanese Kibo arm’s satellite launcher) this week to send out a flock of Doves or tiny satellites that take pictures of the Earth below. An incredible 28 satellites from Planet Labs of San Francisco are expected to swarm into orbit — the largest fleet yet, NASA says — but there have been delays in launching some of them.
The aim? To provide Earth observation information for any purpose that is needed, whether it’s disaster relief or looking to learn more about the Earth’s environment. Planet Labs and NASA say that commercial applications could include real estate, mapping, construction and oil and gas monitoring.
Deployments of two satellites each began on Tuesday and Wednesday, but NASA noted there are “glitches” (which the agency didn’t specify) that are holding up the launch of other ones. There’s no estimated date yet for sending out the rest of the satellites.
“We believe that the democratization of information about a changing planet is the mission that we are focused on, and that, in and of itself, is going to be quite valuable for the planet,” stated Robbie Schingler, co-founder of Planet Labs.
Expedition 38’s Rick Mastracchio and Koichi Wakata both commented on the unusual launches. “Two small satellites are deployed from our launcher here on the space station. Each a little bigger than loaf of bread,” Mastracchio tweeted, while Wakata wrote, “Congratulations on the successful deploy of the satellites by the NanoRacks CubeSat Deployer and Kibo robotics!”
For more information on Flock 1, check out the Planet Labs website. You can also check out an animation of how NanoRacks CubeSats deploy in the animation below (which includes a clip from the song “We Are Young” by Fun.)
A week ago today, Slate published an article asking “What Is NASA for?” After the author opened the article comparing the United States’ space agency to a panda, he described a sort of loss of direction that fell upon NASA after the moon landings concluded in 1972. He then cited a litany of concerns he has about the agency, including human spaceflight scientific results not appearing in top journals, and the cost of the International Space Station.
Then Twitter space fans responded with a flurry of tweets under the hashtag #WhatIsNASAFor (3,994 tweets and retweets according to this graph cited by NASA Watch). Participants included NASA officials, journalists, industry and people who follow NASA and space exploration as a hobby. Several people also wrote essays in longer form (such as Deep Space Industries’ Rick Tumlinson, who argued the agency is in the middle of a paradigm shift). Below, we’ve collected some of the most interesting responses from Twitter.
Predicting climate change
Virginia’s Angela Gibson, who says in her profile that she has attended NASA Socials in the past, points to NASA’s ability to do scientific work to better understand climate change. She pointed to this animation of 2013’s warming trend as an example.
Scientific inquiry and the human spirit
As always, Bad Astronomy’s Phil Plait writes an eloquent essay talking about the benefits of NASA, which range from real-time observations of the Earth’s immediate environment to the longer-term goals of promoting scientific research.
NASA Socials
Frequent NASA Social attendee Charissa S. talks about the first NASA launch tweetup, STS-129, as a part of why NASA means so much to her. (Full disclosure: this article’s author also attended the tweetup as a reporter.)
The International Space Station will be getting its very own laser at the end of 2014. And unlike the planet-smashing capabilities of the Death Star of Star Wars fame, this laser will to be enlisted for the purpose of science.
It’s called CATS, and no, it isn’t the latest attempt to put feline astronauts in space. CATS stands for the Cloud Aerosol Transport System. The goal of CATS is to study the distribution of tiny particles of dust and air contaminants known as aerosols.
Developed by research scientist Matt McGill at NASA’s Goddard Space Flight Center in Greenbelt Maryland, CATS is slated to head to the International Space Station later this year on September 12th aboard SpaceX’s CRS-5 flight of the Dragon spacecraft. CATS will be installed on the Japanese Experiment Module-Exposed Facility (JEM-EF) and will demonstrate the utility of state-of-the-art multi-wavelength laser technology to study aerosol distribution and transport in the atmosphere.
Such knowledge is critical in understanding the path and circulation of aerosols and pollutants worldwide. When the Eyjafjallajökull volcano erupted in Iceland back in 2010, many trans-Atlantic flights were grounded as a precaution. These measures are necessary as several flights have suffered engine failures in the past due to encounters with volcanic ash clouds, such as the four engine failure of KLM Fight 867 in 1989 and the British Airways Flight 9 incident over Southeast Asia in 1982. Knowing where these dangerous ash clouds are is crucial to the safety of air travel.
To accomplish this, CATS will emit 5,000 1 milliJoule laser pulses a second at the 1064, 532 and 355 nanometer wavelengths. This represents a vast improvement in power requirements and thermal capabilities over a similar instrument currently in service aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Earth remote sensing spacecraft.
