Space Station Crew Captures Soyuz Launch, As Seen from Orbit

Soyuz Rocket Launch - the moment of ignition, as-seen from their target, the Space Station. Credit: NASA/CSA/Chris Hadfield.

Just how much activity on Earth can be seen from orbit? In the dark of night, the Soyuz rocket launch on March 29/28, 2013 was bright enough to be seen by the International Space Station crew 350 km (220 miles) above. “Soyuz Rocket Launch – the moment of ignition, as-seen from their target, the Space Station,” tweeted ISS commander Chris Hadfield in sharing this image.

The new fast-track trajectory used for the first time for a crewed Soyuz has the rocket launching shortly after the ISS passes overhead, and so the ISS was in the perfect spot for the crew to witness the launch with their own eyes — at least with a camera and a zoom lens. The Soyuz TMA-08M spacecraft launched at 2:43 a.m. Friday local time from the Baikonur Cosmodrome in Kazakhstan (4:43 p.m. EDT, 20:43 UTC on March 28), carrying the crew of Pavel Vinogradov, Aleksandr Misurkin and Chris Cassidy.

The fast-track launch had the crew arriving in just 5 hours and 45 minutes after launch. This is the first crew to use this quick trajectory. It came with the added bonus of the launch being visible from space.

Watch “Fast-Track” Launch of Soyuz Live

Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.



Live video by Ustream

Watch live the first “fast-track” human Soyuz flight to the International Space Station. The Soyuz TMA-08M crew will arrive at the ISS just five hours and 49 minutes after launch instead of the usual two days. Commander Pavel Vinogradov, flight engineer Alexander Misurkin and NASA astronaut Christopher Cassidy are scheduled for liftoff from the Baikonur Cosmodrome in Kazakhstan at 20:43 UTC (4:43:20 p.m. EDT) on Thursday, March 28, 2013. (If you missed the launch live, watch the video of it below:)
Continue reading “Watch “Fast-Track” Launch of Soyuz Live”

Chris Hadfield’s Top 5 Videos from Space

Chris Hadfield all dressed up for another day in space. Credit: Chris Hadfield (Twitter)

Chris Hadfield — the ever-tweeting, always charming Canadian running the space station these days — has had an eventful few months in space. If he’s not chatting with Captain Kirk, he’s playing guitar or, as it turns out, making very watchable videos.

Being on television requires a certain flair. You need to talk in sound bites, cultivate a charismatic presence, and keep the action moving enough so people don’t flip the channel. For an astronaut, who usually works methodically, carefully and slowly, working on television must be fully alien (pun intended) to how one does the technical parts of the job.

But Hadfield — who knows how to study a situation and make the most of it — has created videos with hundreds of thousands of views on YouTube. Whatever he’s doing is working.

Universe Today checked up on Hadfield’s secrets to success by watching the most popular videos in a playlist curated by the Canadian Space Agency. Here are the top five. Strangely, the last one doesn’t even include Hadfield’s face or voice.

5) Chris Hadfield Talks with the Queen’s Representative in Canada

If you’re all about cute questions from kids, or enjoy a brush with royalty, this lengthy press conference with Hadfield is very interesting. This is a bit of a marathon charm session on Hadfield’s part, but he pulls it off with his charismatic aplomb. One of the best answers demonstrates what he’s learned about weightless life: “I can fly. I can go in different directions,” Hadfield says enthusiastically, spinning before the camera.

4) Chris Hadfield Demonstrates How Astronauts Wash Their Hands in Zero G

For a question that came out of a routine Q&A with kids, Hadfield’s performance is pretty good. He demonstrates that soapy water looks like some sort of Teenage Mutant Ninja Turtles-like ooze in space, and compares life on the space station to life on a sailboat, all while simply washing his hands. It’s almost existential.

3) Nail Clipping in Space

It turns out that Hadfield chooses to cut his nails because long ones interfere with his guitar playing. We wouldn’t want that to happen (and neither would the Barenaked Ladies), so fortunately Hadfield gets right on the problem, positions himself over an air vent and trims them with an ordinary nail clipper. Charmingly, this was not fully scripted, as he makes a mistake with the first clipping.

2) Chris Hadfield’s Space Kitchen (aka how to make a peanut butter sandwich in space)

With words you’d never hear on Martha Stewart — “We’ve got one tortilla. Oh, got away!” — Hadfield slathers condiments on to a tortilla and eats it. His sense of humor helps break up a very routine act; we’d be scared to be one of his kids after seeing the stern way in which he says, “Disinfectant wipe!”

