Stunning View of Earth and Orbital Sunset from the Space Station

An orbital sunset puts Earth in a unique light, as seen from the International Space Station. Credit: NASA, via astronaut Karen Nyberg.

This is just a gorgeous shot of our home planet from the International Space Station, shared by astronaut Karen Nyberg via Twitter. While many pictures of Earth from space show a bright view of our planet, this view of the world plunging into darkness provides a unique, not-often-seen view. If a picture can be this beautiful, imagine what must look like in person.

Nyberg is sharing her experiences via Twitter and also — I believe she is the first astronaut sharing on Pinterest. She describes herself as “Aspiring quilter, crafter, artist” (perfect for the Pinterest crowd) in addition to being an astronaut by day, and said she hopes to do some crafting in space if she has any spare time. Nyberg has a special board for “Hair in Space” (which includes both bald pates and gravity defying hair,) hoping to inspire the younger generation of women to get interested in space exploration. “When girls see pictures of ponytails, don’t you think it stirs something inside them that says, that could be ME up there!” Nyberg writes.

Human Voyages to Mars Pose Higher Cancer Risks

NASA astronauts exploring Mars on future missions starting perhaps in the 2030’s will require protection from long term exposure to the cancer causing space radiation environment. Credit: NASA.

New measurements of the energetic space radiation environment present in interplanetary space taken by NASA’s Curiosity rover confirm what has long been suspected – that lengthy years long voyages by astronauts to deep space destinations like Mars will expose the crews to high levels of radiation that – left unchecked – would be harmful to their health and increase their chances of developing fatal cancers.

Although the data confirm what scientists had suspected, it’s equally important to state that the space radiation data are not ‘show stoppers” for human deep space voyages to the Red Planet and other destinations because there are a multitude of counter measures- like increased shielding and more powerful propulsion – that NASA and the world’s space agencies can and must implement to reduce and mitigate the dangerous health effects of radiation on human travelers.

The new radiation data was released at a NASA media briefing on May 30 and published in the journal Science on May 31.

Indeed the new measurements collected by Curiosity’s Radiation Assessment Detector (RAD) instrument during her 253-day, 560-million- kilometer journey enroute to the Red Planet in 2011 and 2012 will provide important insights to allow NASA to start designing systems for safely conducting future human missions to Mars.

NASA wants to send astronauts to Mars in the 2030’s,” Chris Moore, NASA’s deputy director of Advanced Exploration Systems NASA HQ, said to reporters at the media briefing.

“The Human Spaceflight and Planetary Science Divisions at NASA are working together to get the data needed for human astronauts. RAD is perfect to collect the data for that,” said Moore.

The RAD data indicate that astronauts would be exposed to radiation levels that would exceed the career limit levels set by NASA during a more than year long voyage to Mars and back using current propulsion systems, said Eddie Semones, spaceflight radiation health officer at the Johnson Space Center.

This graph compares the radiation dose equivalent for several types of experiences, including a calculation for a trip from Earth to Mars based on measurements made by the Radiation Assessment Detector (RAD) instrument shielded inside NASA's Mars Science Laboratory spacecraft during the flight from Earth to Mars in 2011 and 2012.  The data show that during a typical 6 month cruise to Mars the astronaut crews would be exposed to more than 3 times the typical 6 month exposure of astronauts aboard the ISS.  The scale is logarithmic; each labeled value is 10 times greater than the next lowest one. The "dose equivalent" units are millisieverts. Credit: NASA/JPL-Caltech/SwRI
This graph compares the radiation dose equivalent for several types of experiences, including a calculation for a trip from Earth to Mars based on measurements made by the Radiation Assessment Detector (RAD) instrument shielded inside NASA’s Mars Science Laboratory spacecraft during the flight from Earth to Mars in 2011 and 2012. The data show that during a typical 6 month cruise to Mars the astronaut crews would be exposed to more than 3 times the typical 6 month exposure of astronauts aboard the ISS. The scale is logarithmic; each labeled value is 10 times greater than the next lowest one. The “dose equivalent” units are millisieverts. Credit: NASA/JPL-Caltech/SwRI

NASA’s Humans to Mars planning follows initiatives outlined by President Obama.

