After a two-year hiatus, Virgin Galactic’s SpaceShipTwo VSS Unity resumed flying crew members beyond a 50-mile-high space milestone, marking the end of a years-long flight test program and setting the stage for the start of commercial service as soon as next month.
It was the first launch of the Unity rocket plane from its VMS Eve carrier airplane since July 2021, when company founder Richard Branson took a ride. Branson said he was “proud” to be watching from Spaceport America in New Mexico when Unity took flight.
During today’s suborbital flight test, known as Unity 25, the rocket plane sent two pilots and four other Virgin Galactic employees to a maximum height of 54.2 miles, at a top speed of Mach 2.94.
Virgin Galactic has reached another milestone in their fight test program. The VSS Unity spacecraft carried a third crew member on board, in its fifth rocket-powered test flight. It was the second time that the spacecraft reached space.
Stephen Hawking has spent decades theorizing about the Universe. His thinking on black holes, quantum gravity, quantum mechanics, and a long list of other topics, has helped shape our understanding of the cosmos. Now it looks like the man who has spent most of his adult life bound to a wheel-chair will travel to the edge of space.
In an interview with Good Morning Britain, Hawking said “Richard Branson has offered me a seat on Virgin Galactic, and I said yes immediately.” Hawking added that his “three children have brought me great joy—and I can tell you what will make me happy, to travel in space.”
It’s all thanks to Richard Branson and his VSS Unity spaceship, which is still under development by The Spaceship Company. The Unity is designed to launch not from a rocket pad, but from underneath a carrier aircraft. By eliminating enormously expensive rocket launches from the whole endeavour, Branson hopes to make space more accessible to more people.
The Virgin Galactic spacecraft is carried to an altitude of about 50,000 feet, then released from its carrier aircraft. Its rocket fires for about 1 minute, which accelerates the craft to three-and-a-half times the speed of sound, then is shut off. Then, according to Virgin Galactic, passengers will experience a “dramatic transition to silence and to true weightlessness.”
As the video shows, the spacecraft is still in glide testing phase, where it is carried to altitude, then released. There is no rocket burn, and the craft glides down and lands at its base.
This spaceflight won’t be Hawking’s first experience with weightlessness, however. To celebrate his 65th birthday, Hawking travelled on board Zero Gravity Corp’s modified Boeing 727 in 2007. At the time, that zero-g flight was in preparation for a trip into sub-orbital space with Virgin Galactic in 2009. But the development of Virgin Galactic’s spacecraft has suffered setbacks, and the 2009 date was not attainable.
Virgin Galactic’s stated aim is to “democratize space,” albeit at a cost of US $250,000 per person. But somehow I doubt that Hawking will be paying. If anyone has earned a free trip into space, it is Dr. Stephen Hawking.
Yes, there was a thumbs up. Through an interview with the father of the SpaceShipTwo pilot, the Daily Mail has reported more details of the near fatal plunge of Peter Siebold from the explosive event that destroyed Scaled Composites’ space vehicle. The ill-fated test flight resulted in the death of the co-pilot, Mike Alsbury. Siebold was visited by his father, Dr Klaus Siebold of Seattle, Washington, after Siebold was released from the hospital.
The Daily Mail story confirms what had been rumor from anonymous sources inside Scale Composites, the company founded by Burt Rutan that created the first privately developed vehicle to exceed the Karman line and reach the environs of outer space. As has been rumored, pilot Siebold, while on parachute, gave a thumbs up sign to a nearby chase plane to indicate he was conscious.
Dr. Siebold, speaking to a Daily Mail reporter, described how his son fell from 50,000 feet (15,240 meters) after SpaceShipTwo broke apart while traveling at a speed of mach 1.2, that is, 913 mph (1,470 km/hr). Early findings of the NTSB investigation have revealed that SpaceShipTwo’s twin tails feathered, that is, folded up, prematurely, creating excessive forces on the carbon composite air frame and led to the craft’s break up.
Dr. Siebold told the Daily Mail that his son is not sure how he separated from the vehicle during the violent event at supersonic speed. He could not recall any details of the sudden event. Such high speed events can take place in a matter of a second or less.
