KENNEDY SPACE CENTER, FL – Amidst the frenzy of ‘Sunshine State’ preparations for Cat 5 monster Hurricane Irma and quite dismal weather favorability odds, the skies surrounding the Florida Space Coast suddenly parted just in the nick of time enabling the Air Force’s secret military X-37B spaceplane to blast off this morning (Sept. 7) on a SpaceX Falcon 9 as the booster nailed another thrilling ground landing back at the Cape.
The SpaceX Falcon 9 roared to life at 10 a.m. EDT (1400 UTC) Thursday morning and soared aloft from seaside Launch Complex 39A on NASA’s Kennedy Space Center into nearly clear blue skies after the classified launch time was kept guarded until just 10 minutes before liftoff.
Due to the potential for catastrophic destruction from approaching Hurricane Irma this was the last chance for the X-37B to escape Florida to orbit before the Kennedy Space Center and Cape Canaveral Air Force Station almost certainly close on Friday, the backup launch opportunity.
The X-37B OTV spaceplane reached orbit as planned on SpaceX’s 13th launch of the year.
“The 45th Space Wing successfully launched a SpaceX Falcon 9 launch vehicle Sept. 7, 2017, from Kennedy Space Center’s Launch Complex 39A,” the USAF and 45th Space Wing confirmed in a post launch statement.
The Falcon 9 launch was absolutely gorgeous taking place under near perfect weather conditions at launch time and putting on a long sky show as the rocket accelerated to orbit with its precious cargo.
The nine Merlin 1D first stage engines ignited to generate a combined 1.7 million pounds of thrust fueled by liquid oxygen and RP-1 propellants, sending a huge exhaust plume billowing from behind as the rocket ascended off pad 39A and thundered aloft.
After first stage burnout and main engine cutoff the stages separated at T plus 2 min 26 seconds.
After successfully delivering the secret USAF mini-shuttle to orbit, SpaceX engineers completed the 2nd half of the double headed space spectacular when the Falcon 9 first stage booster successfully made a guided soft landing back at Cape Canaveral Air Force Station (CCAFS).
The boosters high speed descent generated multiple shockingly loud sonic booms as the 156-foot-tall first stage approached SpaceX’s dedicated Landing Zone-1 (LZ-1) on CCAFS that reverberated for dozens and dozens of miles across and beyond the Space coast region.
The mid-morning daylight first stage precision guided landing offered spectators a magnificent up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching people and payloads to space.
Meanwhile, Hurricane Irma continues barreling towards Florida packing winds of 185 mph as one of the strongest Atlantic storms ever. It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.
Here’s the latest storm track updated to Friday morning Sep 8:
The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall for the U.S. Air Force Rapid Capabilities Office.
“The OTV is designed to demonstrate reusable spacecraft technologies for America’s future in space and operate experiments, which can be returned to and examined on Earth,” said the USAF.
Also known as the Orbital Test Vehicle, the X-37B launched on the OTV-5 mission marks the programs maiden liftoff on the 230-foot-tall SpaceX Falcon 9.
All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California of Florida.
The X-37B launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.
The Boeing-built X-37B is processed for flight at the Kennedy Space Center, FL, using refurbished former NASA space shuttle processing facilities (OPFs) now dedicated to the reusable mini-shuttle, also named the Orbital Test Vehicle (OTV).
The last blastoff of the X-37B took place more than 2 years ago on May 20, 2015 when the OTV-4 mission launched on a ULA Atlas V on May 20, 2015 from Space Launch Complex-41 on Cape Canaveral Air Force Station.
After spending a record setting 718 days in orbit, the X-37B vehicle completed its fourth mission with a runway landing back at KSC’s Shuttle Landing Facility earlier this year on May 7, 2017.
Overall the OTV unmanned spacecraft have spent a total of 2,085 days in orbit.
The 11,000 pound (4990 kg) state-of-the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).
The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.
Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.
Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – Although its far from sunny in the so called ‘Sunshine State’ the secret X-37B military mini-shuttle is set for a SpaceX blastoff and booster landing combo Thursday, Sept. 7 – even as the looming threat from Cat 5 Hurricane Irma forced Florida’s Governor to declare a statewide ‘State of Emergency.’
Launch preparations were in full swing today on Florida’s Space Coast for liftoff of the hi tech USAF X-37B reusable spaceplane- hoping to escape to orbit for the first time atop a SpaceX Falcon 9 rocket and just in the nick of time tomorrow, before the impending threat of monster storm Irma potentially lashes the launch pad at NASA’s Kennedy Space Center in the center of the states long peninsula.
I witnessed the entire SpaceX Falcon 9 rocket and payload stack being rolled horizontally up the incline to the top of Launch Complex 39A late this afternoon, Sept. 6, during our media visit for up-close camera setup.
Rather remarkably the relatively dismal weather forecast has brightened considerably in the final hours leading to Thursday’s scheduled launch and the forecast heavy rain showers and thunder have dissipated in the time remaining between now and liftoff.
The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall.
The path to launch was cleared following the successful engine test firing of the Falcon 9 first stage I witnessed late last week, Thursday afternoon, Aug. 30.
During the hold down static fire test all nine Merlin 9 stage engine were ignited and fired up to full throttle for several seconds. See my static fire story here.
Although the exact launch time remains a closely guarded U.S. Air Force secret, liftoff of the X-37B is slated to occur sometime during a 5 hour long window.
The launch window for the X-37B on the OTV-5 mission opens at 9:50 a.m. EDT (13:50 UTC) and spans until 2:55 p.m. EDT (18:55 UTC) Sept. 7 from seaside Launch Complex 39A on NASA’s Kennedy Space Center.
SpaceX will offer their own live webcast beginning approximately 15 minutes before launch starting at about 9:35 a.m. EDT.