“As this nation strives to reach an asteroid and Mars in our lifetimes, we’re working to solve every puzzle nature poses to keep astronauts safe so they can explore the unknown and return home,” said William Gerstenmaier, NASA’s associate administrator for human exploration and operations in Washington, in a statement.

The International Space Station already in low Earth orbit and the Orion crew capsule under development will serve as very useful platforms to conduct real life experiments on resolving the health risks posed by long term exposure to space radiation.

“We learn more about the human body’s ability to adapt to space every day aboard the International Space Station, said Gerstenmaier. “As we build the Orion spacecraft and Space Launch System rocket to carry and shelter us in deep space, we’ll continue to make the advances we need in life sciences to reduce risks for our explorers. Curiosity’s RAD instrument is giving us critical data we need so that we humans, like the rover, can dare mighty things to reach the Red Planet.”

RAD was the first instrument to collect radiation measurements during the cruise phase to the Red Planet. It is mounted on the top deck of the Curiosity rover.

“Although RAD’s objective is to characterize the radiation environment on the surface of Mars, it’s also good for the cruise phase,” Don Hassler, RAD Principal Investigator at the Southwest Research Institute (SWRI) told reporters.

“Since Orion and MSL are similar sized RAD is ideal for collecting the data.”

Mars Cruise Vehicles. This graphic shows a comparison of NASA's Mars Science Laboratory (MSL) cruise capsule and NASA's Orion spacecraft, which is being built now at NASA's Johnson Space Center and will one day send astronauts to Mars. The rover Curiosity is tucked inside of the Mars Science Laboratory cruise vehicle like human beings would be tucked inside Orion.  MSL are Orion are similar in size.  Credit: NASA/JPL-Caltech/JSC
Mars Cruise Vehicles. This graphic shows a comparison of NASA’s Mars Science Laboratory (MSL) cruise capsule and NASA’s Orion spacecraft, which is being built now at NASA’s Johnson Space Center and will one day send astronauts to Mars. The rover Curiosity is tucked inside of the Mars Science Laboratory cruise vehicle like human beings would be tucked inside Orion. MSL are Orion are similar in size. Credit: NASA/JPL-Caltech/JSC

Hassler explained that RAD measures two types of radiation that pose health risks to astronauts. First, the steady stream of low dose galactic cosmic rays (GCRs), and second the short-term and unpredictable exposures to solar energetic particles (SEPs) arising from solar flares and coronal mass ejections (CME’s).

Radiation exposure is known to increase a person’s risk of suffering fatal cancer.

Exposure is measured in units of Sievert (Sv) or milliSievert (one one-thousandth Sv). Being exposed to a dose of 1 Sievert (Sv) over time results in a five percent increased risk of developing cancer.

NASA’s current regulations limit the potential for increased cancer risk to 3 percent for astronauts currently working on the ISS in low-Earth orbit.

RAD determined that the Curiosity rover was exposed to an average of 1.8 milliSieverts per day during the 8.5 month cruise to Mars, due mostly to Galactic Cosmic Rays, said Cary Zeitlin, SWRI Principal Scientist for MSL,at the briefing. “Solar particles only accounted for about 3 to 5 percent of that.”

During a typical 6 month cruise to Mars the astronaut crews would be exposed to 330 millisieverts. That is more than 3 times the typical 6 month exposure of astronauts aboard the ISS which amounts to about 100 millisieverts. See graphic above.

“The 360 day interplanetary round trip exposure would be 660 millisieverts based on chemical propulsion methods,” Zeitlin told Universe Today. “A 500 day mission would increase that to 900 millisieverts.”

