Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer
NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Digital Society Boosted by Stunning SpaceX Launch Delivering Inmarsat Mobile Broadband Satellite to Orbit – Photo/Video Gallery

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The worlds emerging ‘Digital Society’ gained a big boost following SpaceX’s stunningly beautiful twilight launch of a Falcon 9 that successfully delivered the huge 6.7 ton mobile Inmarsat-5 F4 broadband satellite to orbit for London-based Inmarsat on Monday, May 15.

SpaceX blasted the “largest and most complicated communications satellite ever built to orbit” for Inmarsat, the Inmarset CEO Rupert Pearce told Universe Today in a post launch interview at the Kennedy Space Center on May 15.

Inmarsat-5 F4 will eventually serve upwards of “hundreds of millions” of government, military, commercial and everyday customers on land, at sea and in the air as part of the firm’s satellite constellation forming the Global Xpress (GX) network, he explained.

“This has obviously been an absolutely exceptional performance from SpaceX,” Peace elaborated.

The twilight sendoff of the SpaceX Falcon 9 carrying the commercial Inmarsat-5 Flight 4 communications satellite for High-Speed mobile broadband provider Inmarsat occurred at 7:21 p.m. EDT (or 23:21 UTC) on Monday evening, May 15, from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek

The spectacular liftoff events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

The Inmarsat-5 F4 satellite is designed to provide high speed broad band service to government, military, maritime and aviation users and ship and airplane customers numbering in the millions to tens of millions of customers now and potentially hundreds of millions of customers in the future.

It was the heaviest payload ever launched by a Falcon 9.

I asked CEO Peace to explain the customer based expected for the Global Xpress (GX) network.

“We expect to reach millions to tens of millions of customers,” Pearce told me.

“At the moment we are making huge strides with the first three satellites – serving governments around the world; most notably the US government and US defense department.”

“And serving the maritime industry. And serving the aviation industry.”

“We are looking at a world where suddenly passengers want wifi on the aircraft they are flying on. So we could be talking about hundreds of millions of customers [passengers] on aircraft being served by that satellite in the years to come.”

The new I-5 F4 satellite joins a constellation of 3 others already in orbit as part of a US$1.6 billion investment forming the firms transformational Global Xpress (GX) network.

“Inmarsat Global Xpress has been in operation delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Inmarsat GX is the world’s first globally available, broadband connectivity service and was created to enable communities across the world to benefit from the emerging digital society.”

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad, Kennedy Space Center and Cape Canaveral media viewing sites and public viewing locations off base.

Video Caption: SpaceX Falcon 9 launch of the Inmarsat-5 F4 satellite from Pad 39A. The I-5 F4 is the fourth Ka-band, mobile broadband satellite launched for the Global Xpress constellation, it was built by Boeing Network and Space Systems. Credit: Jeff Seibert

Video Caption: Launch of SpaceX Falcon 9 on May 15, 2017 from pad 39A at the Kennedy Space Center carrying Inmarsat-5 F4 broadband satellite to geosynchronous orbit for the Global Xpress constellation – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

The 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the gigantic bus sized 7 meter long Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue and nearly cloudless twilight skies from the Florida Space Coast.

Liftoff of SpaceX Falcon 9 rocket on 15 May 2017 at 7:20 p.m. EDT that delivered commercial Inmarsat 5 F4 broadband satellite to geostationary orbit from Launch Complex 39A from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The 6,100 kg (13,400 lbs) Inmarsat-5 Flight 4 communications satellite was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

TInmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX continues tracking on an absolutely torrid launch pace. Monday’s liftoff took place just 2 weeks after the prior successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Dawn Leek Taylor

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 launch of the Inmarsat-5 F4 satellite from Pad 39A on 15 May 2017. Credit: Jeff Seibert
SpaceX Falcon 9 soars skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017. Credit: Jillian Laudick
15 May 2017 blastoff of SpaceX Falcon 9 rocket from pad 39A on NASA’s Kennedy Space Center in Florida carrying Inmarsat 5 F4 broadband satellite to geostationary orbit – as seen from ITL Causeway with USAF/SpaceX satellite processing facility. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rockets skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017 as seen from Titusville, FL residential neighborhood. Credit: Melissa Bayles
SpaceX Falcon 9 rockets skyward with Inmarsat-5 F4 broadband satellite after liftoff from pad 39A at KSC on 15 May 2017 as seen from Titusville, FL residential neighborhood. Credit: Melissa Bayles
SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

We Will Launch on Reusable Rocket After Exceptional SpaceX Performance – Inmarsat CEO Tells Universe Today

All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Following SpaceX’s “exceptional performance” launching an immensely powerful broadband satellite on their maiden mission for Inmarsat this week on a Falcon 9 rocket, the company CEO told Universe Today that Inmarsat was willing to conduct future launches with SpaceX – including on a “reusable rocket in the future!”