You can watch the launch live at NASA TV at the SpaceX hosted Webcast at – spacex.com/webcast
In the event of delay for any reason, the next launch opportunity is Friday, Sept 8 at approximately the same time and window.
However amidst the heavy duty Hurricane Irma preparations all around, nothing is certain. Local area schools in Brevard County have closed and local residents are preparing their homes and apartments to hunker down, buying food and essentials putting up storm shutters, topping off gas and energy supplies and more.
“If for any reason we cannot launch tomorrow we will reevaluate whether or not we can still support another attempt on Friday, said Wayne R. Monteith, Brig Gen, USAF, Commander, 45th Space Wing.
The weather forecast overall is about 50% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. But the opportunity varies within the long window and the exact launch time is currently classified.
“Hurricane Irma is forecast to be approximately 900 miles southeast of the Spaceport during Thursday’s launch attempt, so while Irma certainly bears watching, the stalled boundary will be the main factor in Thursday’s weather,” noted the 45th Space Wing Weather Squadron.
The primary concerns on Sept. 7 are for cumulus clouds and for thick clouds in the flight path.
The odds drop to 40% favorable for the 24 hour scrub turnaround day on Friday, Sept 8
Everything is currently on track for Thursday’s launch of the 230 foot tall SpaceX Falcon 9 on the X-37B OTV-5 mission.
“The Air Force Rapid Capabilities Office is undergoing final launch preparations for the fifth mission of the X-37B Orbital Test Vehicle [OTV],” the Secretary of the Air Force Public Affairs announced. “The OTV is scheduled to launch on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle.
The X-37B will be launched for the fifth time on the OTV-5 mission atop a SpaceX Falcon 9 on Sept. 7 from Launch Complex 39A on the Kennedy Space Center Florida into low Earth orbit.
The Boeing-built X-37B is processed for flight at KSC using refurbished NASA space shuttle processing facilities now dedicated to the reusable mini-shuttle, also known as the Orbital Test Vehicle (OTV). It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.
The OTV-5 mission marks the first launch of an X-37B spaceplane by SpaceX.
All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California or Florida.
“The many firsts on this mission make the upcoming OTV launch a milestone for the program,” said Randy Walden, the director of the Air Force Rapid Capabilities Office.
“It is our goal to continue advancing the X-37B OTV so it can more fully support the growing space community.”
SpaceX will also attempt another land landing of the 156-foot-tall Falcon 9 first stage back at Landing Zone-1 (LZ-1) at the Cape.
The Falcon 9 first stage is equipped with a quartet of landing legs and grid fins to enable the rocket recycling plan.
This marks the 7th time SpaceX attempts a ground landing at the Cape.
The booster will touch down about 8 minutes after launch and generate multiple sonic booms screaming loudly across the surrounding region and beyond.
“The fifth OTV mission will also be launched into, and landed from, a higher inclination orbit than prior missions to further expand the X-37B’s orbital envelope.”
The daylight first stage precision guided landing should offer spectators a thrilling up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching to space.
The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).
The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.
Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.
Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
SpaceX CEO and founder Elon Musk made public the first official photo of the commercial space company’s spacesuit design with a post on Instagram today. He indicated he’ll have more details soon and said this first ‘reveal’ isn’t just a prototype design; it’s a real, working spacesuit.
“Worth noting that this actually works (not a mockup)” Musk said. “Already tested to double vacuum pressure.”
The person inside the suit – in what looks to be a computer generated photo – looks much like Musk himself, although the face is rather hard to make out.
Following the design of many previous spacesuits, it comes in white. Musk said in designing the suit, it was “incredibly hard to balance esthetics and function. Easy to do either separately.”
There has been some discussion on social media about the orientation of the flag, as it appears to many to be “backward.” However, this follows US military custom of flags on uniforms, positioned on the right shoulder in this same orientation, with stars facing forward. This gives the effect of the flag “flying in the breeze” as the person in the uniform/spacesuit moves forward.
These are the spacesuits that will be worn by the astronauts who make the first flights on the Dragon Capsule to the International Space Station as part of the commercial crew program. The target for the first humans aboard Dragon is next year, mid-2018.
If you are looking for a spacesuit that has a little more pop of color — as well as a heart-felt mission — NASA also held a special news conference from the International Space Station today revealing a colorful new spacesuit created by children around the world who are suffering from cancer.
Touched…what an inspiring project @spacesuitart is.These children are such an amazing example of the strength of humanity working together pic.twitter.com/6HfucuWoJc
The Space Suit Art Project is a collaboration between NASA, spacesuit maker ILC Dover and children in hospitals around the world. This suit, called Unity, is the third in a series of suits. The suits are made of colorful patches made by young cancer patients, giving the kids an opportunity to be part of a lasting and out-of-this-world project.
Astronaut Jack Fischer donned the special (non-functioning) spacesuit and said it was tricky to get into, just like a real spacesuit. But this suit, Fischer said, “gives you the honor to represent the bravest kids in the world, who put it together.” Fischer’s daughter Bethany, is a cancer survivor.
While Dragon maneuvered in ever so slowly guided by lasers, NASA astronaut Jack Fischer and ESA (European Space Agency) astronaut Paolo Nespoli carefully extended the stations robotic arm to reach out and grapple the gumdrop shaped capsule.
They deftly captured the Dragon CRS-12 resupply spacecraft slightly ahead of schedule at 6:52 a.m. EDT with the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm while working at a robotics work station in the seven windowed domed Cupola module.
The million pound orbiting outpost was traveling over the Pacific Ocean north of New Zealand at the time of capture.
Liftoff of the SpaceX Falcon 9 took place precisely on time 2 days earlier with ignition of the 9 Merlin 1D first stage engines from seaside pad 39A at NASA’s Kennedy Space Center in Florida today (Aug. 14) at 12:31 p.m. EDT (1631 GMT).