By comparison, the average annual exposure for a typical person in the US from all radiation sources is less than 10 millisieverts.

The Earth’s magnetic field provides partial radiation shielding for the ISS astronauts living in low-Earth orbit.

“In terms of accumulated dose, it’s like getting a whole-body CT scan once every five or six days,” says Zeitlin.

And that round trip dose of 660 millisieverts doesn’t even include the astronauts surface stay on Mars – which would significantly raise the total exposure count. But luckily for the crew the surface radiation is less.

“The radiation environment on the surface of Mars is about half that in deep space since its modified by the atmosphere,” Hassler told Universe Today. “We will publish the surface data in a few months.”

NASA will need to decide whether to reassess the acceptable career limits for astronauts exposure to radiation from galactic cosmic rays and solar particle events during long duration deep space journeys.

Panoramic view of Yellowknife Bay basin back dropped by Mount Sharp shows the location of the first two drill sites – John Klein & Cumberland – targeted by NASA’s Curiosity Mars rover and the RAD radiation detector which took the first deep space measurements of harmful space radiation during the cruise phase to Mars in 2011 and 2012 . Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182) near where the robotic arm is touching the surface. This week the rover scooted about 9 feet to the right to Cumberland (right of center) for 2nd drill campaign on May 19, 2013 (Sol 279). Credit: NASA/JPL-Caltech/Ken Kremer – kenkremer.com/Marco Di Lorenzo

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations

June 4: “Send your Name to Mars on MAVEN” and “CIBER Astro Sat, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars on MAVEN” and “LADEE Lunar & Antares Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Sources of Ionizing Radiation in Interplanetary Space. The Radiation Assessment Detector (RAD) on NASA's Curiosity Mars rover monitors high-energy atomic and subatomic particles coming from the sun, distant supernovae and other sources. The two types of radiation are known as Galactic Cosmic Rays and Solar Energetic Particles. RAD measured the flux of this energetic-particle radiation while shielded inside the Mars Science Laboratory spacecraft on the flight delivering Curiosity from Earth to Mars, and continues to monitor the flux on the surface of Mars. Credit: NASA/JPL-Caltech/SwRI
Sources of Ionizing Radiation in Interplanetary Space. The Radiation Assessment Detector (RAD) on NASA’s Curiosity Mars rover monitors high-energy atomic and subatomic particles coming from the sun, distant supernovae and other sources. The two types of radiation are known as Galactic Cosmic Rays and Solar Energetic Particles. RAD measured the flux of this energetic-particle radiation while shielded inside the Mars Science Laboratory spacecraft on the flight delivering Curiosity from Earth to Mars, and continues to monitor the flux on the surface of Mars. Credit: NASA/JPL-Caltech/SwRI

Boeing Commercial Space Taxi and Atlas V Launcher Move Closer to Blastoff

Shown is the integrated CST-100 crew capsule and Atlas V launcher model at NASA's Ames Research Center. The model is a 7 percent model of the Boeing CST-100 spacecraft, launch vehicle adaptor and launch vehicle. Credit: Boeing

The next time that American astronauts launch to space from American soil it will surely be aboard one of the new commercially built “space taxis” currently under development by a trio of American aerospace firms – Boeing, SpaceX and Sierra Nevada Corp – enabled by seed money from NASA’s Commercial Crew Program (CCP).

Boeing has moved considerably closer towards regaining America’s lost capability to launch humans to space when the firm’s privately built CST-100 crew capsule achieved two key new milestones on the path to blastoff from Florida’s Space Coast.

The CST-100 capsule is designed to carry a crew of up to 7 astronauts on missions to low-Earth orbit (LEO) and the International Space Station (ISS) around the middle of this decade.

Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing

Boeing’s crew transporter will fly to space atop the venerable Atlas V rocket built by United Launch Alliance (ULA) from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The Boeing and ULA teams recently completed the first wind tunnel tests of a 7 percent scale model of the integrated capsule and Atlas V rocket (photo above) as well as thrust tests of the modified Centaur upper stage.