“This has obviously been an absolutely exceptional performance from SpaceX, Inmarsat CEO Rupert Pearce told Universe Today in a post launch interview at the Kennedy Space Center on Monday, May 15.

“They have now earned themselves an immensely loyal customer.”

SpaceX is the first and thus far only company in history to successfully recover and refly a previously flown orbit class ‘flight-proven’ liquid fueled first stage rocket – during the SES-10 launch in March 2017.

The twilight blastoff of the SpaceX Falcon 9 carrying the Inmarsat-5 Flight 4 communications satellite for commercial High-Speed mobile broadband provider Inmarsat occurred at 7:21 p.m. EDT (or 23:21 UTC) on Monday evening, May 15, from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

“They hit the ball out of the park with this launch for us,” Inmarsat CEO Pearce told me regarding the new space company founded by billionaire CEO Elon Musk.

The never before used 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the gigantic bus sized 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue and nearly cloudless twilight skies from the Florida Space Coast. Read my launch report here.

The first stage is powered by nine Merlin 1 D engines fueled by RP-1 and liquid oxygen propellants and generating 1.7 million pounds.

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The Inmarsat-5 F4 satellite is designed to provide high speed broad band service to government, military, maritime and aviation users and ship and airplane customers numbering in the millions to tens of millions of customers now and potentially hundreds of millions of customers in the future. It was the heaviest payload ever launched by a Falcon 9.

Pearce says he “has every confidence in SpaceX.”

Inmarsat is a leading provider of mobile satellite communications, providing global connectivity more than 35 years – on land, at sea and in the air, says the firm.

I asked CEO Pearce; What does the future hold regarding further Inmarsat launches with SpaceX?

“They [SpaceX] have now just gained and earned themselves an immensely loyal customer [from Inmarsat], CEO Pearce replied.

“We will be looking to do further launches with them.”

The 7 meter long Inmarsat-5 F4 satellite was deployed approximately 32 minutes after Monday’s launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

Would you consider a used rocket, a previously flown booster?

“I’m sure we will be using a ‘reused rocket’, Pearce stated. “And we will be launching on a ‘reusable rocket’ in the future.”

“We will be looking to support them in any way we can with their new innovation programs.”

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Julian Leek

In contrast to virtually all Falcon 9 launches in the past 18 months, no attempt was made to recover the first stage booster.

For this launch there was basically no choice but to make the first stage ‘expendable’ because Inmarsat-5 F4 is heaviest ever payload launched on a Falcon 9.

The satellites heavy weight with a launch mass of approx. 6,100 kg (13,400 lbs) means the rocket needs all its thrust to get the satellite to orbit and thus precludes the chance to land the first stage at sea or land.

Thus there are no landing legs or grid gins attached to the skin of this Falcon 9.

“This rocket that went today was not reusable. That was just a creature of its time,” Pearce elaborated.

“We will stay at the cutting edge with SpaceX!”

To date, SpaceX has successfully recovered 10 first stage boosters either by land or by sea on an ocean going platform.

Inmarsat CEO Rupert Pierce during post launch interview with Ken Kremer/Universe Today discusses SpaceX Falcon 9 launch carrying commercial Inmarsat 5 F4 broadband satellite to geostationary orbit after liftoff at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat has invested approximately US$1.6 billion in the Global Xpress constellation “to establish the first ever global Ka-band service from a single network operator.”

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Inmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX is on an absolutely torrid launch pace. Monday’s liftoff comes just 2 weeks after the last successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 Inmarsat-5 F4 (I-5 F4) mission artwork. Credit: SpaceX/Inmarsat
Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

SpaceX Blasts Biggest High Speed Communications Satellite to Orbit for Inmarsat

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite blasts off to geostationary orbit at twilight at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX blasted the “largest and most complicated communications satellite ever built to orbit” for London based Inmarset at twilight this evening, May 15, from NASA’s Kennedy Space Center aboard an expendable Falcon 9 rocket.

