Incredible Demonstration of Fluid Dynamics in Zero-G

Screenshot of Chris Hadfield showing the NASA washcloths.

The first thing I want to know is where we can get the cool, compacted NASA washcloths. But this new video from Chris Hadfield, commander of the International Space Station is pretty amazing. Hadfield has been working with schools and doing experiments suggested by students. This one was designed by students Kendra Lemke and Meredith Faulkner (10th grade) from Lockview High School in Fall River, Nova Scotia . They won a national science contest held by the Canadian Space Agency with their experiment on surface tension in space using a wet washcloth, and you can see the really nifty results here.

Below is another water-themed demonstration from Hadfield, how to wash your hands in space:

Astrophoto: Space Station Flies Through the Moon!

The orbital path of the International Space Station appears to take it through the Moon, as seen from the UK on April 16, 2013. Credit and copyright: Dave Walker.

What a great image! Astrophotographer Dave Walker combined seven 30-second shots of the ISS as it cuts through the sky, and it appears to slice right through the Moon! Dave used a a Canon 600D, Samyang 8mm fish-eye lens, and Vixen Polarie.

Now through the end of April provides some great sighting opportunities in the northern hemisphere for seeing the International Space Station as it flies overhead — and over your backyard! Some evenings there are even two passes. See below for another great panorama of an ISS pass, as well as information on how to find out when you can see it. It’s always an amazing sight!

A view of the International Space Station over St. Pölten, Austria on April 15, 2013. A panorama of 13 single shots, each with 25 sec. exposure-time. Credit and copyright: Ma Brau via Flickr.
A view of the International Space Station over St. Pölten, Austria on April 15, 2013. A panorama of 13 single shots, each with 25 sec. exposure-time. Credit and copyright: Ma Brau via Flickr.

NASA has a Skywatch page where you can find your specific city to look for satellite sighting info.

Spaceweather.com, has a Satellite Tracker Tool. Just put in your zip code (good for the US and Canada) to find out what satellites will be flying over your house.

Heaven’s Above also has a city search, but also you can input your exact latitude and longitude for exact sighting information, helpful if you live out in the country.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Antares Launch Ignites Commercial Space Competition Race

Antares rocket erect at the Eastern shore of Virginia slated for maiden liftoff on April 17. Only a few hundred feet of beach sand and a miniscule sea wall separate the Wallops Island pad from the Atlantic Ocean waves and Mother Nature. Credit: Ken Kremer (kenkremer.com)

The commercial space competition race is about to begin, and with a big bang at a most unexpected locale; Virginia’s Eastern shore.

The new and privately developed Antares rocket will ignite a new space race in the commercial arena – if all goes well – when the engines fire for Antares maiden soar to space slated for Wednesday, April 17.

“This is the biggest, loudest and brightest rocket ever to launch from NASA’s Wallops Flight Facility,” said former station astronaut and now Orbital Sciences manager Frank Culbertson, at a media briefing held today (April 16), 1 day prior to liftoff.

The April 17 launch is a test flight of the Antares rocket, built by Orbital Sciences Corp and is due to liftoff at 5 p.m. EDT from Mid-Atlantic Regional Spaceport (MARS) Pad-0A at NASA Wallops.

The weather forecast shows a 45% chance of favorable weather.

The mission is dubbed the A-One Test Launch Mission.

The launch will be visible along portions of the US East Coast from South Carolina to Maine, depending on viewing conditions.

Antares is the most powerful rocket ever to ascend near major American East Coast population centers, unlike anything before – and critical to keeping the ISS fully functioning.

For the past year, SpaceX Corp founded by CEO Elon Musk has monopolized all the commercial space headlines – as the first and only private company to launch a spacecraft that successfully docked at the International Space Station (ISS).

1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 16 April 2013.  Technicians were working at the pad during my photoshoot today. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com)
1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 16 April 2013. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com)

Indeed SpaceX just concluded its 3rd flight to the ISS lofting thousands of pounds (kg) of critically needed supplies to the ISS to keep it functioning – and numerous science experiments to keep the 6 person crew of astronauts busy conducting over 200 active science investigations and fulfill the stations purpose.