1) Mixed Nuts in Space

This video is oddly mesmerizing, and that’s not just because of the UFO-type music near the beginning. It’s quite a simple setup: Hadfield shoots a bunch of nuts floating around inside of a can. But face it, it looks awfully weird for those of us used to grabbing similar packages off the kitchen shelf. Maybe that’s why this video has more than 4 million views.

Gallery: Dragon Splashes Down Successfully

Dragon is slowed by three main parachutes prior to splashdown into the Pacific Ocean. Credit: SpaceX.

Splashdown! The SpaceX Dragon has returned home safely, splashing down in the Pacific Ocean at 16:36 UTC (12:36 p.m. EDT) on Tuesday, March 26, 2013. “Recovery ship has secured Dragon,” Tweeted SpaceX CEO Elon Musk. “Powering down all secondary systems. Cargo looks A-OK.”

A team of SpaceX engineers, technicians and divers will recover the vehicle off the coast of Baja, California, for the journey back to shore, which NASA said will take 30-48 hours.

The big job will be unloading the 3,000- plus pounds (1,360 kg) of ISS cargo and packaging inside the spacecraft. The Dragon is currently the only vehicle capable of returning cargo and important scientific experiments back to Earth.

“The scientific research delivered and being returned by Dragon enables advances in every aspect of NASA’s diverse space station science portfolio, including human research, biology and physical sciences,” said Julie Robinson, International Space Station Program
scientist. “There are more than 200 active investigations underway aboard our orbiting laboratory in space. The scientific community has
eagerly awaited the return of today’s Dragon to see what new insights the returned samples and investigations it carries will unveil.”

See more images below of Dragon’s return and mission to the ISS; we’ll be adding more as the SpaceX team supplies them!

Here’s a gif image of the splashdown:

A series of images shows the Dragon splashdown. Credit: SpaceX.
A series of images shows the Dragon splashdown. Credit: SpaceX.
This picture captures the Dragon just as it hits the water in the Pacific Ocean. Credit: SpaceX.
This picture captures the Dragon just as it hits the water in the Pacific Ocean. Credit: SpaceX.
Dragon was released from the International Space Station on March 26, 2013 during the CRS-2 mission. Credit: SpaceX.
Dragon was released from the International Space Station on March 26, 2013 during the CRS-2 mission. Credit: SpaceX.

Dragon’s release from Canadarm2 occurred earlier today at 10:56 UTC. The Expedition 35 crew commanded the spacecraft to slowly depart from the International Space Station

Dragon attached to the International Space Station during the CRS-2 mission. Credit: NASA.
Dragon attached to the International Space Station during the CRS-2 mission. Credit: NASA.
Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield

Among the the scientific experiment returned on Dragon was the Coarsening in Solid-Liquid Mixtures (CSLM-3) experiment, which also launched to space aboard this Dragon. CLSM-3 studies how crystals known as dendrites form as a metal alloy becomes solid. The research could help engineers develop stronger materials for use in automobile, aircraft and spacecraft parts.

Dragon also is returning several human research samples that will help scientists continue to examine how the human body reacts to long-term spaceflight. The results will have implications for future space exploration and direct benefits here on Earth.

The mission was the second of at least 12 cargo resupply trips SpaceX plans to make to the space station through 2016 under NASA’s
Commercial Resupply Services contract.

SpaceX Dragon Departs Station for Pacific Splashdown with Valuable Science Cargo

SpaceX Dragon was released from ISS at 6:56am ET and now begins its return trip to Earth. Credit: NASA

The SpaceX Dragon commercially developed cargo craft loaded with thousands of pounds of precious science samples has departed from the International Space Station at 6:56 a.m EDT this morning (March 26) and is heading back to Earth today for a splashdown in the Pacific Ocean at around 12:34 p.m EDT.

The ISS crew commanded the Dragon’s release by a trigger at the robotic work station inside the Cupola as they were soaring some 250 miles over the northeast coast of Australia after Mission Control gave the “GO for release”.
A video of the unberthing is below:

Cameras aboard both the ISS and Dragon transmitted breathtaking views of the departure maneuver. The entire ISS filled the video screen as Dragon slowly pulled away.