In fact the Inmarsat-5 F4 satellite is so powerful that it has the potential to reach “hundreds of millions of customers” the Inmarsat CEO Rupert Pierce told Universe Today in a post launch interview at the Kennedy Space Center.

“This is the largest and most complicated [communications] satellite ever built,” Pearce explained beside NASA’s countdown clock at the KSC press site.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial High-Speed mobile broadband provider Inmarsat took place right on time early Monday evening, May 15 at 7:21 p.m. EDT (or 23:21 UTC) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The newly built 229-foot-tall (70-meter) SpaceX Falcon 9 successfully delivered the huge 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO) under brilliant blue twilight skies from the Florida Space Coast.

“Satellite deployment success!” Inmarsat announced.

“#I5F4 has been released & is flying high on its way to geostationary orbit! Safe journey! Thanks for a great launch SpaceX!”

All 9 Merlin 1D first stage engines firing beautifully as SpaceX Falcon 9 arcs over down range successfully carrying Inmarsat 5F4 #I5F4 to geostationary transfer orbit at twilight after liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Why launch such the largest and most complicated satellite ever? I asked Inmarsat CEO Pearce.

“We set a very high bar for the service offerings we want to offer for that satellite that just went up and is now on its way to in orbit testing,” Inmarsat CEO Pearce told me.

“That satellite will deliver mobile broadband for a third of the Earth at 50 megabits per second.”

“And by the end of next year those data rates will go up to over 300 megabits per second.”

“To get that kind of data speed you need very high processing powers, you need to deploy the new Ka band – which although it is still relatively unproven is looking like a very exciting new capability for space assets.”

The integrated Falcon 9/Inmarsat-5 F4 were rolled out to the KSC launch pad on Sunday to begin final preparations and were erected at the pad this morning for Monday’s liftoff.

Blastoff of SpaceX Falcon 9 rocket at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida which successfully delivered Inmarsat-5 F4 broadband satellite to orbit. Credit: Dawn Leek Taylor

The first stage is powered by nine Merlin 1 D engines fueled by RP-1 and liquid oxygen propellants and generating 1.7 million pounds.

The 7 meter long satellite was deployed approximately 32 minutes after launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

It will now be “manoeuvred to its geostationary orbit, 35,786km (22,236 miles) above Earth, where it will deploy its solar arrays and reflectors and undergo intensive payload testing before beginning commercial service.”

SpaceX Falcon 9 rocket carrying commercial Inmarsat 5 F4 broadband satellite accelerates to orbit leaving exhaust trail in its wake after twilight launch at 7:20 p.m. EDT from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat has invested approximately US$1.6 billion in the Global Xpress constellation “to establish the first ever global Ka-band service from a single network operator.”

Inmarsat 5 F4 counts as the sixth SpaceX launch of 2017.

And SpaceX is on an absolutely torrid launch pace. Monday’s liftoff comes just 2 weeks after the last successful SpaceX Falcon 9 liftoff on May 1 of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
SpaceX Falcon 9 Inmarsat-5 F4 (I-5 F4) mission artwork. Credit: SpaceX/Inmarsat

SpaceX Targeting Twilight Thunder for May 15 Inmarsat Blastoff – Watch Live

The Inmarsat-5 F4 satellite is loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A. Launch is slated for May 15, 2017. Credit: Inmarsat
The Inmarsat-5 F4 satellite is loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A. Launch is slated for May 15, 2017. Credit: Inmarsat

KENNEDY SPACE CENTER, FL – SpaceX is targeting twilight thunder with the firms Falcon 9 rocketing skyward from the Florida Space Coast on Monday 15 carrying a commercial High-Speed broadband satellite for London based Inmarsat.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial broadband provider Inmarsat is slated for early Monday evening, May 15 at 7:21 p.m. EDT (or 23:21 UTC) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The SpaceX Falcon 9/ Inmarsat-5 Flight 4 is raised erect at the pad into launch position and poised for a twilight liftoff Monday.

All systems are currently GO and the weather outlook is quite favorable at this time.

The twilight setting will put on an outstanding sky show – if all goes well. But there are no guarantees.

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

So now is the time is come and watch a launch in person if you have the availability.

“Targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15,” SpaceX confirmed via social media accounts.