Orbital Sciences aims to match and perhaps even exceed the SpaceX Falcon 9 /Dragon architecture with its own ambitious space station resupply system comprising the medium class Antares rocket and Cygnus cargo resupply vehicle.

“The Cygnus can remain docked to the ISS for 30 to 90 days,” said former station astronaut and now Orbital Sciences manager Frank Culbertson at the briefing.

“Cygnus could be upgraded to stay longer perhaps up to a year in orbit,” Culbertson told Universe Today.

“Cygnus is based on the proven MPLM design. It could possibly be converted to a permanent habitation module for the ISS with added shielding and plumbing, if funding is available and if NASA wants to pursue that possibility,” Culbertson told me.

Cygnus could even be sent beyond low Earth orbit on ambitious new missions.

“This is a big event for this area and our country,” said Culbertson.

During the test flight Antares will boost a simulated Cygnus – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares rocket configuration - privately developed by Orbital Sciences Corp.
Antares rocket configuration – privately developed by Orbital Sciences Corp.

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 750,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

Antares stands 131 feet tall.

Dozens of technicians were working at the pad during my photoshoot today.

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Over the next 3 to 4 years, eight Cygnus carriers will loft 20,000 kg of supplies, food, water, clothing , replacement parts and science gear to the ISS under a NASA contract valued at $1.9 Billion.

“This represents a new way of doing business for NASA,” said NASA’s commercial crew program manager Alan Lindenmoyer.

NASA Wallops Director Jay Wrobel has granted the formal Authority to Proceed for Orbital Science Corporation’s test launch of its Antares rocket.

Following today’s Flight Readiness review, Orbital managers gave a “GO” to proceed toward launch.

NASA TV launch coverage begins at 4 p.m. EDT on April 17.

Watch for my continuing on-site reports through liftoff of the Antares A-One Test flight.

Ken Kremer

…………….

Learn more about Orion, Antares, SpaceX, Curiosity and NASA robotic and human spaceflight missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus “The Space Shuttle Finale and the Future of NASA – Orion, SpaceX, Antares and more!” NEAF Astronomy Forum, Rockland Community College, Suffern, NY. 3-4 PM Sat & Sunday. Display table all day.

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

ATV-4 Albert Einstein Says ‘Fill ‘er Up!’

Europe's ATV 4 Albert Einstein prepares for its cargo-carrying mission to the International Space Station. Credit: ESA

The next European cargo mission to the International Space Station is preparing for launch, and in this new image, a fuelling operator at Europe’s Spaceport in French Guiana inspects the ATV-4 Albert Einstein as it is filled with propellant. Launch is currently scheduled for June 5, 2013 on an Ariane 5ES rocket to bring about 7 tons of cargo the ISS, including fuel to give the space station an orbital re-boost.


These Automated Transfer Vehicles (ATVs) bring other supplies such as equipment, experiments, water, air, nitrogen, oxygen and fuel.

As the ISS circles Earth, it slowly loses altitude, and occasionally needs a boost to keep it in the proper orbit. ATVs, Progress resupply ships and the thrusters on the Zvezda service module are used to re-boost the station; Soyuz spacecraft are also used “in a pinch” said Johnson Space Center News Chief Kelly Humphries, but they mainly want to save the Soyuz fuel for the departing crew heading back to Earth.

Watch this video as astronaut Jeff Williams demonstrates the acceleration experienced inside the cabin during a reboost on January 24, 2010 (the acceleration starts about 3:50 in the video):

Spacewalkers To Give Cargo Spacecraft A Helping Hand

Friday's spacewalk is supposed to replace a navigational aid to guide in spacecraft, such as the European Space Agency's Automated Transfer Vehicle. Credit: NASA

Spacewalkers will replace a faulty navigational aid Friday to ensure that a cargo spacecraft in June docks safely with the  International Space Station.

Expedition 35 cosmonauts Pavel Vinogradov and Roman Romanenko will venture into space to remove and replace a broken retroreflector on the Russian Zvezda station module.  The first spacecraft to use the new retroreflector will be the European Space Agency’s automated transfer vehicle (ATV) Albert Einstein, which is scheduled to dock with the station in June.