SpaceX Dragon capsule grappled by ISS robotic arm prior to today’s  departure and  return to Earth and Pacific Ocean splashdown. Credit: NASA
SpaceX Dragon capsule grappled by ISS robotic arm prior to today’s departure and return to Earth and Pacific Ocean splashdown. Credit: NASA

The private Dragon was unberthed from a docking port on the Harmony node at 4:10 a.m. EDT in anticipation of today’s return to Earth.

The capsule had been docked at the orbiting outpost for three weeks since arriving on March 3.

NASA astronaut Tom Marshburn and station commander Chris Hadfield from Canada opened the snares on the stations Canadian built robotic arm – Canadarm2 – firmly grasping the Dragon.

ISS imaged be cameras on departing Dragon. Credit: SpaceX/NASA
ISS imaged by cameras on departing Dragon. Credit: SpaceX/NASA

A series of three short departure burns executed in rapid succession took Dragon safely away from the ISS and beyond the imaginary 656-foot (200-meter) “Keep Out Sphere” around the station for the journey back to Earth.

Everything with Dragon happened as expected said NASA.

“All looks beautiful and nominal as expected,” radioed the ISS crew.

The Dragon capsule is the first private ship ever to dock at the ISS.

Dragon conducts departure burns from the ISS on March 26, 2013. Credit: NASA
Dragon conducts departure burns from the ISS on March 26, 2013. Credit: NASA

Dragon will fire its engines for the last time for the 10 minute long deorbit burn at 11:42 a.m. EDT sending it through the Earth’s atmosphere for a fiery reentry and splashdown in the Pacific Ocean around 12:34 p.m.

“Sad to see the Dragon go,” said Marshburn. “She performed her job beautifully and is heading back to her lair. Wish her all the best for the splashdown today.”

A team of SpaceX engineers, technicians and divers will recover the vehicle after splashdown about 214 miles off the coast of Baja, California.

SpaceX recovery crews will pluck the capsule from the Pacific Ocean for the journey back to shore which will take about 30 hours.

Dragon had been scheduled to return yesterday on Monday, March 25, but was postponed due to inclement weather developing near its targeted splashdown site in the Pacific Ocean.

There was no affect on the return of the science samples and gear weighing a hefty 2668 pounds. Dragon is the only vehicle that can safely return significant amounts of science cargo and gear from the ISS following the retirement of NASA’s space shuttle orbiters.

The SpaceX Dragon CRS-2 capsule blasted off on March 1 atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

A thruster failure shortly after liftoff nearly doomed the mission. But fast acting SpaceX engineers saved the day and restarted the engines a few hours later – read my earlier story here.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

The resupply mission carried aloft some 1200 pounds of food, water and science experiments for the station crew.

After a two day flight, Marshburn captured the Dragon just 32 feet away from the station with the Canadarm2 on March 3. Ground controllers then took over Canadarm2 operations and berthed Dragon to the Harmony node.

SpaceX is under contract to NASA to deliver about 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

SpaceX and Orbital Sciences Corp are partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

The maiden launch of Orbital’s Antares/Cygnus ISS cargo resupply program is now slated to occur on April 16-18 from NASA Wallops Flight Facility in Virginia – read my onsite photo report here.

The inaugural Antares launch will be a test flight with a simulated Cygnus.

The next SpaceX Dragon flight – dubbed CRS-3 – is slated to blast off in late November 2013.

Ken Kremer

Dragon and Earth from the ISS. Credit: NASA
Dragon and Earth from the ISS. Credit: NASA

Powerful Private Rocket Crucial to ISS Set for Maiden April Blast Off from Virginia – Launch Pad Gallery

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The first stage of the privately developed Antares rocket stands erect at newly constructed Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for mid-April 2013. Later operational flights are critical to resupply the ISS.
Credit: Ken Kremer (kenkremer.com)
See Antares photo gallery below[/caption]

The most powerful rocket ever to ascend near major American East Coast population centers is slated to blast off soon from the eastern Virginia shore on its inaugural test flight in mid April.

And Universe Today took an exclusive inspection tour around the privately developed Antares rocket and NASA Wallops Island launch complex just days ago.

NASA announced that the maiden flight of the commercial Antares rocket from Orbital Sciences is slated to soar to space between April 16 to 18 from the newly constructed seaside launch pad dubbed 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

The two stage Antares rocket is absolutely pivotal to NASA’s plans to ship essential cargo to the International Space Station (ISS) in the wake of the shutdown of the Space Shuttle program in July 2011.

No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager! Credit: Ken Kremer (kenkremer.com)
No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager. Credit: Ken Kremer (kenkremer.com)

Antares stands 131 feet tall and serves as the launcher for the unmanned commercial Cygnus cargo spacecraft.