The work is being done under the auspices of NASA’s Commercial Crew Integrated Capability (CCiCap) initiative, intended to make commercial human spaceflight services available for both US government and commercial customers, such as the proposed Bigelow Aerospace mini space station.

Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com

Since its maiden liftoff in 2002, the ULA Atlas V rocket has flawlessly launched numerous multi-billion dollar NASA planetary science missions like the Curiosity Mars rover, Juno Jupiter orbiter and New Horizons mission to Pluto as well as a plethora of top secret Air Force spy satellites.

But the two stage Atlas V has never before been used to launch humans to space – therefore necessitating rigorous testing and upgrades to qualify the entire vehicle and both stages to meet stringent human rating requirements.

“The Centaur has a long and storied past of launching the agency’s most successful spacecraft to other worlds,” said Ed Mango, NASA’s CCP manager at the agency’s Kennedy Space Center in Florida. “Because it has never been used for human spaceflight before, these tests are critical to ensuring a smooth and safe performance for the crew members who will be riding atop the human-rated Atlas V.”

The combined scale model CST-100 capsule and complete Atlas V rocket were evaluated for two months of testing this spring inside an 11- foot diameter transonic wind tunnel at NASA’s Ames Research Center in Moffett Field, Calif.

“The CST-100 and Atlas V, connected with the launch vehicle adaptor, performed exactly as expected and confirmed our expectations of how they will perform together in flight,” said John Mulholland, Boeing vice president and program manager for Commercial Programs.

Testing of the Centaur stage centered on characterizing the flow of liquid oxygen from the oxygen tank through the liquid oxygen-feed duct line into the pair of RL-10 engines where the propellant is mixed with liquid hydrogen and burned to create thrust to propel the CST-100 into orbit.

Boeing is aiming for an initial three day manned orbital test flight of the CST-100 during 2016, says Mulholland.

Artist's concept shows Boeing's CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing
Artist’s concept shows Boeing’s CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing

But that date is dependent on funding from NASA and could easily be delayed by the ongoing sequester which has slashed NASA’s and all Federal budgets.

Chris Ferguson, the commander of the final shuttle flight (STS-135) by Atlantis, is leading Boeing’s flight test effort.

Boeing has leased one of NASA’s Orbiter Processing Facility hangers (OPF-3) at the Kennedy Space Center (KSC) for the manufacturing and assembly of its CST-100 spacecraft.

Mulholland told me previously that Boeing will ‘cut metal’ soon. “Our first piece of flight design hardware will be delivered to KSC and OPF-3 around mid 2013.”

NASA’s CCP program is fostering the development of the CST-100 as well as the SpaceX Dragon and Sierra Nevada Dream Chaser to replace the crew capability of NASA’s space shuttle orbiters.

The Atlas V will also serve as the launcher for the Sierra Nevada Dream Chaser space taxi.

Since the forced retirement of NASA’s shuttle fleet in 2011, US and partner astronauts have been 100% reliant on the Russians to hitch a ride to the ISS aboard the Soyuz capsules – at a price tag exceeding $60 Million per seat.

Simultaneously on a parallel track NASA is developing the Orion crew capsule and SLS heavy lift booster to send humans to the Moon and deep space destinations including Asteroids and Mars.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

NASA’s Curiosity Mars Science Laboratory  (MSL) rover blasts off for Mars atop a stunningly beautiful Atlas V  rocket on Nov. 26, 2011 at 10:02 a.m. EST from Cape Canaveral, Florida.   United Launch Alliance (ULA) is now upgrading the Atlas V to launch humans aboard the Boeing CST-100 and Sierra Nevada Dream Chaser space taxis. Credit: Ken Kremer - kenkremer.com
NASA’s Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop a stunningly beautiful Atlas V rocket on Nov. 26, 2011 at 10:02 a.m. EST from Cape Canaveral, Florida. United Launch Alliance (ULA) is now upgrading the Atlas V to launch humans aboard the Boeing CST-100 and Sierra Nevada Dream Chaser space taxis. Credit: Ken Kremer – kenkremer.com
The CST-100 spacecraft awaits liftoff aboard an Atlas V launch vehicle in this artist's concept. Credit: Boeing
The CST-100 spacecraft awaits liftoff aboard an Atlas V launch vehicle in this artist’s concept. Credit: Boeing