The ATV has a videometer on board that shoots laser beams at retroreflectors on the outside of the station. Then, the videometer analyzes the pattern of light that is returned. Based on this pattern, it navigates towards the station and in for a docking.

Albert Einstein will carry about two tons of cargo to the station, including water, oxygen, and extra fuel to boost the space station’s orbit. Tipping the scales at 44,611 pounds (20,235 kg), this ATV will be the heaviest ever lifted by an Ariane rocket.

Replacing the retroreflector won’t be the cosmonauts’ only task. They’ll retrieve an experiment, called Biorisk, that is supposed to evaluate how much microbes affect spacecraft structures. They may also take the Vinoslivost experiment (which looks at how exposed materials behave in space) back inside, depending on how much time they have.

Pavel Vinogradov during a 2006 spacewalk. Friday will mark the seventh spacewalk for the veteran Russian cosmonaut. Credit: NASA
Pavel Vinogradov during a 2006 spacewalk. Friday will mark the seventh spacewalk for the veteran Russian cosmonaut. Credit: NASA

These experiments are part of the long-term mandate of the station’s activities to study how well people and structures survive after years in space. Based on the results, engineers back on Earth can make adjustments for spacecraft under development, making them more robust for long-term missions.

Additionally, the cosmonauts plan to install the Obstanovka experiment, which will look at “space weather” in the Earth’s ionosphere. This region of the atmosphere is where auroras arise after the Sun’s particles strike the area.

Besides producing these pretty patterns, space weather has a darker side: it can cause communications shortouts or hurt satellites. That’s why NASA has the Solar Dynamics Observatory and other spacecraft keeping a close eye on the sun. The agency wants to improve space weather predictions to protect infrastructure on Earth.

You can watch Expedition 35’s first spacewalk on NASA Television at 9:30 a.m. EDT (1:30 p.m. UTC) on Friday. The cosmonauts should head outside around 10:06 a.m. EDT (2:06 p.m. UTC). This could change depending on how quickly the cosmonauts depressurize the Pirs airlock and complete their pre-spacewalk checklist.

This spacewalk will be the seventh for Vinogradov and the first for Romanenko. Including this upcoming spacewalk, there have been 167 spacewalks performed to construct the space station and do maintenance.

Orion Capsule Accelerating to 2014 Launch and Eventual Asteroid Exploration

A crane lifts the Orion EFT-1 crew module from its birdcage processing stand for transfer it to a dolly for continued assembly inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida as workers monitor progress. Orion’s first unpiloted test flight is scheduled to launch in 2014. Credit: NASA/Frankie Martin

NASA is picking up the construction pace on the inaugural space-bound Orion crew capsule at the Kennedy Space Center (KSC) in Florida – and accelerating towards blastoff on the unmanned Exploration Flight Test-1 mission (EFT-1) slated for September 2014 atop a mammoth Delta 4 Heavy Booster which will one day lead to deep space human forays to Asteroids and Mars.

Orion was at the center of an impressive and loud beehive of action packed assembly activities by technicians during my recent exclusive tour of the spacecraft to inspect ongoing progress inside the renovated Orion manufacturing assembly facility in the Operations and Checkout Building (O & C) at KSC.

“We plan to power up Orion for the first time this summer,” said Scott Wilson in an exclusive interview with Universe Today beside the Orion vehicle. Wilson is Orion’s Production Operations manager for NASA at KSC.

The Orion EFT-1 flight is a critical first step towards achieving NASA’s new goal of capturing and retrieving a Near Earth Asteroid for eventual visit by astronauts flying aboard an Orion vehicle by 2021 – if NASA’s budget request is approved.

An artist concept shows Orion as it will appear in space for the Exploration Flight Test-1 attached to a Delta IV second stage.   Credit: NASA
An artist concept shows Orion as it will appear in space for the Exploration Flight Test-1 attached to a Delta IV second stage. Credit: NASA

KSC will have a leading role in NASA’s asteroid retrieval project that could occur some four years earlier than President Obama’s targeted goal of 2025 for a human journey to an asteroid.

