Why An Astronaut Asked 15 Year Old Abby to Help Get The Word Out

Expedition 36/37 flight engineer Luca Parmitano will -- in an unprecedented move -- send updates from space through a Minnesota teenager. Credit: NASA/Lauren Harnett

It seems an unlikely scenario: a teenager from Minnesota helping Italy’s next astronaut talk to the public about spaceflight. But for Luca Parmitano, who has mentored Abigail “Abby” Harrison for two years, it’s a way to reach out to a young audience. For Abby, it brings her closer to her dream of becoming an astronaut herself.

Parmitano does have the official outreach team available through the Italian Space Agency (which is part of the European Space Agency) and NASA, he acknowledged. Official mission reports will proceed as usual through those agencies’ press releases and social media accounts.

He’s pursuing this partnership with Abby, however, to have an additional “channel” targeted directly at children and teenagers, Parmitano told Universe Today:

It’s very simple. I thought one of the most important things that I can do in my job is talking to young people, youngsters, and try to inspire them try to guide them towards choosing a career path that goes towards science, technology, exploration of all sorts.

My message is to try to find something that you like, and to pursue it, and don’t wait for things to happe, but make it happen yourself. At one point, talking to Abby — this fantastic young girl who is so enthusiastic — I thought maybe she would be much better at communicating with kids than I could. I’m 36 years old. Maybe I don’t realize it, but I may be disconnected from the age group.

Parmitano is no social media pushover himself, though. The first-time flyer has a “landing page” website at LucaParmitano.com giving one-stop shopping for his Twitter, Facebook and Google pages. And just last week, he did a Google+ hangout with his protégé. (You can watch the whole thing below.)

Abby, at the tender age of 15, has amassed qualifications of her own. The Minnesota teenager is a Space Camp alumnus. She’s planning to learn Russian — an important language for the space program — and is already taking lessons in Mandarin. Her Twitter account has about 6,500 followers. And she’s raising money on Rockethub to see Parmitano’s launch in Kazakhstan next month and do outreach afterwards. With 19 days left, Abby’s approaching half of her $35,000 goal.

The aspiring Mars astronaut has a huge list of activities planned during Parmitano’s mission. She’ll share daily updates from the astronaut on her blog (AstronautAbby.com) and various social media profiles. She proposes an “Ask Luca” series where readers will be able to send questions to the Italian astronaut.

There also will be articles to write, Skype classroom chats to do, and a conference tour — including the International Mars Society Convention in August. Besides the social media updates, Abby is in the midst of booking appearances at conferences and scheduling chats with classrooms. There are more than 20 schools who have signed up for her to be a speaker, either in-person or by Skype.

“That is great, because I won’t be able to be there,” Parmitano said with a laugh.

It was two chance connections that brought him together with Abby. In 2011, Abby and her mother flew to Florida to see the penultimate launch of the space shuttle, mission STS-134. Abby’s mother, Nicole, briefly talked to Parmitano at a tweetup. Then Abby herself met Parmitano at the airport while waiting for the flight home.

Abigail Harrison, who calls herself "Astronaut Abby", will give updates from Luca Parmitano's mission. Credit: Abigail Harrison/Nicole Harrison
Abigail Harrison, who calls herself “Astronaut Abby”, will give updates from Luca Parmitano’s mission. Credit: Abigail Harrison/Nicole Harrison

The teenager and astronaut, who both had space dreams from young childhood, made a professional connection. Parmitano agreed to be Abby’s mentor. The two kept in touch in the years following, then Abby proposed her outreach program to compliment ESA’s activities.

“The main difference [over ESA’s outreach] is when it’s my program, it’s kid to kid. I’m trying to show that by working hard, you can do great things, and I’m an example of that,” Harrison said. “As an aspiring astronaut, you can meet amazing people and have amazing experiences.”

As a rookie, Parmitano said he is looking forward to the experiences his first spaceflight will bring, no matter who is watching. He joked that Italy does not really pay attention to him as an astronaut — the media flock to Samantha Cristoforetti, Italy’s first female astronaut, who is expected to reach station on Expedition 42/43.