NASA’s Particle-Hunting ISS-CREAM Will Be Anything But Vanilla

The CREAM instrument prior to launch aboard a long-duration balloon. (NASA)

Balloon-based research on cosmic particles that began over a century ago will get a big boost next year — all the way up to low-Earth orbit, when NASA’s Cosmic Ray Energetics and Mass (CREAM) will be sent to the Space Station thus becoming (are you ready for this?) ISS-CREAM, specifically designed to detect super-high-energy cosmic rays and help scientists determine what their mysterious source(s) may be.

“The answer is one the world’s been waiting on for 100 years,” said program scientist Vernon Jones.

Read more about this “cool” experiment below:

Cosmic Ray Energetics and Mass (CREAM) will be the first cosmic ray instrument designed to detect at such higher energy ranges, and over such an extended duration in space. Scientists hope to discover whether cosmic rays are accelerated by a single cause, which is believed to be supernovae. The new research also could determine why there are fewer cosmic rays detected at very high energies than are theorized to exist.

“Cosmic rays are energetic particles from outer space,” said Eun-Suk Seo, principal investigator for the CREAM study. “They provide a direct sample of matter from outside the solar system. Measurements have shown that these particles can have energies as high as 100,000 trillion electron volts. This is an enormous energy, far beyond and above any energy that can be generated with manmade accelerators, even the Large Hadron Collider at CERN.”

Researchers also plan to study the decline in cosmic ray detection, called the spectral “knee” that occurs at about a thousand trillion electron-volts (eV), which is about 2 billion times more powerful than the emissions in a medical nuclear imaging scan. Whatever causes cosmic rays, or filters them as they move through the galaxy, takes a bite out of the population from 1,000 trillion electron-volts upwards. Further, the spectrum for cosmic rays extends much farther beyond what supernovas are believed to be able to produce.

A long-duration balloon carrying CREAM prepares to launch from a location near McMurdo Station (NASA)
A long-duration balloon carrying CREAM prepares to launch from a location near McMurdo Station (NASA)

To tackle these questions, NASA plans to place CREAM aboard the space station, becoming ISS-CREAM. The instrument has flown six times for a total of 161 days on long-duration balloons circling the South Pole, where Earth’s magnetic field lines are essentially vertical.

The idea of energetic particles coming from space was unknown in 1911 when Victor Hess, the 1936 Nobel laureate in physics credited for the discovery of cosmic rays, took to the air to tackle the mystery of why materials became more electrified with altitude, an effect called ionization. The expectation was that the ionization would weaken as one got farther from Earth. Hess developed sensitive instruments and took them as high as 3.3 miles (5.3 kilometers) and he established that ionization increased up to fourfold with altitude, day or night.

A better understanding of cosmic rays will help scientists finish the work started when Hess unexpectedly turned an earthly question into a stellar riddle. Answering that riddle will help us understand a hidden, fundamental facet of how our galaxy, and perhaps the universe, is built and works.

The phenomenon soon gained a popular but confusing name, cosmic rays, from a mistaken theory that they were X-rays or gamma rays, which are electromagnetic radiation, like light. Instead, cosmic rays are high-speed, high-energy particles of matter.

As particles, cosmic rays cannot be focused like light in a telescope. Instead, researchers detect cosmic rays by the light and electrical charges produced when the particles slam into matter. The scientists then use detective work to identify the original particle by direct measurement of its electric charge and its energy determination from the avalanche of debris particles creating their own overlapping trails.