Capturing an asteroid and dispatching astronauts aboard Orion to collect precious rock samples will aid our scientific understanding of the formation of the Solar System as well as bolster Planetary Defense strategies – the importance of which is gathering steam following the unforeseen Russian meteor strike in February which injured over 1200 people and damaged over 3000 buildings.

Dozens of highly skilled workers were busily cutting metal, drilling holes, bolting screws and attaching a wide range of mechanical and electrical components and bracketry to the Orion pressure vessel’s primary structure as Universe Today conducted a walk around of the EFT-1 capsule, Service Module and assorted assembly gear inside the O&C.

Orion EFT-1 crew cabin and full scale mural showing Orion Crew Module atop Service Module inside the O & C Building at the Kennedy Space Center, Florida. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 crew cabin and full scale mural showing Orion Crew Module atop Service Module inside the O & C Building at the Kennedy Space Center, Florida. Credit: Ken Kremer/kenkremer.com

Lockheed Martin is the primary contractor for Orion. A growing number of employees hired by Lockheed and United Space Alliance (USA) are “working 2 shifts per day 7 days a week to complete the assembly work by year’s end,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive interview with Universe Today.

I watched as the workers were boring hundreds of precision holes and carefully tightening the high strength steel bolts to attach the top to bottom ring segments made of titanium to the main load paths on the pressure vessel.

“We are installing lots of wiring to support ground test instrumentation for the strain gauges as well as microphones and accelerometers.”

“The simulated back shell panels are being installed now as guides,” said Wilson. “The real back shell panels and heat shield will be installed onto the structure later this year.”

“The heat shield is the biggest one ever built, 5 meters in diameter. Its bigger than Apollo and Mars Science Lab. It varies in thickness from about 1 to 3 inches depending on the expected heating.”

“We are making good progress on the Orion Service module too. The outer panels will be installed soon,” Wilson explained.

The olive green colored crew module was clamped inside the birdcage-like Structural Assembly Jig during my visit. The Jig has multiple degrees of freedom to maneuver the capsule and more easily enable the detailed assembly work.

“The technicians are installing strain gauges and secondary structure components to get it ready for the upcoming structural loads test,” said Schneider.

“After that we need to finish installing all the remaining parts of the primary structure and a significant portion of the secondary structure.”

For the next stage of processing, the EFT-1 crew module has been lifted out of the birdcage Jig and moved onto an adjacent dedicated work station for loads testing at the Operations and Checkout building.

As reported in my earlier article the Orion pressure vessel sustained three ‘hairline” cracks in the lower half of the aft bulkhead during proof pressure testing of the vessel and welds at the O & C.

I was observing as the technicians were carefully milling out the miniscule bulkhead fractures.

Workers have now installed custom built replacement brackets and reinforcing doublers on the aft bulkhead.

“We will do the protocol loads test with pressure using about 9 different load cases the vehicle will see during the EFT-1 flight. Chute deployment and jettison motor deployment is a driving load case,” said Schneider.

“We will also squeeze the capsule,” said Wilson.

“That structural loads testing of the integrated structure will take about 6 to 8 weeks. There are thousands of gauges on the vehicle to collect data,” Schneider elaborated.

“The test data will be compared to the analytical modeling to see where we are at and how well it matched the predictions – it’s like acceptance testing.”

“After we finish the structural loads tests we can than start the assembly and integration of all the other subsystems.”

“When we are done with the ground testing program then we remove all the ground test instrumentation and start installing all the actual flight systems including harnesses and instrumentation, the plumbing and everything else,” Schneider explained.

Orion hardware built by contractors and subcontractors from virtually every state all across the U.S is being delivered to KSC for installation onto EFT-1. Orion is a nationwide human spaceflight project.

Concept of Spacecraft with Asteroid Capture Mechanism Deployed. Credit: NASA.
Concept of Spacecraft with Asteroid Capture Mechanism Deployed. Credit: NASA.