His co-pilot and close friend, Mike Alsbury, was not able to escape from the broken vehicle and fell with the debris to his death to the floor of the Mojave desert. The fall to Earth of the broken vehicle and the two test pilots took over four minutes traveling at a terminal velocity of approximately 150 mph (220 ft/sec, 67 m/s).
Dr. Siebold went on to describe his son’s narrow escape. Pilot Siebold could not recall the breakup and only recalls waking up at 20,000 feet (6096 meters). Both pilots flew with emergency parachutes. Such parachutes would not deploy or deploy correctly without the pilot separating from his pilot seat. As he awoke, Peter Siebold was sufficiently coherent to realize his circumstances and unbuckled himself. The parachute subsequently deployed but the accounting by the father, Dr. Siebold, did not make clear whether his son pulled the rip cord or the parachute was deployed automatically. Both pilots’ parachutes had mechanisms to force automatic deployment at 20,000 feet altitude. However, when a pilot is still strapped into his pilot seat, parachute deployment would be disabled or if executed, would cause severe injury to the person due to the propulsive forces that push the chute from the bag. Such forces would be forced upon the pilot’s body while locked into his seat.
The break-up led to three coinciding invasive events: sudden deceleration forces, the creation of high velocity projectiles – debris – surrounding the pilots, and a decompression event. The pilots wore simple oxygen masks without pressure suits, so their bodies withstood a split second change from cabin pressure of 1 atmosphere to that of a near-vacuum pressure. Any or all three events at breakup were responsible for the pilots’ losing consciousness within seconds if not immediately. The investigation has not revealed how co-pilot Alsbury lost his life, whether during the break-up or at impact with the Earth.
The story provides more details of Peter Siebold’s life. He has two young sons and was inspired by his father, a private pilot, to learn to fly and ultimately receive a job with Scaled Composites over ten years ago. Having no knowledge of a powered test flight that morning, Dr. Siebold described to the Daily Mail how he received a frantic call from his daughter in-law. Siebold’s wife and children were standing alongside their close friends – the children and wife of Mike Alsbury when the catastrophic event unfolded in the skies above them.
The flight took off during the early hours of October 31, 2014, on what appeared to be the beginning of a final phase of testing to qualify the spaceship for commercial flight. With early findings revealing that the event was apparently triggered by Alsbury’s inadvertently releasing the safing mechanism for feathering the tail sections, Scaled Composites and Virgin Galactic are beginning to express a likelihood that test flights will restart in as short as 6 months. Apparently, neither the NTSB nor FAA has enforced any grounding of the test program and vehicle. While pilot error may have been involved, the NTSB has included that the act of feathering the tails to slow down the vehicle during its descent from a high altitude requires unlocking the safing mechanism followed by a second step that folds the tail section. The second action would be similar to the act of lowering one’s landing flaps for landing: something which would be well understood by any private or commercial pilot.
In this reporter’s initial article for Universe Today on the SpaceShipTwo accident, it was already clear that the survival of one of the two pilots was remarkable. How did the SpaceShipTwo pilot Peter Siebold survive while co-pilot Michael Alsbury did not? The SpaceShipTwo test pilots do not wear pressure suits. There are no ejection seats like in a jet fighter but they do wear parachutes.
During the powered test flight of SpaceShipTwo on October 31st, at the moment that the vehicle broke up, its altitude was approximately 50,000 feet (15,240 meters) and it was traveling at mach 1.0 (1225 kph, 761 mph). Sudden decompression at that altitude leaves a pilot a few seconds before losing consciousness. To understand how Siebold survived, consider how this breakup compares to the Space Shuttle Challenger disaster. Challenger was at 48,000 feet (14,600 meters) and SpaceShipTwo was at 50,000 feet (15,240 meters) when their breakups occurred. Both were within the same speed regime – between mach 1 and mach 2.