“From Day 1, since we were selected, every news magazine went crazy for the female astronaut — and by the way, there’s another guy. I started introducing myself as ‘the other guy.’ ”

But the mission is still a notable one for Italy. Parmitano is the first assigned to a flight from the European Space Agency’s latest class of six astronauts, who call themselves The Shenanigans. The Italian Space Agency got this chance due to a substantial hardware contribution to the station program: a modified multipurpose logistics module (Leonardo) that was adapted for use as a laboratory on station. It and two other MPLMs (Raffaello and Donatello) ferried cargo on shuttle flights to use on station, too.

Parmitano will perform the first Italian spacewalk — two of them are planned, in fact. He and crewmate Chris Cassidy (a former Navy SEAL who spoke with Universe Today last month) are scheduled to go outside in July to swap out experiments, put up a blanket to shield part of the station from space exposure, and install new orbital replacement units to upgrade certain ISS functions.

Expedition 35/36 astronaut Luca Parmitano will perform two spacewalks during his mission. Credit: NASA/Lauren Harnett
Expedition 36/37 astronaut Luca Parmitano will perform two spacewalks during his mission. Credit: NASA/Lauren Harnett

In between, of course, Parmitano has dozens of experiments to work through — contributions from various station partners ranging from Japan to Canada.

An Italian one he speaks of frequently involves him deliberately setting controlled fires on station. Called ICE-GA (Italian Combustion Experiment for Green Air), it’s intended to seek renewable fuels that are less polluting than what we use today. Results will be used for future space fuels, and also on the ground to reduce toxic emissions.

Despite his high-flying duties, Parmitano plays down any adulation from Abby.

“She’s a tremendous young lady, and she has enthusiasm to sell, and maturity way beyond her age,” he said. “It’s really an honor for me to be called her mentor. I learn from her more than she learned from me.”

As for how Abby plans to get to Mars, first she is figuring out what interests her to narrow down her university choices.

Abby, who is entering her junior year in high school next year, is conscious that time away from school is hard to do when starting to think about university applications. She’s working out alternative scheduling arrangements with her teachers and keeping them apprised of what could be a busy speaking schedule in the coming months.

She’s still mulling her options for university — perhaps the United States Air Force Academy, or maybe studying geology at the University of Colorado. Along the way, she’ll keep in contact with Parmitano.

“How important it is to work hard was really the main subject of our discussion [at the airport],” Abby said, “and how if you have a dream and you set a goal, you can achieve it with hard work.”

Warning Shot: a “Bullet Hole” on the ISS

A hole from a meteorite in the Space Station's solar array

Canadian astronaut and Expedition 35 commander Chris Hadfield just shared this photo on Twitter, showing a portion of one of the solar array wings on the ISS… with a small but very visible hole made by a passing meteoroid in one of the cells.

In typical poetic fashion, Commander Hadfield referred to the offending object as “a small stone from the universe.”

“Glad it missed the hull,” he added.

Hole in an ISS solar cell made by a meteoroid
Hole in an ISS solar cell made by a meteoroid

While likened to a bullet hole, whatever struck the solar panel was actually traveling much faster when it hit. Most bullets travel at a velocity of around 1,000-2,000 mph (although usually described in feet per second) but meteoroids are traveling through space at speeds of well over 25,000 mph — many times faster than any bullet!

Luckily the ISS has a multi-layered hull consisting of layers of different materials (depending on where the sections were built), providing protection from micrometeorite impacts. If an object were to hit an inhabited section of the Station, it would be slowed down enough by the different layers to either not make it to the main hull or else merely create an audible “ping.”

Unnerving, yes, but at least harmless. Still, it’s a reminder that the Solar System is still very much a shooting gallery and our spacefaring safety relies on the use of technology to protect ourselves.

Image: NASA / Chris Hadfield

Fact: The 110 kilowatts of power for the ISS is supplied by an acre of solar panels!

An Inside Look at the Water/Urine Recycling System on the Space Station

NASA's Water Recovery System. Credit: NASA

International Space Station Commander Chris Hadfield “lifts the lid” on the Water Recovery System, the first liquid recycling system to be flown in space that cleans almost all the “water” (greywater, urine, sweat) produced by crew members so that it can be used again. As previous space station resident Don Pettit has said, “Yesterday’s coffee becomes today’s coffee.”