CREAM schematic

CREAM does this trace work using an ionization calorimeter designed to make cosmic rays shed their energies. Layers of carbon, tungsten and other materials present well-known nuclear “cross sections” within the stack. Electrical and optical detectors measure the intensity of events as cosmic particles, from hydrogen to iron, crash through the instrument.

Even though CREAM balloon flights reached high altitudes, enough atmosphere remained above to interfere with measurements. The plan to mount the instrument to the exterior of the space station will place it above the obscuring effects of the atmosphere, at an altitude of 250 miles (400 kilometers).

“On what can we now place our hopes of solving the many riddles which still exist as to the origin and composition of cosmic rays?”

– Victor F. Hess, Nobel Lecture, Dec. 1936

Read more here on the NASA article by Dave Dooling of the International Space Station Program Science Office.

Source: NASA

How to Make Your New Space Roomate Feel at Home: Shave Your Head

Italian astronaut Luca Parmitano, right, reacts to NASA astronaut Chris Cassidy's shaved head, a welcome present for the bald Parmitano. Via NASA TV.

International Space Station astronaut Chris Cassidy surprised the new crew arriving at the station earlier today, welcoming them aboard with a new look: he shaved his head to match his new crewmate, Luca Parmitano, who always sports a bald noggin. You can watch the video below to see Parmitano’s reaction.

During a televised video conference with family after the crew came aboard, Parmitano said Cassidy looked awesome.

Parmitano, Russian Fyodor Yurchikhin, and NASA’s Karen Nyberg docked their Soyuz to the station’s Rassvet module at 02:16 UTC on May 29 (10:16 p.m. EDT on May 28).

During the video conference, Nyberg’s husband and fellow astronaut Doug Hurley said the crew looked good, but “there are way too many bald guys on space station right now. Have a great time up there.”

Now with a full crew compliment of six, Expedition 36 will operate full throttle the next five and a half months, and perform up to six spacewalks, and welcome four cargo ships, including the exciting maiden visit of the Cygnus commercial cargo craft built by Orbital Sciences Corporation (tentatively scheduled for sometime in June), as well as ESA’s “Albert Einstein” Automated Transfer Vehicle-4 in June, a Russian Progress cargo craft in July and the Japan Aerospace Exploration Agency’s H-II Transfer Vehicle-4 in August.

Five of the spacewalks will prepare for the installation of the Russian Multipurpose Laboratory Module in December, and a spacewalk scheduled for November 9, 2013 will bring an Olympic torch outside the ISS.

Among the scientific research the crew has on tap are the Hip Quantitative Computed Tomography (QCT) experiment, which will evaluate countermeasures to prevent the loss of bone density seen during long-duration space missions. The experiment, which uses 3-D analysis to collect detailed information on the quality of astronauts’ hip bones, also will increase understanding of osteoporosis on Earth.

The station’s crew will continue research into how plants grow, leading to more efficient crops on Earth and improving understanding of how future crews could grow their own food in space. The crew also will test a new portable gas monitor designed to help analyze the environment inside the spacecraft and continue fuel and combustion experiments that past crews have undertaken. Studying how fire behaves in space will have a direct impact on future spaceflight and could lead to cleaner, more efficient combustion engines on Earth.

The trio of Cassidy, Pavel Vinogradov and Alexander Misurkin will return to Earth aboard their Soyuz TMA-08M spacecraft in September. Their departure will mark the beginning of Expedition 37 under the command of Yurchikhin, who along with crewmates Nyberg and Parmitano will maintain the station as a three-person crew until the arrival of three additional flight engineers in late September. Yurchikhin, Nyberg and Parmitano are scheduled to return to Earth in November.

Soyuz Crew Sets Record for Fastest Trip to Space Station

Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.

The crew of Expedition 36 aboard the Soyuz TMA-09M set a record for the fastest trip ever to the International Space Station. From launch to docking, the trip took 5 hours and 39 minutes. That’s six minutes faster than the previous Soyuz that used the new “fast track” four-orbit rendezvous.

Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), NASA astronaut Karen Nyberg and European Space Agency (ESA) astronaut Luca Parmitano docked their Soyuz to the station’s Rassvet module at 02:16 UTC on May 29 (10:16 p.m. EDT on May 28).

“Thank you for the best spacecraft, finer than the best pocket watch!” Yurchikhin radioed to Mission Control in Moscow after docking.

Docking and hatch opening videos below:

Launch took place at 20:31 UTC (4:31 p.m. EDT) Tuesday (2:31 a.m. May 29, Baikonur time).

The new abbreviated rendezvous with the ISS uses a modified launch and docking profile for the Russian ships. It has been tried successfully with three Progress resupply vehicles, and this is the second Soyuz crew ship that has used it.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

After the hatches open at 11:55 p.m. EDT, the new trio will join Flight Engineer Chris Cassidy of NASA and Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin of Roscosmos who have been on board since March 28. All six crew members will then participate in a welcome ceremony with family members and mission officials gathered at the Russian Mission Control Center in Korolev near Moscow.

Watch Live: Soyuz Fast-Track Launch to the Space Station

Expedition 36/37 Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), top, Flight Engineers: Luca Parmitano of the European Space Agency, center, and Karen Nyberg of NASA, bottom, wave farewell as they board the Soyuz rocket ahead of their launch to the International Space Station, Wednesday, May 29, 2013, Baikonur, Kazakhstan. Credit: NASA/Bill Ingalls.

Three new International Space Station crew members are set to launch aboard the Soyuz TMA-09M spacecraft from the Baikonur Cosmodrome in Kazakhstan. Launch is scheduled for is 20:31 UTC (4:31 p.m. EDT) Tuesday (2:31 a.m. May 29, Baikonur time). The new Expedition 36 crew will take an accelerated four-orbit, 6-hour journey to Space Station. They will be docking at 02:17 UTC on May 29 (10:17 pm. EDT May 28). You can watch Live NASA TV coverage below, which begins an hour before launch (19:30 UTC, 3:30 p.m. EDT), and live coverage will return about 45 minutes before docking.

The new crew includes Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), NASA astronaut Karen Nyberg and European Space Agency (ESA) astronaut Luca Parmitano.
UPDATE: If you missed the launch live, you can watch a replay, below.



Live Video streaming by Ustream

The crew will dock their Soyuz to the station’s Rassvet module. After the hatches open, the new trio will join Flight Engineer Chris Cassidy of NASA and Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin of Roscosmos who docked with the orbital complex May 28. All six crew members will then participate in a welcome ceremony with family members and mission officials gathered at the Russian Mission Control Center in Korolev near Moscow.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

This is the second Soyuz crew vehicle to make the accelerated trip, and three Progress resupply ships have also taken the fast track to the ISS.

The Service arms are raised into position around the Soyuz rocket, with the TMA-09M spacecraft, after arriving at the Baikonur Cosmodrome launch pad by train, Sunday, May 26, 2013, in Kazakhstan. Credit: NASA/Bill Ingalls.
The Service arms are raised into position around the Soyuz rocket, with the TMA-09M spacecraft, after arriving at the Baikonur Cosmodrome launch pad by train, Sunday, May 26, 2013, in Kazakhstan. Credit: NASA/Bill Ingalls.

You can see more images from the Expedition 36 launch and pre-launch activities at NASA HQ’s Flickr page.

Hanging Out with Astronauts

The International Space Station. Credit: NASA

On May 23, NASA hosted a Google+ Hangout from the Johnson Space Center with three recently returned International Space Station Astronauts. NASA astronauts Kevin Ford, Tom Marshburn and Canadian Space Agency astronaut Chris Hadfield answered questions about daily living in a weightless environment, all the scientific research they did, the spacewalk conducted by Marshburn, how they hope they helped the people of Earth “fall in love with their planet,” and what it is like to return back to Earth after 5-6 months in space.