I was a graduate student stationed at the Space Science Lab at Marshall Space Flight Center on that winter day in 1986. The NASA research researchers and professors, students from the University of Alabama, Huntsville, were sitting together in a conference room. The presenter concluded his final remarks on his research work then said, thank you and we can now turn around (to the NASA TV monitor) and watch Challenger launch. The countdown was at about T-20 seconds and so we watched, then a cloud appeared that with each passing moment did not seem normal. I recall watching and thinking, come on out, come on, you can make it. Challenger never did. There was no miraculous recovery with the Shuttle pilots steering it out of the cloud and back down to the Cape to cheers and a heroes welcome. We all filed out of the room in silence knowing what had happened but not wanting to believe it. Months later, experts concluded that the Challenger crew, most likely, survived the plunge back to Earth only to perish when the cabin impacted the ocean surface at over 200 mph (321 kph).
That was the first of two Space Shuttle accidents. The other, the Columbia disaster, occurred at a much higher altitude and velocity. That was a Saturday morning. Sleeping in after a long week of analyzing design documents and source code for the Mars Rovers, my girlfriend at the time nudged me awake to say, Tim, something is wrong with the Space Shuttle. I grudgingly got up, not wanting to see anything bad on a pleasant Saturday morning, but CNN was showing it break up over Texas.
I never worked in the Space Shuttle program but Shuttle was larger than life and every NASA employee took its triumphs and tragedies personally. For all those working on SpaceShipTwo and friends and family and those at the Mojave Air and Space Port on that day, it is no different. The tragedy and the moments surrounding the incident stay with you forever.
With all this in mind, I consider the question of how one man survived and the other did not with SpaceShipTwo. Both pilots were wearing only simple jump suits. No pressurization. They had supplemental oxygen through masks just like a fighter pilot has during flight. SpaceShipTwo did not afford them ejection seats like a fighter jet. Fighter jet pilots can eject at supersonic speeds but chances of surviving the shock of ejection rapidly falls with speed.
SpaceShipTwo is equipped with an escape hatch but once SpaceShipTwo disintegrated, the hatch was of no use. Both pilots were suddenly exposed to open air and a supersonic slipstream. So how did Siebold survive?
When the vehicle broke up, the sudden decompression surrounding them stripped objects from the interior. They were surrounded by lethal projectiles. It was a matter of chance whether one or both were struck by debris and lost consciousness. In the case of Shuttle Challenger, the astronauts experienced a sudden 20 G force at break up, however, analysts concluded that they likely survived the initial breakup. Challenger astronauts had helmets and a supplemental oxygen supply. One or two of the oxygen supplies had actually been activated and drained by their respective astronaut as the cabin was falling back to Earth. The Shuttle cabin survived the breakup largely intact and protected the astronauts from the supersonic slipstream outside.
SpaceShipTwo’s breakup likely exposed both pilots to the slipstream at still over mach 1. Flying debris was their first challenge. Second, the sudden decompression and then deceleration forces struck them. According to an anonymous source within Scaled Composites, the Washington Post reported yesterday that both pilots remained buckled into their seats. Alsbury never separated from the seat and cabin, and information reaching the public reveals that he impacted at high speed still within some fraction of the remaining cabin.
The anonymous sources within Scaled Composites revealed that Siebold was able to unbuckle from his seat and deploy his chute at 17,000 feet (5,181 m). It is very likely that even Siebold fell unconscious from the initial stresses of the breakup and from decompression at 50,000 feet (15,240 m). He would have fallen into an unconscious state at that height and only have woken up once near 17,000 feet (5,181 m) where the atmosphere is denser and at which a human can survive, such as at mountain altitudes in the Andes and Himalayas. Whether he gave a thumbs up to a nearby chase plane is sensational but it would indicate that he was conscious and aware. With the parachute integrated into his test pilot suit, it was critical for Siebold to regain consciousness and unbuckle from his seat in order to give his parachute any chance of deploying. This is likely where the fate of the pilots differ.