Both Antares and Cygnus were developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle’s. The goal is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

I visited NASA Wallops for an up close personal tour of the impressive Antares 1st stage rocket erected at the launch pad following the successful 29 second hot fire engine test that cleared the last hurdle to approve the maiden flight of Antares. Umbilical lines were still connected to the rocket.

Antares rocket 1st stage and umbilicals at NASA Wallops Flight Facility.  Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and umbilical lines at NASA Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The pads protective seawall was rebuilt following significant damage from Hurricane Sandy, NASA Wallops spokesman Keith Koehler told me.

Launch Complex 0-A sits just a few hundred yards (meters) from Virginia’s eastern shore line on the Atlantic Ocean. It’s hard to believe just how close the low lying pad complex is to the beach and potentially destructive tidal surges.

Barely 400 meters (1300 feet) away lies the adjacent Launch Pad 0-B – from which Orbital’s new and unflown solid fueled Minotaur 5 rocket will boost NASA’s LADEE lunar science probe to the Moon in August 2013 – see my upcoming article.

The maiden Antares test flight is called the A-One Test Launch Mission. It will validate the medium class rocket for the actual follow-on flights to the ISS topped with the Cygnus cargo carrier starting later this year with a demonstration docking mission to the orbiting lab complex.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
1st stage of private Antares rocket erect at new Launch Pad 0-A at NASA’s Wallops Flight Facility. This rocket will be rolled back to the hanger to make way for the complete Antares booster due to blast off in mid-April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The launch window opens at 3 p.m. and extends for a period of time since this initial test flight is not docking at the ISS, Orbital spokesman Barry Boneski told Universe Today.

Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares A-One will fly on a southeast trajectory and the Cygnus dummy will be instrumented to collect flight and payload data.

The simulated Cygnus will separate from the upper stage 10 minutes after liftoff for orbital insertion.

“All launches are to the south away from population centers. Wildlife areas are nearby,” said Koehler.

The goal of the ambitious A-One mission is to fully demonstrate every aspect of the operational Antares rocket system starting from rollout of the rocket and all required functions of an operational pad from range operation to fueling to liftoff to payload delivery to orbit.

Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). Credit: Ken Kremer (kenkremer.com)
Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). . Credit: Ken Kremer (kenkremer.com)

Antares/Cygnus will provide a cargo up mass service similar to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked three times to the ISS during historic linkups in 2012 and earlier this month following the tension filled March 1 liftoff of the SpaceX CRS-2 mission.

The Dragon is still docked to the ISS and is due to make a parachute assisted return to Earth on March 26.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and huge water tower at NASA’s Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

Orbital has eight commercial resupply missions manifested under a $1.9 Billion contact with NASA to deliver approximately 20,000 kilograms of supplies and equipment to the ISS, Orbital spokesman Barry Boneski told me.

Tens of millions of American East Coast residents in the Mid-Atlantic and Northeast regions have never before had the opportunity to witness anything as powerful as an Antares rocket launch in their neighborhood.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore.  Only a few hundred feet separate the pad from the Atlantic Ocean. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore. Only a few hundred feet of beach sand and a low sea wall separate the pad from the Atlantic Ocean and Mother Nature. Credit: Ken Kremer (kenkremer.com)

Expedition 34 Crew Gets a Foggy Welcome Home

Three members of the Expedition 34 crew undocked from the International Space Station a day later than originally planned on Friday due to bad weather in the landing area in Kazakhstan, but returned safely to Earth, despite continuing cold, foggy weather. The deteriorating weather conditions allowed only two of 12 search and rescue helicopters to land at the touchdown site because of heavy clouds and fog. NASA TV was unable to show the actual landing after the Soyuz capsule descended into the dense fog.
Continue reading “Expedition 34 Crew Gets a Foggy Welcome Home”

Former Navy SEAL Survived ‘Hell Week’ En Route to Space

Astronaut Chris Cassidy training for a spacewalk in NASA's Neutral Buoyancy Laboratory. Credit: Robert Markowitz

If a meteor hit the station, or a fire suddenly broke out, you’d want some pretty quick-thinking people on board to solve the problem. Thankfully, Chris Cassidy — a former Navy SEAL — is on his way to station in just a couple of weeks as a part of Expedition 35/36.