And it’s that third 355 nanometer wavelength that will make CATS stand out from CALIPSO. This will also allow researchers to differentiate between particle size and measure the horizontal and vertical distribution of aerosol particles in the atmosphere. CATS will also be capable of measuring the number of individual photons being reflected back at it, which will provide a much better resolution and understanding of current atmospheric activity.
“You get better data quality because you make fewer assumptions, and you get, presumably, a more accurate determination of what kind of particles you’re seeing in the atmosphere,” McGill said in a recent press release.
The International Space Station also provides a unique vantage point for CATS. In a highly inclined 51.7 degree orbit, the station passes over a good swath of the planet on 16 orbits daily on a westward moving ground track that repeats roughly every three days. This will assure CATS has coverage over a large percentage of the planet, including known pollutant transport routes across the northern Pacific and down from Canada over the U.S. Great Lakes region.
While the first two lasers will operate in the infrared and visual wavelengths, said third laser will work in the ultraviolet. And while this will give CATS an enhanced capability, engineers also worry that it may also be susceptible to contamination. “If you get contamination on any of your outgoing optics, they can self-destruct, and then your system is dead. You end up with a very limited instrument lifetime,” McGill said.
Still, if CATS is successful, it may pave the way for larger, free-flying versions that will monitor long-range atmospheric patterns and shifts in climate due to natural and man-made activity. And the ISS makes a good platform to test pathfinder missions like CATS at low cost. “In our current budget-constrained environment, we need to use what we already have, such as the [station], to do more with less,” McGill said.
The advent of a LiDAR system aboard the ISS has also generated a spirited discussion in the satellite tracking community concerning prospects for spotting CATS in operation from the ground. The CALIPSO LiDAR has been captured by ground spotters in the past. However, CALIPSO fires a much more powerful 110 milliJoule pulse at a rate of 20 times a second. Still, the lower power CATS system will be firing at a much faster rate, delivering a cumulative 5,000 milliJoules a second. CATS won’t be bright enough to show up on an illuminated pass of the ISS, but it just might be visible during darkened passes of the ISS through the Earth’s shadow. And, unlike CALLIPSO — which is part of the difficult to observe A-Train of Earth-observing satellites — the ISS passes in view of a majority of humanity. At very least, activity from CATS will be worth watching out for, and may well be seen either visually or photographically.
We’ll soon be adding CATS to the long list of outstanding science experiments being conducted aboard the International Space Station, and the sight of this “fully armed and operational battle station” may soon be coming to a dark sky site near you!
Credit: Inside Science News Service and Amanda Page
As the Beatles strummed the opening notes to “All My Loving” on the Ed Sullivan Show 50 years ago yesterday, few could have imagined how wide-ranging that music would be. The broadcast gave birth to a global music phenomenon. And like all TV broadcasts of the day, the music carried out into space at the speed of light.
The Inside Science infographic above (see below for the full version) traces the history of the Beatles in relation to how far the broadcast travelled in that time. While those waves were washing out, er, across the universe, the Beatles have been taking over human space exploration in other ways. Below the jump are seven of the more memorable moments.
Rocking The Space Station With ‘Back at the ISS’
Technically speaking, this isn’t the Beatles, but it sure was inspired by them. ‘Back at the ISS’ — the remake of ‘Back in the U.S.S.R.’ by Dutch band Love & Mersey — is about a billion shades of awesome. Not only because of the lyrics, not only because of the high-energy space-themed video, but also because they sang in three languages. The song was released in March 2012 as a “rocking musical greeting” to Andre Kuipers (a European Space Agency astronaut) and the rest of the Expedition 30 crew days before the docking of the Automated Transfer Vehicle Edoardo Amaldi that month.
The Beatles have been used to wake up several shuttle crews, and also the Curiosity rover. Explained Eric Blood, Curiosity’s surface systems engineer: “She tends to be less cranky with a good wakeup song.”
Playing (And Drinking?) English Tea In Space
Here’s Paul McCartney in 2005 casually playing two tunes to the Expedition 12 crew — NASA astronaut Bill McArthur and Russian cosmonaut Valery Tokarev — during a live concert. It’s a bit hard to tell who had bigger stars in their eyes after the experience. “I told the audience ‘I think I need about 20 minutes to go have a lie down,’ McCartney stated in a NASA release from the time. “What do you do after that? We haven’t stopped talking about it since.”