Alsbury quite possibly was struck by debris or was injured by G forces and decompression more severely than Siebold. He either never regained consciousness or was somehow trapped in his seat and surrounding debris of the cabin. The circumstances for Siebold in his descent after the breakup were apparently fortuitous and gave him the chance to re-awaken and unbuckle. Comments in press reports from people around the incident or aware of the technology included that the pilots’ parachutes had automatic deployment mechanisms which activate at 10,000 feet (3048 m). In Alsbury’s or Siebold’s situation, without releasing themselves from their seats, the automatic deployment system would not have worked. If the chutes were to automatically deploy while the pilots were still strapped to their seats, the force from the deploying chute would have caused serious injury to the pilot. I’ve never jumped from a perfectly good flying airplane — as pilots often comment to jumpers — but I recall hearing that a deploying chute will knock a person on their backs with injury if they’re within 20 feet (6.1 meers) of it.
So, Siebold’s survival is miraculous or lucky, however you want to perceive it. For Michael Alsbury, godspeed. There are many factors that lead up to a powered test flight. Then, the moment — the rush of acceleration, the roar of the SpaceShipTwo engine — has some effect on the clarity of any pilot. NTSB analysis might reveal that the Human-Machine Interface (HMI) was also a factor in the actions that took place inside the cockpit. If only one of two necessary steps to execute the tail section’s feathering took place and yet it feathered, then again, something was beyond the control of the pilots.
In a Monday afternoon press conference, acting NTSB chairman Christopher Hart confirmed that the safety lock on Virgin Galactic’s SpaceShipTwo feathering mechanism was prematurely unlocked moments before breakup. Hart also quickly stated that this would be the last on-site press conference. The NTSB is nearing the completion of data gathering and the team will be returning to Washington DC with the data to undertake the facts compilation followed by the analysis.
Hart reiterated that the test flight was rich in telemetry. He said that the supply of data could expedite the analysis but he cautioned that they still expect the investigation to take 12 months to conclude and release a final report. He also added that as analysis proceeds, the NTSB would provide updates and he encouraged interested parties including the public at-large to undertake analysis of the available data; however, he emphasized that the conclusions drawn would be based on NTSB analysis alone.
From the data released and statements by Hart during the press conference, it is now clear that the NTSB recognizes that the feathering was not to be deployed until SpaceShipTwo achieved mach 1.4. The statement that acting chairman Hart made appeared to be explicitly referencing the Flight Card – the plan of actions and constraints for the flight. If this was the specific wording on the Flight Card, then it would have permitted a pilot to interpret it in various ways.
Sunday, it was reported that SpaceShipTwo was flying at about Mach 1.2 when break up occurred. As a private pilot familiar with the impact that flight conditions have on operations of an aircraft, I would add that the SpaceShipTwo constraint of mach 1.4 for executing feathering is likely intended to be viewed by the pilots-in-control as the descent speed after SpaceShipTwo had achieved maximum altitude during a flight to the edge of the atmosphere. During descent, mach 1.4 would be achieved at a much higher altitude where the air density is much lower and stresses from the feathering would also be much lower; SpaceShipTwo is designed to feather with those environmental conditions. During previous tests of SpaceShipTwo when feathering was tested at low altitude, the vehicle was flying far below mach 1, i.e., subsonic. The vehicle in that flight regime had no difficulty withstanding stresses during the test of feathering. It should be emphasized that the strict rules under which the NTSB proceeds with an investigation do not allow the investigators to inject assumptions based on their past experience.
A timeline of events leading up to catastrophic breakup of SpaceShipTwo was stated by the NTSB acting chairman:
10:07:19: SpaceShipTwo is released from the carrier craft, WhiteKnightTwo
10:07:21 SpaceShipTwo’s engine starts
10:07:29 SpaceShipTwo reaches mach 0.94
10:07:31: SpaceShipTwo exceeds the speed of sound – mach 1.02. Between 10:07:29 and 10:07:31, the feathering safety was unlocked.
10:0 7:34: All telemetry was lost
The NTSB has also created a new team responsible for evaluating the Human-Machine Interface (HMI) on SpaceShipTwo. HMI is a discipline that has gained increased interest within several manufacturing sectors, particularly in aircraft cockpit design. The performance of modern aircraft, places greater demand on human performance. The formulation of a Human performance team evaluating the HMI of SpaceShipTwo indicates that the NTSB wants to assess the quality of the cockpit control panels and whether the configuration of switches contributed to pilot error.