During the unmanned Orion EFT-1 mission, the capsule will fly on a two orbit test flight to an altitude of 3,600 miles above Earth’s surface, farther than any human spacecraft has gone in 40 years.

It will then fire braking rockets to plunge back to Earth, re-enter the atmosphere at about 20,000 MPH and test numerous spacecrafts systems, the heat shield and all three parachutes for an ocean splashdown.

Meanwhile other Orion EFT-1 components such as the emergency Launch Abort System (LAS) and Service Module are coming together – read my Orion follow-up reports.

Humans have not ventured beyond low Earth orbit since the Apollo Moon landings ended in 1972. Orion will change that.

Ken Kremer

…………….

Learn more about Orion, Antares, SpaceX, Curiosity and NASA robotic and human spaceflight missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus “The Space Shuttle Finale and the Future of NASA – Orion, SpaceX, Antares and more!” NEAF Astronomy Forum, Rockland Community College, Suffern, NY. 3-4 PM Sat & Sunday. Display table all day.

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Orion EFT-1 crew cabin construction ongoing at the Kennedy Space Center which is due to blastoff in September 2014 atop a Delta 4 Heavy rocket. Credit: Ken Kremer
Orion EFT-1 crew cabin construction ongoing at the Kennedy Space Center which is due to blastoff in September 2014 atop a Delta 4 Heavy rocket. Credit: Ken Kremer

Spooky Experiment on ISS Could Pioneer New Quantum Communications Network

The cameras mounted in the ISS's cupola could serve as the platform for the first-ever quantum optics experiment in space.

With its 180 degree views of Earth and space, the ISS’s cupola is the perfect place for photography. But Austrian researchers want to use the unique and panoramic platform to test the limits of “spooky action at distance” in hopes of creating a new quantum communications network.

In a new study published April 9, 2012 in the New Journal of Physics, a group of Austrian researchers propose equipping the camera that is already aboard the ISS — the Nikon 400 mm NightPOD camera — with an optical receiver that would be key to performing the first-ever quantum optics experiment in space. The NightPOD camera faces the ground in the cupola and can track ground targets for up to 70 seconds allowing researchers to bounce a secret encryption key across longer distances than currently possible with optical fiber networks on Earth.

“During a few months a year, the ISS passes five to six times in a row in the correct orientation for us to do our experiments. We envision setting up the experiment for a whole week and therefore having more than enough links to the ISS available,” said co-author of the study Professor Rupert Ursin from the Austrian Academy of Sciences.

Albert Einstein first coined the phrase ‘spooky action at a distance’ during his philosophical battles with Neils Bohr in the 1930s to explain his frustration with the inadequacies of the new theory called quantum mechanics. Quantum mechanics explains actions on the tiniest scales in the domain of atoms and elemental particles. While classical physics explains motion, matter and energy on the level that we can see, 19th century scientists observed phenomena in both the macro and micro world that could not easily explained using classical physics.

In particular, Einstein was dissatisfied with the idea of entanglement. Entanglement occurs when two particles are so deeply connected that they share the same existence; meaning that they share the same mathematical relationships of position, spin, momentum and polarization. This could happen when two particles are created at the same point and instant in spacetime. Over time, as the two particles become widely separated in space, even by light-years, quantum mechanics suggests that a measurement of one would immediately impact the other. Einstein was quick to point out that this violated the universal speed limit set out by special relativity. It was this paradox Einstein referred to as spooky action.

CERN physicist John Bell partially resolved this mystery in 1964 by coming up with the idea of non-local phenomena. While entanglement allows one particle to be instantaneously influenced by its exact counterpart, the flow of classical information does not travel faster than light.

The orbital pass of the ISS over an optical ground station could be used for quantum communication from inside the Cupola Module, as long as the OGS is not more than 36° off the NADIR direction. Credit: T Scheidl, E Wille and R Ursin.
The orbital pass of the ISS over an optical ground station could be used for quantum communication from inside the Cupola Module, as long as the OGS is not more than 36° off the NADIR direction. Credit: T Scheidl, E Wille and R Ursin.
The ISS experiment proposes using a “Bell experiment” to test the theoretical contradiction between predictions in quantum and classical physics. For the Bell experiment, a pair of entangled photons would be generated on the ground; one would be sent from the ground station to the modified camera aboard the ISS, while the other would be measured locally on the ground for later comparison. So far, researchers sent a secret key to receivers just a few hundred kilometers apart.