The two stage Falcon 9 stands 213-foot-tall (65-meter-tall). The combined output of the 9 Merlin 1D first stage engines generates 1.7 million pounds of liftoff thrust, fueled by liquid oxygen and RP-1 propellants.
See an exciting gallery of launch imagery and videos including the thrilling ground landing of the 156 foot tall first stage booster back at Cape Canaveral at Landing Zone-1 – from this author and several space colleagues.
Monday’s picture perfect lunchtime liftoff of the unmanned SpaceX CRS-12 Dragon cargo freighter bound for the ISS and loaded with over 3 tons of science, research hardware and supplies including a hefty cosmic ray detector named ISS-CREAM, medical research experiments dealing with Parkinson’s disease, lung and heart tissue, vegetable seeds, dozens of mice and much more – came off without a hitch.
Ground controllers then carried out the remainder of the work to berth the SpaceX Dragon cargo spacecraft at the Earth facing port on the Harmony module of the International Space Station at 9:07 a.m. EDT.
The crew was perhaps especially eager for this Dragons arrival because tucked inside the more than 3 tons of cargo was a stash of delicious ice cream treats.
“The small cups of chocolate, vanilla and birthday cake-flavored ice cream are arriving in freezers that will be reloaded with research samples for return to Earth when the Dragon spacecraft departs the station mid-September,” said NASA.
Indeed the crew did indeed open the hatches today, early than planned, a few hours after arrival and completion of the requisite safety and leak checks.
The whole sequence was broadcast on NASA TV that began live arrival coverage at 5:30 a.m showing numerous stunning video sequences of the rendezvous and grappling often backdropped by our precious Home Planet.
The current multinational Expedition 52 crew serving aboard the ISS comprises of Flight Engineers Paolo Nespoli from ESA, Jack Fischer, Peggy Whitson and Randy Bresnik of NASA and Sergey Ryazanskiy and Commander Fyodor Yurchikhin of Roscosmos.
The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.
SpaceX holds a NASA commercial resupply services (CRS) contract that includes up to 20 missions under the original CRS-1 contract.
The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. 20 mice are also onboard. This will support dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.
Video Caption: CRS-12 launch from Pad 39A on a Falcon 9 rocket. Pad camera views from the launch of the CRS-12 mission carrying 6415 pounds of supplies and equipment to the International Space Station on August 14, 2017. Credit: Jeff Seibert
The SpaceX Falcon 9/Dragon CRS-12 launch was the first of a rapid fire sequence of a triad of launches along the Florida Space Coast over the next 11 days of manmade wonder – Plus a Total Solar ‘Eclipse Across America’ natural wonder sandwiched in between !!
Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the upcoming ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Aug 17-18: “TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
KENNEDY SPACE CENTER, FL – Todays (Aug. 14) stunning SpaceX Space Station cargo delivery blastoff to the International Space Station (ISS) and flawless first stage landing from the Kennedy Space Center and Cape Canaveral Air Force Station in the Sunshine State kicked off a rapid fire sequence of liftoffs planned for mid August.
All 9 SpaceX Falcon 9 Merlin 1D first stage engines ignited precisely on time from seaside pad 39A at NASA’s Kennedy Space Center in Florida today (Aug. 14) at 12:31 p.m. EDT (1631 GMT).
“It was a gorgeous day and a specular launch,” said Dan Hartman, NASA deputy manager of the International Space Station Program, at the post launch briefing at the Kennedy Space Center press site.
The 9 Merlin 1D’s of the two stage 213-foot-tall (65-meter-tall) Falcon 9 generate 1.7 million pounds of liftoff thrust fueled by liquid oxygen and RP-1 propellants.
“Just greatness to report about the launch,” said Hans Koenigsmann, SpaceX vice president of Flight and Build Reliability at the post launch briefing.
“The second stage deployed Dragon to a near perfect orbit. The first stage was successful and made a perfect landing. From what I’ve heard, it’s right on the bullseye and made a very soft touchdown, so it’s a great pre-flown booster ready to go for the next time.”
So its 1 down and 2 launches to go along the Florida Space Coast over the next 11 days of manmade wonder – Plus a Total Solar ‘Eclipse Across America’ natural wonder sandwiched in between !!
Monday’s picture perfect lunchtime liftoff of the unmanned SpaceX CRS-12 Dragon cargo freighter bound for the ISS and loaded with over 3 tons of science, research hardware and supplies including a hefty cosmic ray detector named ISS-CREAM, medical research experiments dealing with Parkinson’s disease, lung and heart tissue, vegetable seeds, dozens of mice and much more – came off without a hitch.
“We’re excited that about three quarters of the payload aboard is science,” noted Hartman. “With the internal and external payloads that we have going up, it sets a new bar for the amount of research that we’ve been able to get on this flight.”
And all 6 astronauts and cosmonauts serving aboard the station are especially looking forward to unpacking and serving up a specially cooled and hefty stash of delicious ice cream!
The ice cream, medical experiments and mice were all part of the late load items added the evening before liftoff – work that was delayed due to thunderstorms and completed just in time to avoid a launch delay.
A huge crowd of delighted locals, tourists and folks flocking in from around the globe, packed local beaches, causeways and parks and the Kennedy Space Center and witnessed a space launch and landing spectacular they will long remember.
The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.
The launch and landing of the SpaceX Falcon 9 booster took place just minutes apart under near perfect weather conditions, as the Dragon capsule sped to the heavens on a mission to the High Frontier of Space.
The 22 story Falcon 9 roared off pad 39A on a stream of flames and exhaust into blue skies decorated with artfully spaced wispy clouds that enhanced the viewing experience as the rocket accelerated to orbit and on its way to the 6 person multinational crew.
The triple headed sunshine state space spectacular marches forward in barely 4 days with liftoff of NASA’s amazingly insectoid-looking TDRS-M science relay comsat slated for Friday morning Aug. 18 atop a United Launch Alliance (ULA) Atlas V rocket.