While most of the debris is confined to a 5 mile swath of desert, Hart stated that debris has now been found as far as 30 to 35 miles from the immediate debris field.
Besides the apparent focus by the NTSB on the unplanned feathering, Hart stated that they are checking the subsystems of the spacecraft for integrity – pneumatics, flight control, electrical, and so on.
Hart concluded the press conference by taking questions from reporters.
Q. Had the pilot been interviewed?
A. Not yet and not until he is fit to be interviewed.
Q. Was the Flight Card reviewed?
A. The NTSB has reviewed the flight card for procedures and constraints. According to Hart, the card stated not to release the safety lock of the feathering mechanism until mach 1.4. The Flight Card describes the steps that a flight crew is to take to complete a successful mission.
Q/A. Hart confirmed that 2 pilot actions were necessary for feathering. 1) Unlock the safety, and 2) engage feathering lever. U.T. – Hart could not say if both pilots were necessary, that is, shared the two step process.
Q/A. A reporter contentiously asked Hart who was in the right seat. Hart stated that he did not know and also was unwilling to assume that it was the co-pilot, Alsbury. The reporter probing him further asked about his statements from Sunday. Hart agreed that he was mistaken to have assumed on Sunday that it was the copilot.
Finally, a review of the NTSB press conference video, placed on YouTube, presented a clarification as text on video. It stated that the co-pilot was residing in the right seat and was responsible for unlocking the feathering. At this preliminary stage of the investigation, it would appear that Alsbury’s death in the accident was due to his premature unlocking of the feathering mechanism. Hart did not state this but the circumstantial evidence so far is pointing in that direction.
Officials from Virgin Galactic and Scaled Composites have confirmed one of the pilots was killed and another was injured in a major anomaly during a test flight of SpaceShipTwo today (Friday, October 31). The names of the pilots have not yet been released. During a hastily-called press conference, officials said launch of the WhiteKnightTwo plane carrying SpaceShipTwo occurred at 9:20 am PDT this morning and at 10:10 am, SpaceShipTwo (SS2) was released for its test flight to the edge of the atmosphere and space. Two minutes into its flight, SpaceShipTwo encountered an anomaly. Officials had no immediate cause but the rocket motor is the first point of concern.
During the press conference, it was stated that the rocket motor called RocketMotorTwo (RM2) had itself been flown in four previous flights but this was the first flight of version 2 now using a nylon-type plastic called thermoplastic polyamide, replacing the rubber-based fuel used by SpaceShipOne; ultimately too problematic for the SS2 design. Participating in the press conference were executives Kevin Mickey, CEO of Scaled Composites, George Whitesides, CEO of Virgin Galactic and Stu Witt, chief executive of Mojave Air and Space Port. They emphasized that the nylon-based rocket fuel and engine had been thoroughly tested on the ground and they were confident of its readiness for in-flight testing.
Within seconds of release, SpaceShipTwo’s engine ignited for flight. Two minutes into the powered flight would have permitted considerable time for SpaceShipTwo to gain altitude and speed. The pilots were not wearing pressure suits, only masks providing supplemental oxygen. At 50,000 feet and more, conditions are equivalent to space, and fluids in the human body begin to boil – turn from liquid to gas. The velocity of the surrounding jetstream upon breakup or ejection would have caused loss of their masks and any oxygen possibly carried with them.
Scaled Composites did not state during the press conference at what altitude the accident occurred. Based on the time of the accident – 2 minutes into powered flight – the vehicle could have been anywhere from 40,000 feet (12 km) to as high as 200,000 feet (60 km). It is more likely that, for this first flight of the nylon-based propellant, the trajectory was left shallow or the full potential of the motor not tested.
SpaceShipTwo does not have ejection seats but is equipped with an escape hatch. The fuselage is fully pressurized for the pilots and planned paying customers. It is not yet determined if the test pilots escaped from the hatch or were thrown from the vehicle after its mid-air breakup.
It is standard practice for any test pilot in an experimental vehicle to be wearing a parachute. SpaceShipTwo would be no exception. Furthermore, being aware of the flight conditions and escaping from a vehicle at high altitude, the chutes very likely had automatic mechanisms to deploy, assuming unconsciousness.