Below are two more astronaut videos. The first is a post landing interview with the very popular Chris Hadfield, and the second is a video with several ESA astronauts — including Italian astronaut Luca Parmitano who is heading for the ISS next week — talking about living and working in space.

Loading…


How to See the International Space Station

How to See the International Space Station
How to See the International Space Station

The International Space Station is one of the most complicated machines ever built and the largest object ever assembled in space.

At any time there are up to six astronauts on board, each originating from one of fifteen different nations on Earth. It orbits at an altitude of approximately four-hundred kilometers, and completes an orbit around the Earth every ninety-two minutes and fifty seconds. The station has a mass of four-hundred-and-twenty metric tonnes, and contains a dozen pressurized modules, and many more unpressurized modules, trusses and solar panels.

It truly is a feat of human ingenuity.

But did you know that the International Space Station is one of the brightest objects in the night sky? And it’s easy to see if you know when, and where, to look.

In fact, with your ability to find the station you can amaze your friends and neighbours.

NASA's Spot the Station Website
NASA’s Spot the Station Website
The best place to start is NASA’s Spot the Station website. Enter your Country, Region, City along with an email address or mobile phone number. Then give your preference for notifications in the evening, morning or both and that’s it.

About twelve hours before the station is due to fly overhead, you’ll get a notification from NASA. Depending on your location, you might get notified a couple of times a week, or as rarely as once a month. As soon as you get the notification, create an alarm on your phone for about a minute before the flyover.

When the alarm goes off, take your friends outside and look to the West.

Station's path across the sky
Station’s path across the sky
The station orbits the Earth from West to East, so you’ll see it appear on the Western horizon as a very bright star, moving rapidly across the sky. It will take only few minutes to cross the entire sky.

The station moves so quickly if you’re using a telescope you will have a tough time tracking its movement. A nice pair of binoculars will make it look a lot brighter, and even let you see the H-shape of its solar panels. But even viewing it with the naked eye is a great experience.

NASA’s website is just one of the many ways you can get notifications.

@twisst
@twisst
If you use Twitter, follow @twisst. They can figure out your location and then send you a notification when the station is about to fly overhead via Twitter.

There are also dozens of Android and iPhone apps that will perform this function; many of which are free to use.

If you’ve never seen the station, head on over to NASA and set up a notification right away.

Then kick back and let orbital mechanics bring the station to your backyard at a time that’s convenient for you.

Want more details? We’ve got a detailed guide on how to View the International Space Station for Beginners, and How to Photograph the International Space Station.

Awesome View of the Active Pavlov Volcano, as Seen from the Space Station

The Pavlof Volcano in Alaska on May 18, 2013. The oblique perspective from the ISS reveals the three dimensional structure of the ash plume, which is often obscured by the top-down view of most remote sensing satellites. Credit: NASA

The Pavlof Volcano began erupting on May 13, 2013, shooting lava into the air and spewing an ash cloud 20,000 feet (6,000 meters) high. This image from the International Space Station was taken on May 18, and provides a unique oblique (sideways) glance at the action. When the photograph was taken, the space station was about 475 miles south-southeast of the volcano (49.1° North latitude, 157.4° West longitude). The volcanic plume extended southeastward over the North Pacific Ocean.

NASA says the oblique perspective reveals the three dimensional structure of the ash plume, which is usually not visible from the top-down views of most remote sensing satellites.

If the volcano keeps erupting and spewing ash at those heights, it could interfere with airline traffic. Pavlov is one of the most frequently erupting volcanoes in the Aleutian arc. It last erupted in August of 2007; it previously had not been active since 1996.

There’s more information — and an impressive set of ground-based images — on the Pavlov Volcano at the Alaska Volcano Observatory website, and here’s a helicopter video of the eruption:

There are also a few more ISS images of the volcano at the NASA Earth Observatory website.