Previously, Russia’s space station Mir recycled cosmonaut’s sweat, but this system on the ISS can recycle about 93 percent of the liquids it receives. The ISS’s water recycler uses a distiller that looks like a keg. On Earth, distilling is a simple process of boiling water and cooling the steam back into pure water. But without gravity, the contaminants in water never separate from the steam no matter how much heat is used. So, the keg-sized distiller spins to produce an artificial gravity field while boiling the water. The contaminants in the urine or greywater press against the sides of the drum while the steam gathers in the middle and is pumped to a filter.

Success! Progress Spacecraft Overcomes Stuck Antenna, Arrives at Station

Progress 51 on final approach to the International Space Station. The stuck antenna is visible below the crosshairs. Credit: NASA TV (screencap)

A software fix solved a sticky antenna problem on an unmanned cargo ship, a problem that threatened to interfere with the approach and docking to the International Space Station Friday.

Progress 51 successfully docked with the massive orbiting complex at 8:35 a.m. EDT (12:35 p.m. GMT) Friday without the need of assistance from the station crew, which was standing by to take over the docking just in case.

“Progress is safely docked! Big moment for the crew. Hooray!” wrote astronaut Chris Hadfield, the commander of Expedition 35, on Twitter moments after the spacecraft and station docked.

Watch all the action in the video, below:

Crew members are expected to start unloading the three tons of food, fuel, supplies and experiment on board later today (Friday), if all goes according to schedule.

The Russian supply ship has five antennas on board that are used for approaching the station for a docking using the KURS automated system. One of them refused to unfurl as usual after the spacecraft launched from the Baikonur Cosmodrome in Kazakhstan on Wednesday (April 24).

As a backup, crew members could bring the spacecraft in using a manual system that also allows them to view the station from a camera inside Progress.

The International Space Station as seen through the eyes of Progress 51. Credit: NASA TV (screencap)
The International Space Station as seen through the eyes of Progress 51. Credit: NASA TV (screencap)

This particular antenna, NASA said, is normally used to help keep the vehicle properly oriented as it gets closer to the station.

When the Progress spacecraft and station are 65 feet (20 meters) apart, the antenna also provides data on the relative roll of the vehicle with respect to the station.

NASA initially told the crew it was expected to bring the spacecraft in manually. Shortly after 6 a.m. EDT (10 a.m. GMT), however, capsule communicator David Saint-Jacques radioed that NASA was confident a software patch created by Russian ground controllers would address the problem.

Progress 51’s final approach proceeded normally, but controllers took it a little slower than usual to ensure the automated system was working properly with the  fix. The approach started slightly early, allowing capture to occur at 8:25 a.m. EDT (12:25 p.m. GMT) — two minutes earlier than planned.

Ground control and the Expedition 35 crew then spent several minutes verifying that the antenna would not interfere with the docking port. With crew members saying they couldn’t hear any funny noises from inside the station, NASA went forward with the hard docking.

Follow updates from Expedition 35 at Universe Today, and live on NASA’s television channel online.

TV and Online Viewing Alert: The Man Who Tweeted Earth

Canadian astronaut Chris Hadfield in the Cupola of the International Space Station. Credit: NASA/CSA

Canadian astronaut Chris Hadfield has been called “the internet’s favorite astronaut” and with over 700,000 followers on Twitter, he may be one of the reasons why space is “hot” these days.

A new show featuring Hadfield’s mission on the International Space Station will air on the Canadian Broadcasting Corporation (CBC) on Thursday, April 25 and then will be available world-wide online on April 26.

UPDATE: The online version of this show is now available on CBC here.

CBC’s The Nature of Things is broadcasting “The Man Who Tweeted Earth,”,which looks at Hadfield’s mission and features other astronauts, scientific collaborators, Hadfield’s secret weapon family member (his son) and the Mission Control staff at the Canadian Space Agency and NASA.

Also, Universe Today is proud to say that our own Elizabeth Howell is also part of this broadcast, and she’s event featured on this trailer from the CBC!:

“Essentially, I talk about the techniques Hadfield uses to keep people engaged,” Elizabeth told me, as a teaser for the show. “He tweets about people’s hometowns, for example. I also mentioned the Shatner tweeting incident and how other Star Trek actors reacted. The entire show focuses on Hadfield on the station, the experiments he’s doing, and how folks are reacting to it.”