The Falcon 9’s launch window extends for 49 minutes until 8:10 p.m. EDT.

The satellites heavy weight with a launch mass of approx. 6,100 kg (13,400 lbs) means the rocket needs all its thrust to get the satellite to orbit and will preclude the chance to land the first stage at sea or land.

Thus there are no landing legs or grid gins attached to the skin of this Falcon 9.

“SpaceX will not attempt to land Falcon 9’s first stage after launch due to mission requirements,” says SpaceX.

The historic pad 39A was previously used to launch NASA’s Apollo Saturn Moon rockets and Space Shuttles.

The built from scratch 229-foot-tall (70-meter) SpaceX Falcon 9 is set to deliver the huge 6100 kg Inmarsat-5 F4 satellite to a Geostationary Transfer Orbit (GTO).

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

The integrated Falcon 9/Inmarsat-5 F4 were rolled out to the KSC launch pad on Sunday to begin final preparations for Monday’s liftoff.

“#I5F4 satellite, built by Boeing Defense, Space & Security, has been loaded into the SpaceX Falcon 9 rocket and rolled out to Launch Complex 39A,” Inmarsat announced Sunday.

”The countdown to launch tomorrow begins!”

You can watch the launch live on a SpaceX dedicated webcast as well as via Inmarsat starting about 20 minutes prior to the 7:20 p.m. EDT opening of the window.

Watch the SpaceX broadcast live at: SpaceX.com/webcast

Alternatively you can catch the launch on Inmarsat’s dedicated webpage:

“Make sure you catch all the live action here”: www.inmarsat.com/i5f4

SpaceX Falcon 9 rocket carrying Inmarsat 5 F4 broadband satellite stands raised erect poised for twilight liftoff from Launch Complex 39A on 15 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Mondays weather forecast is currently 80% GO for favorable conditions at launch time.

The concerns are for Cumulus clouds and Anvil clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on May 15, the backup launch opportunity is Tuesday, May 16 at 7:21 p.m. EDT, or 23:21 UTC

The path to launch was cleared following the successful completion of a critical static hot-fire test of the first stage this past Thursday, May 11.

Watch this cool video of Thursday’s engine test as seen from the National Wildlife Refuge near Playalinda Beach on the Atlantic Ocean.

Video Caption: Static fire test of Falcon 9 booster for Inmarsat 5 F4 launch. Testing of the 9 Merlin 1D engines of a SpaceX Falcon 9 booster on Pad 39A in preparation for launch of the Inmarsat 5 F4 satellite on May 15, 2017 from pad 39A at KSC. Credit: Jeff Seibert

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

“Once in geostationary orbit, the satellite will provide additional capacity for Global Xpress users on land, at sea and in the air.”

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

The new satellite will join 3 others already in orbit.

Inmarsat 5 F4 will be the sixth SpaceX launch of 2017.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

The 7 meter long satellite be deployed approximately 32 minutes after launch when it will come under the command of the Boeing and Inmarsat satellite operations teams based at the Boeing facility in El Segundo.

It will then be “manoeuvred to its geostationary orbit, 35,786km (22,236 miles) above Earth, where it will deploy its solar arrays and reflectors and undergo intensive payload testing before beginning commercial service.”

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Continues Torrid 2017 Launch Pace With Commercial High-Speed Inmarsat Broadband Satellite on May 15

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat
Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

KENNEDY SPACE CENTER, FL – SpaceX is all set to continue their absolutely torrid launch pace in 2017 with a commercial High-Speed broadband satellite for Inmarsat on May 15 following Thursday’s successful completion of a critical static hot-fire test of the first stage. Watch our video below.

The static fire test of all 9 Merlin 1 D first stage engines comes just 10 days after the last successful SpaceX Falcon 9 liftoff of the super secret NROL-76 payload for the National Reconnaissance Office, or NRO – as I reported here.

The positive outcome for the static fire test of the first stage engines of the SpaceX Falcon 9 rocket on Thursday afternoon, May 11, paves the path to a Monday evening liftoff of the Inmarsat-5 F4 mission from the Florida Space Coast.

Blastoff of the Inmarsat-5 Flight 4 communications satellite for commercial broadband provider Inmarsat is slated for Monday evening, May 15 at 7:20 p.m. EDT (2320 GMT) from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

“Static fire test of Falcon 9 complete,” SpaceX confirmed via social media only minutes after finishing the key test at 12:45 p.m. EDT (1645 GMT).

“Targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15.”

The launch window extends for 50 minutes until 8:10 p.m. EDT.

Watch this cool video of Thursday’s engine test as seen from the National Wildlife Refuge near Playalinda Beach on the Atlantic Ocean.

Video Caption: Static fire test of Falcon 9 booster for Inmarsat 5 F4 launch. Testing of the 9 Merlin 1D engines of a SpaceX Falcon 9 booster on Pad 39A in preparation for launch of the Inmarsat 5 F4 satellite on May 15, 2017 from pad 39A at KSC. Credit: Jeff Seibert

“The countdown begins!” Inmarsat confirmed on the company website.

“Static fire test complete & we are go for launch! #I5F4 will fly with SpaceX on 15 May 19:20 EDT / 00:20 BST.”

The weather forecast is currently 80% GO for favorable conditions at launch time.

The never used 229-foot-tall (70-meter) SpaceX Falcon 9 will deliver Inmarsat-5 F4 to a Geostationary Transfer Orbit (GTO).

The Inmarsat-5 F4 (I-5 F4) will become part of the firms Global Xpress network “which has been delivering seamless, high-speed broadband connectivity across the world since December 2015,” says Inmarsat.

I-5 F4 was built by Boeing at their satellite operations facility in El Segundo, CA for Inmarsat.

For the purposes of the engine test only the first and second stages of the Falcon 9 were rolled up the pad and erected.

Following the conclusion of the hot fire test the Falcon 9 was rolled back off the pad to the huge SpaceX processing hangar located just outside the pad perimeter fence.

SpaceX Falcon 9 recycled rocket carrying SES-10 telecomsat poised atop Launch Complex 39A at the Kennedy Space Center ahead of liftoff on 30 Mar 2017 on world’s first reflight of an orbit class rocket. Credit: Ken Kremer/Kenkremer.com

The Falcon 9 rocket and Inmarsat payload have now been mated to the payload adapted and encapsulation inside the nose cone following the test. The integrated rocket and payload eill soon be rolled about a quarter mile up the ramp at pad 39A to undergo final prelaunch preparations.

“The #I5F4 satellite has been successfully mated to the payload adaptor and attach fitting and encapsulated into the payload fairing in preparation for our SpaceX launch on 15 May,” Inmarsat stated.

“It’s an emotional time for our Inmarsat and The Boeing Company engineers – the satellite will not be seen again before it is launched into geostationary orbit, nearly 36,000km from Earth!”

“Catch all the live action here: www.inmarsat.com/i5f4 #GlobalXpress #makingadifference”

Inmarsat-5 Flight 4 (I-5 F4) satellite undergoes prelaunch processing for liftoff on SpaceX Falcon 9. Credit: Inmarsat

Inmarsat 5 F4 will be the sixth SpaceX launch of 2017 following the NROL-76 launch on May 1.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Static fire test of Falcon 9 completed on May 11. SpaceX targeting launch of Inmarsat-5 Flight 4 from Pad 39A on Monday, May 15. Credit: SpaceX

SpaceX Blasts First Surveillance Satellite to Orbit – Launch and Landing Photo/Video Gallery

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – This week SpaceX blasted their first top secret surveillance satellite to orbit for America’s spy chiefs at National Reconnaissance Office (NRO) – affording magnificent viewing and imagery from the Florida Space Coast. Updated with more photos/videos – plus distinctly hear the sonic booms from pad 39A sending birds fleeing!

Liftoff of the classified NROL-76 payload for the NRO occurred soon after sunrise Monday morning, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

Less than nine minutes later, Space engineers managed to again recover the 15 story tall first stage booster by accomplishing a precise ground landing by perfectly targeting the vehicle for a propulsive soft landing at Cape Canaveral several miles south of the launch pad.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

The stunning events were captured by journalists and tourists gathered from around the globe to witness history in the making with their own eyeballs.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

Landing legs unfurl and lock in place mere seconds before soft landing via propulsive firing of SpaceX Falcon 9 first stage booster engines at Landing Zone 1 on Canaveral Air Force Station only 9 minutes after launch from pad 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida as seen from Exploration Tower at Port Canaveral, FL. Credit: Dawn Leek

The milestone SpaceX mission to launch the first satellite in support of US national defense was apparently a complete success.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Up close view of engine exhaust flames whipping around SpaceX Falcon 9 first stage booster during propulsive descent Merlin 1 D engines fire with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com
Flames whip around booster darting in and out of clouds during propulsive descent of the SpaceX Falcon 9 first stage firing Merlin 1 D engines with 4 grid fins deployed after successful NROL-76 spysat launch for the NRO on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage descent culminated seconds later in successful ground landing at the Cape’s LZ-1 nine minutes later. Credit: Ken Kremer/Kenkremer.com

Check out these exquisite videos from a wide variety of vantage points including remote cameras at the pad, Cape Canaveral media viewing site and public viewing locations off base.