Lastly, a week after TDRS-M and just 11 days after the SpaceX Dragon an Orbital ATK Minotaur 4 rocket is due to blastoff just before midnight Aug. 25 and carry the ORS 5 mission to orbit for the U.S. military’s Operationally Responsive Space program. The Minotaur IV utilizes three stages from decommissioned Peacekeeper ICBMs formerly aimed at the Russians and perhaps the North Koreans.
The Total Solar ‘Eclipse Across America’ takes place on Monday, Aug. 21. It’s the first solar eclipse in 99 years that space the continent from coast to coast and will be at least partially visible in all 48 contiguous states!
The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds (2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.
20 mice are also onboard from NASA for the Rodent Research 9 (RR-9) experiment and another dozen from Japanese researchers. This will support more than 80 of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.
Dragon reached its preliminary orbit about 10 minutes later and successfully deployed its life giving solar arrays.
Dragon CRS-12 now begins a 2 day orbital chase of the station via a carefully choreographed series of thruster firings that bring the commercial spacecraft to rendezvous with the space station on Aug. 16.
Dragon will be grappled with the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm at approximately 7 a.m. EDT on Aug. 16 by astronauts Jack Fischer of NASA and Paolo Nespoli of ESA (European Space Agency). It then will be installed on the Harmony module.
The Dragon spacecraft will spend approximately 35 days attached to the space station, returning to Earth in mid-September with over 3000 pounds of science samples and results gathered over many months from earlier experiments by the station crews.
Dragon CRS-12 is SpaceX’s third contracted resupply mission to launch this year for NASA.
The prior SpaceX cargo ships launched on Feb 19 and June 3, 2017 on the CRS-10 and CRS-11 missions to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.
A fourth cargo Dragon is likely to launch this year in December on the CRS-13 resupply mission under NASA’s current plans.
SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011.
Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.
Cargo Manifest for CRS-12:
TOTAL CARGO: 6415.4 lbs. / 2910 kg
TOTAL PRESSURIZED CARGO WITH PACKAGING: 3642 lbs. / 1652 kg
• Science Investigations 2019.4 lbs. / 916 kg
• Crew Supplies 485 lbs. / 220 kg
• Vehicle Hardware 747.4 lbs. / 339 kg
• Spacewalk Equipment 66.1 lbs. / 30 kg
• Computer Resources 116.8 lbs. / 53 kg
UNPRESSURIZED 2773.4 lbs. / 1258 kg
• Cosmic-Ray Energetics and Mass (CREAM) 2773.4 lbs. / 1258 kg
The CREAM instrument from the University of Maryland will be stowed for launch inside the Dragon’s unpressurized trunk. Astronauts will use the stations robotic arm to pluck it from the trunk and attach it to a US port on the exposed porch of the Japanese Experiment Module (JEM).
CREAM alone comprises almost half the payload weight.
Here is a NASA description of CREAM:
The Cosmic Ray Energetics and Mass (CREAM) instrument will be attached to the Japanese Experiment Module Exposed Facility on the space station, and measure the charges of cosmic rays. The data collected from its three-year mission will address fundamental questions about the origins and histories of cosmic rays, building a stronger understanding of the basic structure of the universe.
The LRRK2 experiment seeks to grow larger crystals of the protein to investigate Parkinson’s disease and help develop new therapies:
Here is a NASA description of LRRK2:
The Dragon’s pressurized area includes an experiment to grow large crystals of leucine-rich repeat kinase 2 (LRRK2), a protein believed to be the greatest genetic contributor to Parkinson’s disease. Gravity keeps Earth-grown versions of this protein too small and too compact to study. This experiment, developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, will exploit the benefits of microgravity to grow larger, more perfectly-shaped LRRK2 crystals for analysis on Earth. Results from this study could help scientists better understand Parkinson’s and aid in the development of therapies.
Watch this Michael J. Fox video describing the LRRK2 crystallization experiment:
Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news. Ken Kremer
KENNEDY SPACE CENTER, FL – A triad of August liftoffs from the Florida Space Coast inaugurates Monday, Aug. 14 with a science laden commercial SpaceXDragon bound for the International Space Station (ISS) – loaded with over 3 tons of NASA science, hardware and supplies including a cosmic ray detector, medical research experiments dealing with Parkinson’s disease and lung tissue, vegetable seeds, mice and much more, following a successful engine test firing of the Falcon 9 booster on Thursday.
“Static fire test of Falcon 9 complete,” SpaceX confirmed via Twitter soon after completion of the test at 9:10 a.m. EDT, Aug 10. (1310 GMT) “—targeting August 14 launch from Pad 39A for Dragon’s next resupply mission to the @Space_Station.”
Check out our photos & videos herein of the Aug. 10 static first test of the Falcon 9 first stage that paves the path to blastoff – as witnessed live by Ken Kremer and Jeff Seibert.
The triple headed sunshine state space spectacular kicks off with Monday’s lunchtime launch of the next unmanned SpaceX Dragon cargo freighter to the ISS from seaside pad 39A at NASA’s Kennedy Space Center in Florida, now targeted for Aug. 14 at 12:31 p.m. EDT (1631 GMT).
Lastly, a week after TDRS-M and just 11 days after the SpaceX Dragon an Orbital ATK Minotaur 4 rocket is due to blastoff just before midnight Aug. 25 and carry the ORS 5 mission to orbit for the U.S. military’s Operationally Responsive Space program. The Minotaur IV utilizes three stages from decommissioned Peacekeeper ICBMs formerly aimed at the Russians.
Of course getting 3 rockets off the ground from 3 different companies is all highly dependent on Florida’s hugely fickle hurricane season weather and the ever present reality of potential technical glitches, errant boaters and more – possibly resulting in a domino effect of cascading launch scrubs.