SEAL training is perhaps the most vigorous military program in the world. Even a quick look at the tests candidates must pass makes us feel exhausted. You need to master a suite of skills that range from demolition to navigation to, of course, fast swimming. There’s something called “combat diving”, which is supposed to test how well these Navy people “perform in stressful and often uncomfortable environments.”

And don’t forget “hell week.” Candidates only get to sleep four hours in 5.5 days. They rack up 200 miles of running through physically training for 20 hours a day. (No, those numbers are not typos. It’s real.)

Cassidy — who by the way, passed that gruelling SEAL training on the first try without getting hurt or going crazy — told Universe Today last week about what he would do should he be faced with an emergency in space.

I think just the training that I got in the field, training in the early part of my Navy career, and during my time being an astronaut will all combine together. What I know from combat in the Navy, there’s a sort of calmness that comes over people who are well-trained and know what to do. Muscle memory kicks in, and it’s not until after the thing is over that you realize what you went through.

I kind of think that’s how me as an individual, and we as a crew, will respond to any dicey dynamic event like that. Just work through the procedures that we’ve been trained, make the place safe if we can, and if we can’t, we are trained to evacuate. And the procedures all get us to that point.

Cassidy further joked that some of the humor SEALs use might not be appropriate in his most recent job title; former SEAL and International Space Station Expedition 1 commander William Shepherd once told Cassidy he might be “kicked out of a NASA meeting” if he used some of the language.

More seriously, though, Cassidy said he is particularly looking forward to doing experiments measuring bone mass on the International Space Station. Since that research has applications for people on Earth (particularly those facing osteoporosis  he said it’s a demonstration of how spaceflight can help further health work on the ground.

His ultimate goal? “To be called back [to station] a second time.” Let’s hope he makes it.

Cassidy and his crewmates Pavel Vinogradov and Alexander Misurkin are scheduled to launch from the Baikonur Cosmodrome in Kazakhstan on March 29. Here a look at some of the final training the crew received at the Gagarin Cosmonaut Training Center in Star City, Russia:

O Canada! Hadfield Becomes First Canadian Commander of ISS

The change of command ceremony on the ISS. Via NASA TV.

With the Canadian national anthem playing, astronaut Chris Hadfield accepted the “keys” to the International Space Station from outgoing Expedition 34 commander Kevin Ford, as Hadfield became the first Canadian commander of the space station.

“Thank you very much for giving me the keys to the family car… we’re going to put some miles on it,” Hadfield said during the change of command ceremonies held on the ISS today, marking the start of the Hadfield-led Expedition 35.

“It is a tremendous honour to assume command of the ISS,” Hadfield said in a statement issued by the Canadian Space Agency. “I will do my best to acquit myself well, accomplish the utmost as a crew for all the International Partners, and fully live and share the experience on behalf of so many around our world”.

“It’s a first for our country,” Hadfield continued, “but is really just the culmination of a lot of other firsts. I stand on the shoulders of so many that have made this possible, and now take my turn to try and add to that solid foundation for the Canadians that follow.”

Ford and Russian cosmonauts Oleg Novitskiy and Evgeny Tarelkin arrived at the station on October 25, 2012 and leave the ISS on Friday, March 15, 2013, making a landing on the steppe of Kazakhstan in their Soyuz TMA-06M spacecraft. Remaining on board with Hadfield are NASA astronaut Tom Marshburn and Russian Flight Engineer Roman Romanenko. They will be joined on March 29 by Expedition 35/36 crew members Pavel Vinogradov, NASA Flight Engineer Chris Cassidy and Flight Engineer Alexander Misurkin.

The Challenges of Photography Aboard the ISS

Astronaut Don Pettit with some of his cameras on board the International Space Station. Credit: NASA

Don Pettit has always been one of our favorite astronauts. From his “Saturday Morning Science” and “Science Off the Sphere” to his Zero-G coffee cup, he offered a take on living and working in space that was always just a bit different from the rest of the astronaut corps. During his last stay on the International Space Station, he took photography to a new level, and fellow astrophotographer Christoph Malin has paid a fitting tribute to Pettit with this wonderful new video, which not only showcases Pettit’s work (and Malin’s too!), but allows him to explain the challenges of astrophotography aboard the ISS.

“It can not be emphasized enough, how Dr. Pettits innovative photographic work and his passion has changed the way we see earth from space,” Malin wrote on his Vimeo page. You can read about the genesis of this project at Malin’s website.

Enjoy.

“Making the invisible visible” – the ISS Image Frontier from Christoph Malin on Vimeo.