Video Caption: SpaceX Falcon 9 liftoff with NROL-76 on 1 May 2017. This is the first launch of an NRO satellite on a SpaceX Falcon 9 rocket and the 4th launch from Pad 39A this year. Credit: Jeff Seibert

In this cool video you can distinctly hear the Falcon 9 sonic booms eminating at LZ-1 from pad 39A sending birds fleeing aflutter in fright!

Video Caption: Falcon 9 sonic booms heard from Pad 39A. These two cameras recorded the launch of the NROL-76 satellite at https://youtu.be/kkKTe_61jk0
Nine minutes after launch, they recorded the sonic booms caused by the booster landing at LZ-1, 9.5 miles south of Launch Pad 39A on 1 May 2017. Credit: Jeff Seibert

Video Caption: SpaceX Launch and Best Landing – NROL76 05-01-2017. Best landing for spectators. Watch the nitrogen thruster’s steer the 16 story booster. Hear double sonic boom at the end. Audio is delayed from podcast. We can not match SpaceX and NASA tracking telescope coverage. Was really awesome for all who witnessed. Credit: USLaunchReport

NROL-76 marks the fifth SpaceX launch of 2017 and the fourth from pad 39A.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

SpaceX Falcon 9 begins to deploy quartet of landing legs spreading out from the top down mere moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s continuing coverage direct from onsite at the Kennedy Space Center press site and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

High-Speed Space Broadband for Everyone. SpaceX Details their Plans to Launch 1000s of Internet Satellites

A number companies are deploying satellites this year to create space-based internet services. Credit: AMNH.

SpaeeX and Tesla-founder Elon Musk has made some rather bold promises over the years. In addition to building a fleet of reusable rockets, an Interplanetary Transport System, colonizing Mars, and revolutionizing transportation, he has also made it clear that he hopes to provide worldwide broadband access by deploying a “constellation” of internet-providing satellites.

In November of 2016, SpaceX filed an application with the Federal Communications Commission (FCC) for a license to operate this constellation of non-geostationary satellites (NGS). And earlier this week, the US Senate Committee on Commerce. Science, and Transportation convened a hearing to explore this proposal for next-generation telecommunications services.

The hearing was titled, “Investing in America’s Broadband Infrastructure: Exploring Ways to Reduce Barriers to Deployment”. In the course of things, the committee heard from representatives of government and industry who spoke about the best ways to offer streamlined broadband access (especially in rural areas), the necessary infrastructure, and how to encourage private investment.

SpaceX’s proposed satellite constellation – 4,425 broadband internet satellites – could provide the entire world with high-speed internet access. Credit: ESA

Of those the committee heard from, Ms. Patricia Cooper – VP of Satellite Government Affairs for SpaceX – was on hand to underscore the company’s vision. As she stated:

“SpaceX sees substantial demand for high-speed broad band in the United States and worldwide. As the Committee is aware, millions of Americans outside of limited urban areas lack basic, reliable access. Furthermore, even in urban areas, a majority of Americans lacks more than a single fixed broadband provider from which to choose and may seek additional competitive options for high-speed service.”

Cooper also cited recent FCC findings, which indicated that millions of Americans lag behind other developed nations in terms of broadband speed, access, and price competitiveness. Basically, thirty-four million American citizens do not have access to 25 megabits per second (“Mbps”) broadband service while 47% of students in the US lack the connectivity to meet the FCC’s short-term goal of 100 Mbps per 1,000 students and staff.

This is at at a time when global demand for broadband services and internet connectivity continue to grow at an unprecedented rate. According to a report prepared by Cisco in 2016 – titled “White paper: Cisco VNI Forecast and Methodology, 2015-2020” – global Internet Protocol (IP) traffic surpassed the zettabyte threshold. In other words, over 1,000 billion gigabytes of data were exchanged worldwide in a single year!