And sandwiched in between the Florida Space Coast blastoffs is the Total Solar ‘Eclipse Across America’ on Monday, Aug. 21 – for the first time in 99 years!
Although KSC and central Florida are not within the path of totality, the sun will still be about 85% obscured by the Moon.
So if you’re looking for bang for the space buck, the next two weeks have a lot to offer space and astronomy enthusiasts.
The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.
Watch this video of the Aug. 10 static hotfire test:
Video Caption: Hot fire test of the SpaceX Falcon 9 rocket in preparation for it launching the NASA CRS-12 Dragon resupply mission to the International Space Station from Pad 39A at Kennedy Space Center in Florida. Credit: Jeff Seibert/AmericaSpace
The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. 20 mice are also onboard. This will support dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.
If you can’t personally be here to witness the launch in Florida, you can always watch NASA’s live coverage on NASA Television and the agency’s website.
The SpaceX/Dragon CRS-12 launch coverage will be broadcast on NASA TV beginning noon on Aug. 14 with additional commentary on the NASA launch blog.
SpaceX will also offer their own live webcast beginning approximately 15 minutes before launch at about 12:16 p.m. EDT.
You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv
You can also watch the launch live at SpaceX hosted Webcast at – spacex.com/webcast
In the event of delay for any reason, the next launch opportunity is Tuesday, Aug. 15 with NASA TV coverage starting about 11:30 a.m. EDT.
The weather looks decent at this time with a 70% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. The primary concerns on Aug. 14 are cumulus clouds and the potential for precipitation in the flight path.
The odds remain at 70% favorable for the 24 hour scrub turnaround day on Aug. 15.
Everything is currently on track for Monday’s noontime launch of the 230 foot tall SpaceX Falcon 9 on the NASA contracted SpaceX CRS-12 resupply mission to the million pound orbiting lab complex.
However since the launch window is instantaneous there is no margin for error. In case any delays arise during the countdown due to technical or weather issues a 24 hour scrub to Tuesday will result.
The lunchtime launch coincidently offers a convenient and spectacular opportunity for fun for the whole family as space enthusiasts flock in from around the globe.
Plus SpaceX will attempt a land landing of the 156 foot tall first stage back at the Cape at Landing Zone 1 some 8 minutes after liftoff – thus a double whammy of space action !!– punctuated by multiple loud sonic booms at booster landing time that will figuratively knock your socks off.
To date SpaceX has successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months. It’s a feat straight out of science fiction but aimed at drastically slashing the high cost of access to space.
The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.
CRS-12 marks the eleventh SpaceX launch of 2017 and will establish a new single year record.
In contrast to the prior CRS-11 mission which flew a recycled Dragon, the CRS-12 Dragon is newly built.
The CRS-12 Dragon will be the last newly built one, says NASA. The remaining SpaceX CRS mission will utilize reused spaceships.
The Falcon 9 is also new and will attempt a land landing back at the Cape at Landing Zone-1 (LZ-1).
If the Aug. 14 launch occurs as scheduled, the Dragon will reach its preliminary orbit about 10 minutes later and deploy its life giving solar arrays. Dragon then begins a 2 day orbital chase of the station via a carefully choreographed series of thruster firings that bring the commercial spacecraft to rendezvous with the space station on Aug. 16.
Dragon will be grappled with the station’s Canadian built robotic arm at approximately 7 a.m. EDT on Aug. 16 by astronauts Jack Fischer of NASA and Paolo Nespoli of ESA (European Space Agency). It then will be installed on the Harmony module.
The Dragon spacecraft will spend approximately one month attached to the space station, returning to Earth in mid-September with results of earlier experiments.
Dragon CRS-12 is SpaceX’s third contracted resupply mission to launch this year for NASA.
The prior SpaceX cargo ships launched on Feb 19 and June 3, 2017 on the CRS-10 and CRS-11 missions to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.
SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011.
Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.
Cargo Manifest for CRS-12:
TOTAL CARGO: 6415.4 lbs. / 2910 kg
TOTAL PRESSURIZED CARGO WITH PACKAGING: 3642 lbs. / 1652 kg
• Science Investigations 2019.4 lbs. / 916 kg
• Crew Supplies 485 lbs. / 220 kg
• Vehicle Hardware 747.4 lbs. / 339 kg
• Spacewalk Equipment 66.1 lbs. / 30 kg
• Computer Resources 116.8 lbs. / 53 kg
UNPRESSURIZED 2773.4 lbs. / 1258 kg
• Cosmic-Ray Energetics and Mass (CREAM) 2773.4 lbs. / 1258 kg
The CREAM instrument from the University of Maryland will be stowed for launch inside the Dragon’s unpressurized trunk. Astronauts will use the stations robotic arm to pluck it from the trunk and attach it to the exposed porch of the Japanese Experiment Module (JEM).
Here is a NASA description of CREAM:
The Cosmic Ray Energetics and Mass (CREAM) instrument, attached to the Japanese Experiment Module Exposed Facility, measures the charges of cosmic rays ranging from hydrogen to iron nuclei. The data collected from the CREAM instrument will be used to address fundamental science questions on the origins and history of cosmic rays. CREAM’s three-year mission will help the scientific community build a stronger understanding of the fundamental structure of the universe.
The LRRK2 experiment seeks to grow larger crystals of the protein to investigate Parkinson’s disease and help develop new therapies:
Here is a NASA description of LRRK2:
Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) will use the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease. Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, researchers will look to take advantage of the station’s microgravity environment which allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and aid in the development of therapies against this target.
Watch this Michael J. Fox video describing the LRRK2 crystallization experiment:
Video Caption: ISS National Lab SpaceX CRS-12 Payload Overview: Michael J. Fox Foundation. The Michael J. Fox Foundation is sending an experiment to the ISS National Lab to investigate the LRRK2 protein, a key target in identifying the makeup of Parkinson’s disease.
Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Learn more about the upcoming SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:
Aug 12-14: “SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
Before the year is out, the long awaited debut launch of the triple barreled Falcon Heavy rocket may at last be in sight says SpaceX CEO and founder Elon Musk, as he forthrightly acknowledges it comes with high risk and released a stunning launch and landing animation earlier today, Aug. 4.
After years of painstaking development and delays, the inaugural blastoff of the SpaceX Falcon Heavy is currently slated for November 2017 from NASA’s Kennedy Space Center in Florida, according to Musk.
“Falcon Heavy maiden launch this November,” SpaceX CEO and billionaire founder Elon Musk tweeted last week.
“Lot that can go wrong in the November launch …,” Musk said today on Instagram, downplaying the chances of complete success.
And to whet the appetites of space enthusiasts worldwide, just today Musk also published a one minute long draft animation illustrating the Falcon Heavy triple booster launch and how the individual landings of the trio of first stage booster cores will take place – nearly simultaneously.
https://www.instagram.com/p/BXXiVWFgphb/
Video Caption: SpaceX Falcon Heavy launch from KSC pad 39A pad and first stage booster landings. Credit: SpaceX
“Side booster rockets return to Cape Canaveral,” explains Musk on twitter. “Center lands on droneship.”
The two side boosters will be recycled from prior Falcon 9 launches and make precision guided propulsive, upright ground soft landings back at Cape Canaveral Air Force Station, Florida. Each booster is outfitted with a quartet of grid fins and landing legs. The center core is newly built and heavily modified.
“Sides run high thrust, center is lower thrust until sides separate & fly back. Center then throttles up, keeps burning & lands on droneship. If we’re lucky!” Musk elaborated.
The center booster will touch down on an ocean going droneship prepositioned in the Atlantic Ocean some 400 miles (600 km) off of Florida’s east coast.
The launch of the extremely complicated Falcon Heavy booster with 27 first stage Merlin 1D engines also comes associated with a huge risk – and he hopes that it at least rises far enough off the ground to minimize the chances of damage to the historic pad 39A at the Kennedy Space Center.
“There’s a lot of risk associated with Falcon Heavy, a real good chance that that vehicle does not make it to orbit,” Musk said recently while speaking at the International Space Station Research and Development Conference in Washington, D.C. on July 19.
“I want to make sure to set expectations accordingly. I hope it makes it far enough beyond the pad so that it does not cause pad damage. I would consider even that a win, to be honest.”
Musk originally proposed the Falcon Heavy in 2011 and targeted a maiden mission in 2013.
Whenever it does launch, the Falcon Heavy will become the world’s most powerful rocket.
“I think Falcon Heavy is going to be a great vehicle,” Musk stated. “There’s just so much that’s really impossible to test on the ground, and we’ll do our best.
“Falcon Heavy requires the simultaneous ignition of 27 orbit-class engines. There’s a lot that can go wrong there.”
Designing and building Falcon Heavy has proven to be far more difficult than Musk ever imagined, and the center booster had to be significantly redesigned.
“It actually ended up being way harder to do Falcon Heavy than we thought,” Musk explained.
“At first it sounds real easy! You just stick two first stages on as strap-on boosters. How hard can that be?” But then everything changes. All the loads change, aerodynamics totally change. You’ve tripled the vibration and acoustics. You sort of break the qualification levels on so much of the hardware.”
“The amount of load you’re putting through that center core is crazy because you’ve got two super-powerful boosters also shoving that center core. So we had to redesign the whole center core airframe,” Musk added. “It’s not like the Falcon 9 – because it’s got to take so much load. Then you’ve got separation systems.”
Due to the high risk, there will be no payload from a paying customer housed inside the nose cone atop the center core. Only a dummy payload will be installed on the maiden mission.
However future Falcon Heavy missions have been manifested with commercial and science payloads.
Falcon Heavy will blast off with about twice the thrust of the Delta IV Heavy, currently the worlds most powerful rocket. The United Launch Alliance (ULA) Delta IV Heavy (D4H) has been the world’s mightiest rocket since the retirement of NASA’s Space Shuttles in 2011.
The Falcon Heavy sports about 2/3 the liftoff thrust of NASA’s Saturn V manned moon landing rockets – last launched in the 1970s.
The Falcon Heavy is comprised of three Falcon 9 cores. The Delta IV Heavy is comprised of three Delta Common Core Boosters.
The combined trio of Falcon 9 cores will generate about 5.1 million pounds of liftoff thrust upon ignition from Launch Complex 39A at the Kennedy Space Center in Florida.
“With the ability to lift into orbit over 54 metric tons (119,000 lb)–a mass equivalent to a 737 jetliner loaded with passengers, crew, luggage and fuel–Falcon Heavy can lift more than twice the payload of the next closest operational vehicle, the Delta IV Heavy, at one-third the cost,” according to the SpaceX website.
“The nice thing is when you fully optimize it, it’s about two-and-a-half times the payload capability of a Falcon 9,” Musk notes. “It’s well over 100,000 pounds to LEO of payload capability, 50 tons. It can even get up a little higher than that if optimized.”
The two stage Falcon Heavy stands more than 229.6 feet (70 meters) tall and is 39.9 feet wide (12.2 meters).
It weighs more than 3.1 million pounds (1.4 million kilograms).
Like the Falcon 9 it will be fueled with liquid oxygen and RP-1 kerosene propellants.
The thunder, power and roar of over 5 million pounds of liftoff thrust from the Falcon Heavy’s 27 engines is absolutely certain to be a thrilling, earth-shaking space spectacular !! Thus placing it in a class of its own unlike any US launch since NASA’s Saturn V and Space Shuttles rocketed to the high frontier from the same pad.
“I encourage people to come down to the Cape to see the first Falcon Heavy mission,” Musk said. “It’s guaranteed to be exciting.”