Elizabeth added that other astronauts and “lots of smart people” are part of the show.

For those of you in Canada (and anyone who otherwise has access to the CBC) the TV broadcast is on Thursday, April 25 at 8 p.m. (8:30 NT) on CBC-TV. There are other re-broadcasts later, so check the CBC’s website for info and to verify the times it is being shown in your time zone.

The show will be available online starting Friday, April 26th at: http://www.cbc.ca/natureofthings/episode/the-man-who-tweeted-earth.html

The Nature of Things is CBC’s flagship science television documentary show and has been broadcasting award-winning shows for more than five decades.

Why Spacewalking Is All About The Hands

NASA astronaut Shane Kimbrough works outside the International Space Station in 2008. Credit: NASA

Think about your typical construction worker — there’s a lot of reaching, bending, stretching, lifting. How do you accomplish those tasks without gravity, as astronauts do on the International Space Station?

According to astronaut Shane Kimbrough — who should know, as he spent more than 12 hours “outside” doing station work and repairs during shuttle mission STS-126 in 2008 — instead of using your feet, you transfer most of the work to your hands. Your feet are basically used to brace yourself.

“You’re moving around, kind of walking with your hands, and pulling yourself in between the handholds and the rails,” he said to Universe Today, expanding on comments he made publicly at a conference last week.

Astronauts train for hours in a large pool known as the Neutral Buoyancy Laboratory, which includes a full-size model of the station modules inside. “You build up the [hand] strength in the NBL,” Kimbrough said, “with your hands fighting against the pressure of the spacesuit. If you didn’t do that, your hands would be fatigued [during a spacewalk.]”

It’s not a perfect training environment, though. “The big difference in the water is the drag it produces. You don’t realize you are floating, at times. If you’re moving along and walking with your hands down the rail, and you stop, you will immediately stop. In space, the mass of your spacesuit keeps going even if you stop. Your body will keep moving back and forth a few times, and using more energy when you need.”

Shane Kimbrough spent more than 12 hours outside the International Space Station during one mission. Credit: NASA
Shane Kimbrough spent more than 12 hours outside the International Space Station during one mission. Credit: NASA

During the shuttle era, astronauts tended to specialize in different areas of spaceflight — robotics and extra-vehicular activity (spacewalks) being some of the fields. The station, however, demands that astronauts be versed in both, Kimbrough said. Any crew could be called upon to do a repair on short notice, or to haul in a robotic spacecraft (like SpaceX’s Dragon) that arrives at station.

This means there’s a huge demand within NASA now for spacewalking expertise. Before stepping into the NBL, the astronauts run through the procedures in the classroom, and will get a look at the tools to make sure they understand their functions. Occasionally, a crew might pop on scuba suits to do a rough run of an expected spacewalk at the station, rehearsing where they should be and how they should position themselves.

A spacesuit really limits the astronaut’s range of motion, making the hours of training crucial. “For people like myself, with short arms, our work envelope is very small,” said Kimbrough, who is hoping for another flight assignment.

“It’s really out in front, not very far, in a circular motion. If you put your hand out in front, a small circle, that’s my work envelope. If I want to get something higher or lower, I can’t get there by reaching based on the way the [spacesuit] shoulder and arm operates. You maybe have to go sideways or upside down.”

November 3, 2007 – Canadarm2 played a big role in helping astronauts fix a torn solar array.  The arm’s reach was extended by the Orbiter Boom Sensor System, and here, allowing astronaut Scott Parazynski analyses the solar panel while anchored to the boom. Credit: NASA
November 3, 2007 – Canadarm2 played a big role in helping astronauts fix a torn solar array. The arm’s reach was extended by the Orbiter Boom Sensor System, and here, allowing astronaut Scott Parazynski analyses the solar panel while anchored to the boom. Credit: NASA

Spacewalking is inherently a dangerous business. Many people remember a daring station-era spacewalk in 2007, when Scott Parazynski dangled on the end of a Canadarm2 extension to stitch together a torn — and live — solar array. For this spacewalk, a lot of procedures were put together on the fly.

NASA also has a computer program that can roughly simulate how the astronauts can get into various areas of the station, and this was extensively used before Parazynski’s spacewalk, Kimbrough said.