“According to quantum physics, entanglement is independent of distance. Our proposed Bell-type experiment will show that particles are entangled, over large distances — around 500 km — for the very first time in an experiment,” says Ursin. “Our experiments will also enable us to test potential effects gravity may have on quantum entanglement.”

The researchers point out that making the minor alteration to a camera already aboard the ISS will save time and money needed to build a series of satellites to test researchers’ ideas.

New Exoplanet-Hunting Mission to launch in 2017

Artist's rendition of TESS in space. (Credit: MIT Kavli Institute for Astrophysics Research).

Move over Kepler. NASA has recently green-lighted two new missions as part of its Astrophysics Explorer Program.

These come as the result of four proposals submitted in 2012. The most anticipated and high profile mission is TESS, the Transiting Exoplanet Survey Satellite.

Slated for launch in 2017, TESS will search for exoplanets via the transit method, looking for faint tell-tale dips in brightness as the unseen planet passes in front of its host star. This is the same method currently employed by Kepler, launched in 2009. Unlike Kepler, which stares continuously at a single segment of the sky along the galactic plane in the direction of the constellations Cygnus, Hercules, and Lyra, TESS will be the first dedicated all-sky exoplanet hunting satellite.

The mission will be a partnership of the Space Telescope Science Institute, the MIT Lincoln Laboratory, the NASA Goddard Spaceflight Center, Orbital Sciences Corporation, the Harvard-Smithsonian Center for Astrophysics and the MIT Kavli Institute for Astrophysics and Space Research (MKI).

TESS will launch onboard an Orbital Sciences Pegasus XL rocket released from the fuselage of a Lockheed L-1011 aircraft, the same system that deployed IBEX in 2008 & NuSTAR in 2012. NASA’s Interface Region Imaging Spectrograph (IRIS) will also launch using a Pegasus XL rocket this summer in June.

An Orbital Sciences Pegasus XL rocket attached to the fuselage of an L1011 for the launch of IBEX. (Credit: NASA).
An Orbital Sciences Pegasus XL rocket attached to the fuselage of an L1011 for the launch of IBEX. (Credit: NASA).

“TESS will carry out the first space-borne all-sky transit survey, covering 400 times as much sky as any previous mission. It will identify thousands of new planets in the solar neighborhood, with a special focus on planets comparable in size to the Earth,” said George Riker, a senior researcher from MKI.

TESS will utilize four wide angle telescopes to get the job done. The effective size of the detectors onboard is 192 megapixels. TESS is slated for a two year mission. Unlike Kepler, which sits in an Earth-trailing heliocentric  orbit, TESS will be in an elliptical path in Low Earth Orbit (LEO).

TESS will examine approximately 2 million stars brighter than 12th magnitude including 1,000 of the nearest red dwarfs. Not only will TESS expand the growing catalog of exoplanets, but it is also expected to find planets with longer orbital periods.

One dilemma with the transit method is that it favors the discovery of planets with short orbital periods, which are much more likely to be seen transiting their host star from a given vantage point in space.

TESS will also serve as a logical progression from Kepler to later proposed exoplanet search platforms. TESS will also discover candidates for further scrutiny by as the James Webb Space Telescope to be launched in 2018 and the High Accuracy Radial Velocity Planet Searcher (HARPS) spectrometer based at La Silla Observatory in Chile.

Artist's conception of NICER on the exterior of the International Space Station. (Credit: NASA).
Artist’s conception of NICER on the exterior of the International Space Station. (Credit: NASA).

Also on the board for launch in 2017 is NICER, the Neutron Star Interior Composition Explorer to be placed on the exterior of the International Space Station. NICER will employ an array 56 telescopes which will collect and study X-rays from neutron stars. NICER will specialize in the study of a particular sub-class of neutron star known as millisecond pulsars. The X-ray telescopes are in a configuration utilizing a set of nested glass shells looking like the layers of an onion.