But before the Falcon Heavy can actually be rolled up to launch position at pad 39A, SpaceX must first complete repairs and refurbishment to nearby pad 40.
That Cape pad was heavily damaged nearly a year ago during a catastrophic launch pad explosion that took place in Sept. 2016 during a routine prelaunch fueling and static fire engine test of a Falcon 9 rocket with the Amos-6 commercial comsat payload bolted on top.
Pad 40 must achieve operational launch status again before SpaceX can commit to the Falcon Heavy launches at Pad 39A. Workers will also need to finish construction work at pad 39A to support the Heavy launches.
To date SpaceX has successfully demonstrated the recovery of thirteen boosters by land and sea.
Furthermore SpaceX engineers have advanced to the next step and successfully recycled, reflown and relaunched two ‘flight-proven first stages this year in March and June of 2017 from the Kennedy Space Center in Florida involving the SES-10 and BulgariaSat-1 launches respectively.
The next SpaceX Falcon 9 launch is slated for Aug. 13 on the NASA contracted CRS-12 resupply mission to the ISS.
Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
The first two missions of the unmanned Dream Chaser mini-shuttle carrying critical cargo to the International Space Station (ISS) for NASA will fly on the most powerful version of the Atlas V rocket and start as soon as 2020, announced Sierra Nevada Corporation (SNC) and United Launch Alliance (ULA).
“We have selected United Launch Alliance’s Atlas V rocket to launch our first two Dream Chaser® spacecraft cargo missions,” said SNC of Sparks, Nevada.
Dream Chaser will launch atop the commercial Atlas V in its most powerful configuration, dubbed Atlas V 552, with five strap on solid rocket motors and a dual engine Centaur upper stage while protectively tucked inside a five meter diameter payload fairing – with wings folded.
Blast off of Dream Chaser loaded with over 5500 kilograms of cargo mass for the space station crews will take place from ULA’s seaside Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.
The unique lifting body design enables runway landings for Dream Chaser, similar to the NASA’s Space Shuttle at the Shuttle Landing Facility runway at NASA’s Kennedy Space Center in Florida.
The ULA Atlas V enjoys a 100% success rate. It has also been chosen by Boeing to ferry crews on piloted missions of their CST-100 Starliner astronaut space taxi to the ISS and back. The Centaur upper stage will be equipped with two RL-10 engines for both Dream Chaser and Starliner flights.
“SNC recognizes the proven reliability of the Atlas V rocket and its availability and schedule performance makes it the right choice for the first two flights of the Dream Chaser,” said Mark Sirangelo, corporate vice president of SNC’s Space Systems business area, in a statement.
“Humbled and honored by your trust in us,” tweeted ULA CEO Tory Bruno following the announcement.
Liftoff of the maiden pair of Dream Chaser cargo missions to the ISS are expected in 2020 and 2021 under the Commercial Resupply Services 2 (CRS2) contract with NASA.
“ULA is pleased to partner with Sierra Nevada Corporation to launch its Dream Chaser cargo system to the International Space Station in less than three years,” said Gary Wentz, ULA vice president of Human and Commercial Systems.
“We recognize the importance of on time and reliable transportation of crew and cargo to Station and are honored the Atlas V was selected to continue to launch cargo resupply missions for NASA.”
By utilizing the most powerful variant of ULA’s Atlas V, Dream Chaser will be capable of transporting over 5,500 kilograms (12,000 pounds) of pressurized and unpressurized cargo mass – including science experiments, research gear, spare part, crew supplies, food, water, clothing and more per ISS mission.
“In addition, a significant amount of cargo, almost 2,000 kilograms is directly returned from the ISS to a gentle runway landing at a pinpoint location,” according to SNC.
“Dream Chaser’s all non-toxic systems design allows personnel to simply walk up to the vehicle after landing, providing immediate access to time-critical science as soon as the wheels stop.”
“ULA is an important player in the market and we appreciate their history and continued contributions to space flights and are pleased to support the aerospace community in Colorado and Alabama,” added Sirangelo.
Under the NASA CRS-2 contract awarded in 2016, Dream Chaser becomes the third ISS resupply provider, joining the current ISS commercial cargo vehicle providers, namely the Cygnus from Orbital ATK of Dulles, Virginia and the cargo Dragon from SpaceX of Hawthorne, California.
NASA decided to plus up the number of ISS commercial cargo providers from two to three for the critical task of ensuring the regular delivery of critical science, crew supplies, provisions, spare parts and assorted gear to the multinational crews living and working aboard the massive orbiting outpost.
NASA’s CRS-2 contracts run from 2019 through 2024 and specify six cargo missions for each of the three commercial providers.
By adding a new third provider, NASA simultaneously gains the benefit of additional capability and flexibility and also spreads out the risk.
Both SpaceX and Orbital ATK suffered catastrophic launch failures during ISS resupply missions, in June 2015 and October 2014 respectively, from which both firms have recovered.
Orbital ATK and SpaceX both successfully launched ISS cargo missions this year. Indeed a trio of Orbital ATK Cygnus spacecraft have already launched on the Atlas V, including the OA-7 resupply mission in April 2017.
SpaceX has already launched a pair of resupply missions this year on the CRS-10 and CRS-11 flights in February and June 2017.
Unlike the Cygnus which burns up on reentry and Dragon which lands via parachutes, the reusable Dream Chaser is capable of low-g reentry and runway landings. This is very beneficial for sensitive scientific experiments and allows much quicker access by researchers to time critical cargo.
Dream Chaser has been under development for more than 10 years. It was originally developed as a manned vehicle and a contender for NASA’s commercial crew vehicles. When SNC lost the bid to Boeing and SpaceX in 2014, the company opted to develop this unmanned variant instead.
A full scale test version of the original Dream Chaser is currently undergoing ground tests at NASA’s Armstrong Flight Research Center in California. Approach and landing tests are planned for this fall.