Roll Over Beethoven: How The Beatles Almost Made Voyager’s ‘Golden Record’
Remember when scientists announced last year that Voyager 1 entered interstellar space? On board the spacecraft was a Golden Record intended to give aliens a glimpse into what Earth’s life is like. Included were songs from artists ranging from Bach to Blind Willie Johnson, but not the Beatles. They were almost included, though, as astronomer Carl Sagan (who chaired the selection committee) explained in his 1978 book Murmers of Earth. “We wanted to send ‘Here Comes The Sun’ by the Beatles, and all four Beatles gave their approval. But the Beatles did not own the copyright, and the legal status of the piece seemed too murky to risk,” he wrote.
Joining Mr. Mercury’s Light
There are so many earthly memorials to John Lennon after the singer’s untimely death in 1980, but late last year he got an extraterrestrial honor. Lennon was among 10 names approved for craters on the planet Mercury. “It’s unlikely that Mercury’s surface is populated with tangerine trees and marmalade skies, but the famous British musician who coined that phrase now has a physical presence on the planet closest to the Sun,” NASA said.
Sending Love To The Aliens With Jai Guru Deva Om
February 4, 2008 marked the first time NASA beamed any song into deep space, and what better choice than “Across The Universe”? The date marked the 40th anniversary of when the Beatles recorded the song, and came around the same time as the 45th anniversary of NASA’s Deep Space Network and the 50th anniversary of NASA’s first satellite, Explorer 1, among other milestones. In a statement, McCartney asked to “send my love to the aliens.”
What Beatles milestones in space have we missed? Let us know in the comments.
About six years ago, the Canadarm — Canada’s iconic robotic arm used in space — was almost sold to a company in the United States, along with other space technology from MacDonald, Dettwiler and Associates. The Canadian government blocked the sale and swiftly came out with a promise: a space policy to better support Canada’s industry.
That promise was made in September 2008. “Time is of the essence,” then-Industry Minister Jim Prentice told reporters upon announcing a space policy would be created. Today, 65 months later, the government released the high-level framework of that policy. Astronauts, telescopes and yes, the Canadarm are all prominently mentioned in there.
A lot has happened in six years. Policy-makers used to cite successor Canadarm2’s role in space station construction. Now the arm also does things that were barely imaginable in 2008 — namely, berthing commercial spacecraft such as SpaceX’s Dragon at the International Space Station. It shows how quickly space technology can change in half a decade.
At 13 pages, there isn’t a lot of information in Canada’s framework yet to talk about, but there are some statements about government priorities. Keep the astronaut program going (which is great news after the success of Chris Hadfield). A heavy emphasis on private sector collaboration. And a promise to keep funding Canada’s contribution to the James Webb Space Telescope, NASA’s next large observatory in space.
These are the Top 5 priorities listed in the plan:
Canada First: Serving Canada’s interests of “sovereignty, security and prosperity.” As an example: The country has a huge land-mass that is sparsely populated, so satellites are regularly used to see what ship and other activity is going on in the territories. This is a big reason why the Radarsat Constellation of satellites is launching in 2018.
Working together globally: Canada has a tiny space budget ($488.7 million in 2013-14, $435.2 million in 2014-15 and $382.9 million in 2015-16), so it relies on other countries to get its payloads, astronauts and satellites into space. This section also refers to Canada’s commitment to the International Space Station, which (as with other nations) extends to at least 2024. That’s good news for astronauts Jeremy Hansen and David Saint-Jacques, who are waiting for their first trip there.
Promoting Canadian innovation: The James Webb Telescope (to which Canada is contributing optics and a guidance system) is specifically cited here along with the Canadarm. Priority areas are Canada’s historic strengths of robotics, optics, satellite communications, and space-based radar, as well as “areas of emerging expertise.”
Inspiring Canadians: Basically a statement saying that the government will “recruit, and retain highly qualified personnel,” which in more real terms means that it will need to keep supporting Canadian space companies financially through contracts, for example, to make this happen.
That last point in particular seemed to resonate with at least one industry group.
“A long-term strategic plan for Canada’s space program is critical for our industry. In order to effectively invest in innovation, technology and product development, we rely heavily on knowing what the government’s priorities for the space program are,” stated Jim Quick, president of the Aerospace Industries Association of Canada (a major group that represents the interests of private space companies.)
While we wait for more details to come out, here’s some valuable background reading. The space-based volume of the Emerson Report (the findings of a government-appointed aerospace review board listed in 2012) called for more money for and more stable funding of the Canadian Space Agency, among other recommendations.
And here’s the government’s point-by-point response in late 2013. In response to funding: “The CSA’s total funding will remain unchanged and at current levels. The government will also leverage existing programs to better support the space industry.” Additionally, the CSA’s space technologies development program will be doubled to $20 million annually by 2015-16, which is still below the Emerson report’s recommendation of adding $10 million for each of the next three years.
What are your thoughts on the policy? Let us know in the comments.