Observing pulsars in the X-ray range of the spectrum will offer scientists tremendous insight into their inner workings and structure. The International Space Station offers a unique vantage point to do this sort of science. Like the Alpha Magnetic Spectrometer (AMS-02), the power requirements of NICER dictate that it cannot be a free-flying satellite. X-Ray astronomy must also be done above the hindering effects of the Earth’s atmosphere.

NICER will be deployed as an exterior payload aboard an ISS ExPRESS Logistics Carrier. These are unpressurized platforms used for experiments that must be directly exposed to space.

Another fascinating project working in tandem with NICER is SEXTANT, the Station Explorer for X-ray Timing And Navigation Technology. This project seeks to test the precision of millisecond pulsars for interplanetary navigation.

“They (pulsars) are extremely reliable celestial clocks and can provide high-precision timing just like the atomic signals supplied through the 26-satellite military operated Global Positioning System (GPS),” said NASA Goddard scientist Zaven Arzoumanian. The chief difficulty with relying on this system for interplanetary journeys is that the signal gets progressively weaker the farther you travel from the Earth.

“Pulsars, on the other hand, are accessible in virtually every conceivable flight regime, from LEO to interplanetary and deepest space,” said NICER/SEXTANT principle investigator Keith Gendreau.

Both NICER and TESS follow the long legacy of NASA’s Astrophysics Explorer Program, which can be traced all the way back to the launch Explorer 1. This was the very first U.S. satellite launched in 1958. Explorer 1 discovered the Van Allen radiation belts surrounding the Earth.

(from left) William Pickering, James Van Allen, and Wernher von Braun hold aloft a mock up of Explorer 1 shortly after launch. (Credit NASA/JPL-Caltech.
(From left) William Pickering, James Van Allen, and Wernher von Braun hold aloft a mock up of Explorer 1 shortly after launch. (Credit NASA/JPL-Caltech).

“The Explorer Program has a long and stellar history of deploying truly innovative missions to study some of the most exciting questions in space science,” stated NASA associate administrator for science John Grunsfeld. “With these missions, we will learn about the most extreme states of matter by studying neutron stars and we will identify many nearby star systems with rocky planets in the habitable zones for further study by telescopes such as the James Webb Space Telescope.”

Of course, Grunsfeld is referring to planets orbiting red dwarf stars, which will be targeted by TESS. These are expected have a habitable zone much closer to their primary star than our own Sun. It has even been suggested by MIT scientists that the first exoplanets visited by humans on some far off date might be initially discovered by TESS. The spacecraft may also discover future targets for follow up spectroscopic analysis, the best chance of discovering alien life on an exoplanet in the next 50 years. One can imagine the excitement that a positive detection of a chemical exclusive to life as we know it such as chlorophyll in the spectra of a far of world would generate. More ominously, detection of such synthetic elements as plutonium in the atmosphere of an exoplanet might suggest we found them… but alas, too late.

But on a happier note, it’ll be exciting times for space exploration to see both projects get underway. Perhaps human explorers will indeed one day visit the worlds discovered by TESS… and use navigation techniques pioneered by SEXTANT to do it!

 

There’s No Crying in Space

Canadian astronaut Chris Hadfield demonstrates how tears don't fall in space. Credit: NASA/CSA.

No tears in heaven? Expedition 35 Commander Chris Hadfield shows that while you really can cry in space, tears don’t fall like they do here on Earth, and instead just end up as a big ball of water on your face. It’s physics, baby!

Celebrate Earth Month with 2 New Videos from NASA

Nighttime photo of the Nile delta region taken from the ISS (NASA)

Enjoy some great views of our home planet from images taken from the orbiting Earth-observing satellites and taken by astronauts on the International Space Station. The satellites and scientists are cranking out data 24/7 to help us all better understand and sustain our home planet.

Above is a video created for Earth Month, and specifically Earth Day (April 22) from ISS imagery, and below is another video from satellite imagery. These are unique looks at the beauty and wonder of our home planet.