Other current cargo providers to the ISS include the Russian Progress and Japanese HTV vessels.
Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – July has begun with SpaceX maintaining a blistering pace of blasting rockets and spaceships flying to space and returning to Earth for a host of multipronged missions furthering NASA science both on the International Space Station (ISS) and beyond, commercial space endeavors in the US and overseas and fulfilling billionaire founder Elon Musk’s dreams of creating reusable rocketry to slash launch costs and advance humanity’s push to the stars.
On July 2, SpaceX conducted the first launch attempt of the Intelsat 35e telecomsat that ultimately culminated with a spectacularly successful launch on the third try on July 5 at dusk that lit up the Florida Space Coast skies.
A Falcon 9 roared off SpaceX’s seaside launch pad 39A at NASA’s Kennedy Space Center in Florida precisely on time at 7:38 p.m. EDT, or 2338 UTC July 5 carrying the massive Intelsat 35e communications satellite for commercial high speed broadband provider Intelsat.
Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.
Click back as the gallery grows !
On July 3, the first reflown SpaceX Dragon cargo freighter returned to Earth with a splashdown in the Pacific Ocean after a month-long stay at the International Space Station.
SpaceX contracted ships recovered Dragon from the ocean and hauled it onto deck for return to Port and handover of the science experiments to NASA and teams of research investigators.
The Dragon CRS-11 spacecraft completed the first re-flight mission of a commercial spacecraft to and from the orbiting laboratory.
The gumdrop shaped Dragon spacecrft brought back more than 4,100 pounds of cargo and research samples gathered by members of the stations multinational crews.
Meanwhile, the doubly ‘flight-proven’ SpaceX Falcon 9 booster from the BulgariaSat-1 launch that propulsoively soft landed upright and intact on the sea going OCISLY drone ship hundreds of mile (km) offshore in the Atlantic Ocean sailed back into Port Canaveral.
After berthing in port, technicians removed its quartet of landing legs and lowered it horizontally for transport back to KSC for refurbishment operations.
Watch these launch videos:
Video Caption: Falcon 9 launch of the fourth Intelsat EpicNG high throughput satellite built by Boeing on July 5, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert
Video Caption: Time lapse of SpaceX launch of the Intelsat 35e satellite on a legless Falcon 9 rocket from Pad 39A on July 5, 2017 at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert
The first stage was not recovered for this launch because the massive 6800 kg (13000 lb) Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.
Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.
The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.
Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.
Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
The SpaceX Falcon 9 put on a dazzling near dusk display as it roared off historic launch pad 39A on SpaceX’s tenth launch of 2017 Wednesday evening into brilliant blue skies with scarcely a cloud to be seen and delightfully summer weather conditions.
Blastoff of the Falcon 9 carrying the Intelsat 35e communications satellite for commercial high speed broadband provider Intelsat occurred right on time at dinnertime July 5 at 7:38 p.m. EDT, or 2338 UTC from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.
The thunderous blastoff wowed hordes of spectators gathered along space coast beaches and causeways and local residential neighborhoods from came across the globe to witness and the launch spectacle and many of whom will be users of and benefit from the services offered by Intelsat 35e.
“Tens of millions of customers will be served and be touched by Intelsat 35e,” Intelsat VP for Sales & Marketing Kurt Riegel, told Universe Today in an exclusive interview beside the iconic countdown clock at NASA’s Kennedy Space Center Florida press site.
Wednesday’s liftoff finally took place safely after back to back last moment scrubs on Sunday and Monday (July 2/3) kept Falcon 9 from igniting its engine for the delayed journey to orbit.
Elon Musk told the SpaceX launch and engineering team to stand down over the 4th of July holiday and instead thoroughly investigate the root cause of the pait of launch aborts.
The near scrubs resulted from insidious anomaly not detected after the initial launch abort on Sunday, July 2.
Intelsat 35e will be utilized by copious public, government and commercial clients throughout the Americas, Europe and Africa.
The 23 story tall Falcon 9 lofted Intelsat’s commercial Epic 35e next-generation high throughput satellite to geostationary transfer orbit.
It separated from the Falcon 9 upper stage as planned about a half hour after liftoff.
“The Intelsat 35e satellite separated from the rocket’s upper stage 32 minutes after launch, at 8:10 pm EDT, and signal acquisition has been confirmed,” Intelsat announced post launch..
“This was the SpaceX’s first satellite launch contracted by Intelsat,” Ken Lee, Intelsat’s senior vice president of space systems, told Universe Today in a prelaunch interview on Sunday.
“Intelsat 35e is the fourth in the series of our ‘Epic’ satellites. It will provide the most advanced digital services ever and a global footprint.”
SpaceX has now safely and successfully demonstrated an amazing launch pace with 3 rockets propelled aloft in the span of just 12 days from both US coasts. Had Intelsat 35e been launched on Sunday, July 3, it would have established and even faster record pace of 3 launches in just 9 days.
“The successful launch of Intelsat 35e is a major milestone in our business plan for 2017, furthering the footprint and resilience of our Intelsat EpicNG infrastructure,” said Stephen Spengler, Chief Executive Officer, Intelsat, in a statement.
“With each Intelsat EpicNG launch, we advance our vision of creating a global, high performance for our customers that will unlock new growth opportunities in applications including mobility, wireless infrastructure and private data networks. As we further our innovations with respect to ground infrastructure and managed service offerings, like IntelsatOne Flex, we are transforming the role of satellite in the telecommunications landscape.”
The geostationary comsat will provide high performance services in the C- And Ku-bands to customers in North and South America, the Caribbean, as well as the continents of Europe and Africa.
The Ku band service includes a customized high power beam for direct-to-home television (DTH) and data communications services in the Caribbean as well as mobility services in Europe and Africa
The first stage was not recovered for this launch because the massive 6800 kg (13000 lb) Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.
Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.
The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.
Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.
Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.