Kimbrough’s crew had a more messy problem as they worked to repair the broken solar array rotary joint (that controlled one of the station’s solar panel arrays) and do other station work. The grease guns the crew used in that mission periodically squirted way too much grease and covered everything. The work area, the spacesuits, the tools.

“It had to do with the thermal properties,” Kimbrough said. “It would go in between pretty hard, to not being so hard. So sometimes, the grease guns that were designed at the time leaked … they have been redesigned, a few modifications, and they’ve worked well since then.”

Kimbrough himself ran into a minor, but still surprising situation when at the end of a lengthy tether. It turned out that tether had a bit of zing to it. “I was working way out on the end of the truss, and it was nighttime and I felt somebody pulling me back and almost spinning me around. The force of it surprised me the most.”

Other astronauts had warned him about that ahead of time, Kimbrough said, but he didn’t realize how vehement the pull could be. “I was a believer after that,” he joked.

Progress Cargo Ship Launches to Space Station

Screenshot of the Progress 51 launch. Via NASA TV.

The Russian Progress 51 cargo craft launched from the Baikonur Cosmodrome in Kazakhstan April 24, at 12:12 UTC (6:12 am EDT) and is on its way to the International Space Station. Unlike its three predecessors, Progress 51 will take the typical two-day rendezvous instead of the new 6-hour fast-track to reach the ISS. This is because of the phasing and orbital mechanics associated with this launch date. The unpiloted Progress is scheduled to dock to the aft port of the station’s Zvezda Service Module on April 26; however a problem arose when a rendezvous antenna did not deploy, which may affect the docking.

The Progress made it safely to orbit and deployed its solar arrays as planned. But one of the five sets of KURS automated rendezvous antennas used as navigational aids did not deploy. Russian ground controllers are assessing the antenna, which is used to measure orientation of the Progress vehicle, and how to troubleshoot the problem. We’ll keep you posted if the docking time changes.

On board are more than three tons of food, fuel, supplies and experiment hardware for the ISS Expedition 35 crew.

Antares Maiden Soar Pierces Virginia Sky and delivers NASA SmartPhone Pioneer Nanosats to Orbit

Antares maiden blastoff on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace

The privately developed Antares rocket built by Orbital Sciences Corp. successfully blasted off on its maiden test flight from the shores of Virginia on April 21 at 5 p.m. EDT from Mid-Atlantic Regional Spaceport (MARS) Pad-0A at NASA Wallops – thereby inaugurating the new commercial space race and delivered a pioneering trio of low cost NASA Smartphone nanosatellites dubbed PhoneSat to orbit.

The 13 story Antares rocket pierced the chilly but cloudless clear blue Virginia skies as “the biggest, loudest and brightest rocket ever to launch from NASA’s Wallops Flight Facility,” said former station astronaut and now Orbital Sciences manager Frank Culbertson.

Antares picture perfect liftoff marked the first step in a public/private collaboration between NASA and Orbital Sciences to restart cargo delivery services to the International Space Station (ISS) that were lost following the forced retirement of NASA’s space shuttle orbiters in 2011.

“Today’s successful test marks another significant milestone in NASA’s plan to rely on American companies to launch supplies and astronauts to the International Space Station, bringing this important work back to the United States where it belongs,” said NASA Administrator Charles Bolden.

Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace
Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace

The test flight was dubbed the A-One Test Launch Mission and also signified the first launch from Americas newest space port at Pad-0A.

The primary goal of this test flight – dubbed the A-One mission – was to test the fully integrated Antares rocket and boost a simulated version of the Cygnus cargo carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares also lofted the trio of off-the-shelf-smartphone “PhoneSats” to orbit. The three picture taking satellites are named Alexander, Graham and Bell and could be the lowest-cost satellites ever flown in space.

“The Phonesats cost about $3500 each,” said Andrew Petro, NASA Small Satellite Program executive, to Universe Today. “They are deployed after separation.”

Andrew Petro, NASA Small Satellite Program executive, holds NASA Smartphone Phonesat replica launched on Antares test flight on April 21, 2013. Credit: Ken Kremer (kenkremer.com)
Andrew Petro, NASA Small Satellite Program executive, holds NASA Smartphone Phonesat replica launched on Antares test flight on April 21, 2013. Credit: Ken Kremer (kenkremer.com)

The goal of NASA’s PhoneSat mission is to determine whether a consumer-grade smartphone can be used as the main flight avionics of a capable satellite but at a fraction of the cost.