The press conference did not provide further details. At noon time PST, it did not seem evident that the rescue teams knew the conditions of the crew. Rescue teams at the Mojave airport supporting Scaled Composites were prepared and were quickly dispatched. The debris field was located but some more time was required to find both test pilots.
“We do know one of the crew members was met by emergency responders, treated on the scene, and transported to Antelope Valley Hospital,” said Witt at the press conference. “We also know that we have one fatality.”
During the press conference, Scaled Composite and Virgin Galactic executives emphasized their grief and concern for the surviving pilot, the families and friends. The Mojave desert-based companies are a tight knit group and a loss is certainly extremely personal to every team member. The executives did also emphasize once again that “space is hard.” This was first stated by President Kennedy during his famous speech at Rice University. Those words were echoed earlier this week when Orbital Sciences Antares rocket exploded seconds into flight and the leaders of lost payloads were also quick to state the same. The Scaled Composites expressed during the press conference that they remain determined and committed and now in honor of a fallen test pilot and another fighting for his life.
Now a accident investigation begins. The FAA and NSTB will be involved. The investigation of this type of accident will takes months. For Scaled Composites who is effectively responsible and the owner of the flight systems will be analyzing their telemetry and are now forced to consider if the new rocket fuel is worthy of flight or whether they will turn to another solid fuel for SpaceShiptTwo. Sir Richard Branson, owner of the Virgin Group including Galactic has stated that they are five years behind schedule and most of this is attributed to engine development troubles. Company executives stated during the press conference that Branson is expected in Mojave within 24 hours.
Correction: November 1, 2014
In the original article of October 31, 2014, released immediately after the first press conference in the aftermath of the fatal test flight accident, it was stated that the rocket engine in the test flight was using thermoset plastic similar to nylon. The article is now corrected. The rocket fuel of version 2 of RocketMotorTwo is a thermoplastic polyamide which is similar to nylon.
According to reports on Twitter, Virgin Galactic’s SpaceShipTwo exploded in midflight, and debris was seen scattered on ground in the Mojave Desert in California. Virgin tweeted that the rocket plane suffered an “in-flight anomaly” during a powered test flight on Friday. Other witnesses said it involved a fatal explosion and crashed.
“The ship broke apart and started coming down in pieces over the desert,” tweeted Doug Messier (@spacecom), managing editor of the Parabolic Arc website.
The Associated Press is now reporting that the California Highway Patrol reports 1 fatality, 1 major injury after the SpaceShipTwo accident.
Virgin Galactic provided this statement via Twitter:
Virgin Galactic’s partner Scaled Composites conducted a powered test flight of #SpaceShipTwo earlier today. During the test, the vehicle suffered a serious anomaly resulting in the loss of SpaceShipTwo. WK2 (WhiteKnightTwo) landed safely. Our first concern is the status of the pilots, which is unknown at this time. We will work closely with relevant authorities to determine the cause of this accident and provide updates ASAP.
Virgin Galactic initially sent the news via this tweet:
#SpaceShipTwo has experienced an in-flight anomaly. Additional info and statement forthcoming.
The ABC News affiliate in California reported the rescue crew was seen “carrying person on stretcher to chopper.”
Doug Messier, who was onsite at Mojave for the test flight, also said via Twitter that he saw one of the crash sites and a “body still in seat.” Also that “Debris from the ship was scattered all over the road.”
SpaceShipTwo holds two pilots; they are each equipped with parachutes, but not ejection seats. Reports indicated at least one deployed parachute was sighted.
Other witnesses reported that SpaceShipTwo exploded after ignition of the engines. According to Spaceflightnow.com, SpaceShipTwo was making its first powered flight since January and was testing a redesigned nylon-based solid rocket motor. This was the 55th flight of SpaceShipTwo and its 35th free flight.
Just after 10 a.m. PDT today, ground controllers at the Mojave Spaceport lost contact with SpaceShipTwo, an experimental space flight vehicle. The incident occurred over the Mojave Desert shortly after the space flight vehicle separated from WhiteKnightTwo, the vehicle that carried it aloft. Two crew members were on board SpaceShipTwo at the time of the incident. WhiteKnightTwo remained airborne after the incident. The FAA is investigating.
The National Transportation Safety Board (NTSB) tweeted that they are going “to send Go-Team to investigate Virgin Galactic test flight crash in Mojave, Calif.”
Update: According to the Kern County Sheriff’s spokesman, the co-pilot was killed, but pilot ejected and suffered moderate to major injuries in Virgin Galactic crash. Virgin Galactic did not provide information prior to the flight of who would be on board today’s test flight.
We’ll provide more updates as they become available.
As Virgin Galactic aims for a spaceflight this year, founder Richard Branson is asking the public to help track down the kid (now an adult) who prompted him to start the company 26 years ago.
Above you can see a Virgin video showing an 1988 clip from an old BBC show called “Going Live!” Branson answered a question from a young fan, Shihan Musafer, asking if he’d go to space. Of course, you all know what his answer was.
“After that call, I set about registering the name Virgin Galactic,” Branson wrote in a blog post. “We’d love to track down Shihan to say a personal thank you for helping to inspire the idea with that phone call. We want to offer Shihan the chance to join Virgin Galactic as a VIP guest to witness a spaceflight.”
If you have any information, Branson encourages you to tweet @richardbranson and @virgingalactic with the hashtag #shihanmusafer. (Early results on Twitter show a lot of retweets and few ideas of how to find him.) Meanwhile, his company has been busy putting SpaceShipTwo through its paces, making powered test flights — such as this one you can see from January.
Since the dawn of the Space Age in 1957, thousands of artifacts and memorabilia have been flown into space. Some have been hoisted on brief suborbital flights, while others have been flung out of the solar system, never to return. And of course, it’s become a fashionable — and highly commercialized — trend as of late to briefly loft products, stuffed animals, etc via balloon towards the tenuous boundary of space. Fly a souvenir or artifact into orbit, and it goes from mundane to priceless. But a few may also serve as a final testament to the our ephemeral existence as a species long after our passing.
Here’s a look at some of the most memorable objects sent into space:
New Horizons Memorabilia
Launched on January 19th, 2006, New Horizons is headed towards a historic encounter with Pluto and its moons next year. From there, New Horizons will survey any Kuiper Belt objects of opportunity along its path and then head out of the solar system, becoming the fifth spacecraft to do so. In addition to a suite of scientific instruments, New Horizons also carries the ashes of Pluto discoverer Clyde Tombaugh, a Florida & Maryland state quarter, a piece of Scaled Composites SpaceShipOne, and an American flag. These will doubtless confuse any extraterrestrial salvagers!
The Pioneer Plaques
The first spacecraft sent on escape trajectories out of our solar system, the Pioneer 10 and 11 spacecraft each carry a plaque which serves as a sort of postcard “greeting” to any future interceptors. The plaque depicts a diagram of the solar system, a map of our location in the galaxy using the positions of known pulsars, and a nude man & woman, which actually generated lots of controversy. Scientist James Van Allen tells of deliberately placing a fingerprint on the Pioneer 10 plaque in his biography The First Eight Billion Miles.
The Voyager 1 and 2 Golden Records
Conceived and designed in part by Carl Sagan, these records contain images and sounds of the Earth that’ll most likely outlive humanity. The records carry greetings in 55 languages, music ranging from Mozart to Chuck Berry, 116 images and more, along with instructions and a stylus for playback. The record is also enclosed in an aluminum cover electroplated with Uranium-238, which an alien civilization could use to date its manufacture via half-life decay.
The Mars Curiosity Penny
Strange but true: The Mars rover Curiosity carries a 1909 U.S. Penny for a backup camera calibration target. The penny itself is embedded just below the primary color calibration targets used by Curiosity’s MArs Hand Lens Imager (MAHLI). Rare enough on Earth, the 1909 Lincoln “Mars penny” will be priceless to future collectors!