NASA reports that all three lithium battery powered nanosats are functioning and transmitting data to multiple ground stations.

Two of the cubesats are PhoneSat version 1.0 while the other is the more advanced PhoneSat version 2.0. They were developed by engineers at NASA’s Ames Research Center in Calif.

Each square shaped smartphone measures about 4 inches (10 cm) per side, weighs about 4 pounds and is the size of a coffee mug. The smartphone serves as the cubesats onboard computer – see my photos.

NASA Smartphone Phonesat replica. Credit: Ken Kremer (kenkremer.com)
NASA Smartphone Phonesat replica. Credit: Ken Kremer (kenkremer.com)

The cameras will be used for Earth photography. Imaging data will be transmitted in chunks and then stitched together later.

The third time was the charm for Antares following a pair of launch scrubs due to a technical glitch in the final minutes of the initial countdown attempt on Wednesday, April 17 and unacceptable winds on Saturday, April 20.

The rocket flew on a southeasterly trajectory and was visible for about 4 minutes.

This test flight was inserted into the manifest to reduce risk and build confidence for the follow on missions which will fly the fully outfitted Cygnus resupply spacecraft that will dock at the ISS, starting as early as this summer.

The two stage Antares is a medium class rocket similar to the Delta II and SpaceX Falcon 9.

The dummy Cygnus payload was outfitted with instrumentation to collect aerodynamic data until separation from the 2nd stage. That marked the successful conclusion of the A-One mission and the end of all data transmissions.

It will fly in earth orbit for about two weeks or so until atmospheric friction causes the orbit to decay and a fiery reentry.

Frank Culbertson post launch media interview.  Credit: Brent Houston
Frank Culbertson post launch media interview. Credit: Brent Houston

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs – original built in the Soviet Union as NK-33 model engines.

The upper stage features an ATK Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO. The 2nd stage will be upgraded starting with the 4th flight.

Antares rocket erect at the Eastern shore of Virginia slated for maiden liftoff on April 17.  Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pad from the Atlantic Ocean waves and Mother Nature.  Credit: Ken Kremer (kenkremer.com)
Antares rocket erect at the Eastern shore of Virginia slated for maiden liftoff on April 17. Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pad from the Atlantic Ocean waves and Mother Nature. Credit: Ken Kremer (kenkremer.com)

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Orbital’s Antares/Cygnus system is similar in scope to the SpaceX Falcon 9/Dragon system. Both firms won lucrative NASA contracts to deliver approximately 20,000 kilograms each of supplies and science equipment to the ISS.

The goal of NASA’s COTS initiative is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).
Orbital will launch at least eight Antares/Cygnus resupply missions to the ISS at a cost of $1.9 Billion

Up Close with Antares beautifully decaled nose NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)
Up Close with Antares beautifully decaled nose NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)

Ken Kremer
…………….

Learn more about Antares, Orion, SpaceX, Curiosity and NASA robotic and human spaceflight missions at Ken’s upcoming lecture presentations:

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace
Antares accelerates to orbit on April 21, 2013 from NASA Wallops Flight Facility. Credit: Mark Usciak/AmericaSpace
Antares at MARS Launch Pad 0A at NASA Wallops Flight Facility, Virginia . Credit: Ken Kremer (kenkremer.com)
Antares at MARS Launch Pad 0A at NASA Wallops Flight Facility, Virginia . Credit: Ken Kremer (kenkremer.com)

Incredible Astrophoto: Space Station Flies Over Stonehenge

International Space Station pass over Stonehenge, Wiltshire UK. Credit and copyright: Tim Burgess. Used by permission.

In a gorgeous mix of archeology and space exploration, photographer Tim Burgess captured a stunning view of the International Space Station passing over the historic and iconic Stonehenge on April 20, 2013. Tim said this composite image is composed of 11 shots, 10 sec, f2.8, 400 ISO. As one person commented on Flickr, “An amazing feat of human engineering passing over an amazing feat of human engineering, captured by an amazing feat of human engineering.”

Thanks to Tim for allowing us to post this image on UT; keep track of Tim’s photography on Flickr and Twitter.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.