Juno’s LEGO Figurines
Mini-figurines of Galileo and the Roman deities Jupiter and Juno were launched in 2011 aboard NASA’s Juno spacecraft en route to Jupiter . LEGO has flown products aboard the U.S. Space Shuttles and to the International Space Station previously, but Juno’s cargo represents the “most distant LEGO launch” ever. The figurines will burn up in Jupiter’s atmosphere along with the spacecraft at the end of the mission in October 2017.
Apollo 15 Postal Covers Fiasco
Apollo 15 astronauts got in some hot water over a publicity scheme. The idea that stamp collector and dealer Hermann Sieger approached the astronauts with was simple: 400 commemorative postage stamp covers would be postmarked at point of departure from the Kennedy Space Center and again at the return point of arrival aboard the USS Okinawa after their circuitous journey via the Moon. NASA was less than happy with the whole affair, and Command Module Pilot Al Worden recounts the aftermath in his book, Falling to Earth.
Haiku for MAVEN
Last year’s MAVEN mission to Mars also carried haiku submitted by space fans. Over 12,530 valid entries were submitted and over 1,100 haiku received the necessary minimum of two votes to be included on a DVD disk affixed to the spacecraft. MAVEN reaches orbit around Mars in October 2014.
Luna 2: A Russian Pennant on Moon
On September 12th, 1959, the Soviet Union’s Luna 2 spacecraft became the first man-made object to impact the Moon. Luna 2 carried two spherical “pennants” composed of pentagon-shaped elements engraved with the USSR Coat of Arms and Cyrillic letters translating into “CCCP/USSR September 1959.” An identical pennant is now on display in the Kansas Cosmosphere.
A GeoSat Time Capsule Aboard EchoStar XVI
A disk entitled Last Pictures similar to the Voyager records was placed on a satellite headed to geosynchronous orbit in 2012. Launched aboard EchoStar XVI, Last Pictures is an ultra-archival disk containing 100 snapshots of modern life along with interviews with several 21st century artists and scientists. Geosynchronous satellites aren’t subject to atmospheric drag, and may be the last testament to the existence of humanity on Earth millions of years hence.
Lunar Prospector Carries An Astro-Geologist’s Ashes to the Moon
Though he never made the selection to become an astronaut, scientist Eugene Shoemaker did make a posthumous trip to the Moon. The Lunar Prospector spacecraft departed Earth with Shoemaker’s ashes on January 7th, 1998 in a capsule wrapped in brass foil. Lunar Prospector impacted the south pole of the Moon on July 31st, 1999.
SpaceX Takes Star Trek Actor to Space
The ashes actor James Doohan (AKA Scotty) were launched aboard a 2012 SpaceX flight to the International Space Station. The COTS Demo Flight, or COTS 2, was the first commercial spacecraft to berth at the ISS. SpaceX had flown a small amount of Doohan’s ashes on the 2008 unsuccessful test launch of the Falcon 1 rocket.
Cheese Wheel Makes a Suborbital Journey
All eyes were also on SpaceX during their December 8th 2010 maiden flight of the Dragon space capsule. And the hinted mystery cargo? None other than a wheel of cheese, a nod by SpaceX CEO Elon Musk to a classic Monty Python sketch.
The Apollo 12 “Moon Museum”
Did it really go into space? One of the legends surrounding the Apollo program is the existence of what’s been dubbed the “Moon Museum.” This was a postage stamp-sized “gallery” of art which included a sketch by Andy Warhol and other 1960s artists that was supposedly attached to descent stage of Apollo 12 and left on the Moon. It will be up to future lunar visitors to confirm or deny its existence!
…And lastly, I give you the “Space Hubcap”
Was the first man-made object propelled into space actually a 1 ton armor plate? On August 27th, 1957 — just two months prior to Sputnik 1 — the Pascal-B underground nuclear test was conducted in southern Nevada. During the explosion, a steel plate cap was blasted off of a test shaft. The plate could be seen in the initial high-speed video frames, and it was estimated to have reached a speed six times the sufficient escape velocity to depart Earth. To this day, no one knows if this strange artifact of early Space Age folklore still roams the void of space, or simply vaporized due to atmospheric compression at “launch”.