SpaceX plans to beginning launching their internet-providing satellites aboard their Falcon 9 rockets beginning next year. Credit: Ken Kremer/Kenkremer.com

By 2020, that figure is projected to double, global fixed broadband speeds are expected to nearly double, and the number of devices connected to IP networks is projected to outnumber the global population by a factor of about 3 to 1. To remedy this situation, and bring broadband access in the US up to the average for developed nations, SpaceX plans to launch 4,425 broadband satellites.

These will begin being launched in 2019 aboard the company’s fleet of Falcon 9 rockets. The launches will continue until they have reached full capacity, which is expected to be by 2024. As Cooper outlined it:

“Later this year, SpaceX will begin the process of testing the satellites themselves, launching one prototype before the end of the year and another during the early months of 2018. Following successful demonstration of the technology, SpaceX intends to begin the operational satellite launch campaign in 2019. The remaining satellites in the constellation will be launched in phases through 2024, when the system will reach full capacity with the Ka- and Ku-Band satellites. SpaceX intends to launch the system onboard our Falcon 9 rocket, leveraging significant launch cost savings afforded by the first stage reusability now demonstrated with the vehicle.”

Other details included the operational altitudes of the satellites – ranging from 1,110 to 1,325 km (690 to 823 mi) – as well as the necessary infrastructure on the ground, which would include “ground control facilities, gateway Earth stations, and end-user Earth stations.” SpaceX has also indicated that it plans to deploy an additional 7.500 satellites that will operate at lower altitudes in order to boost broadband capacity in large population centers.

Naturally, there have to be those people who hear words like “satellite constellation” and immediately think “space junk”. Certainly, the deployment of between 4,425 and 11,925 satellites in the coming years will lead to increasing concerns about “orbital clutter”. Especially when other telecommunications providers are seeking to get in on the trend – a good example being Google’s Project Loon.

Why Space Debris Mitigation is needed. Credit: ESA

And while the subject did not come up during the hearing, it will be unavoidable in the coming years and decades. But in the meantime, the idea of bringing internet access to the world – particularly the developing regions of the world where the infrastructure may not otherwise exist – has the potential of being a great social leveler. In the coming decades, it is expected that internet use will reach proportions unheard of a few decades ago.

By 2020 alone, it is estimated that the number of Internet users will reach almost 5 billion – or roughly half the world projected population of 10 billion. This represents an almost threefold increase from the number of internet users in 2010 (1.7 billion) and an almost 14 fold increase since 2000 (360 million). As such, any investment that will help ensure that this growth occurs more equally across geographic and social barriers is certainly a good one.

The committee also heard testimony from Larry Downes, the Project Director of the Georgetown Center for Business and Public Policy, and Brian Hendricks – the head of Technology Policy & Public Affairs for the Americas Region for Nokia. In addition to addressing the current sate of broadband internet in the US, they made multiple recommendations on how the non-geostationary internet satellite industry could be fostered and developed.

You can read the transcripts and check out the live webcast by going to the hearing page.

Further Reading: US SCCST

SpaceX Stages Stupendous NRO Spysat Sunrise Liftoff and Land Landing

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office successfully launches shortly after sunrise from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. 1st stage accomplished successful ground landing at the Cape nine minutes later. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX today staged the stupendously successful Falcon 9 rocket launch at sunrise of a mysterious spy satellite in support of U.S. national defense for the National Reconnaissance Office (NRO) while simultaneously accomplishing a breathtaking pinpoint land landing of the boosters first stage that could eventually dramatically drive down the high costs of spaceflight.

Liftoff of the classified NROL-76 payload for the NRO took place shortly after sunrise this morning, Monday, May 1, at 7:15 a.m. EDT (1115 GMT), from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The weather was near perfect and afforded a spectacular sky show for all those who descended on the Florida Space Coast for an up close eyewitness view of the rockets rumbling thunder.

The rocket roared off pad 39A after ignition of the nine Merlin 1D first stage engines generated some 1.7 million pounds of thrust.

The Falcon sped skyward darting in and out of wispy white clouds and appeared to head in a northeasterly direction from the space coast.

“A National Reconnaissance Office (NRO) payload was successfully launched aboard a SpaceX Falcon 9 rocket from Launch Complex 39A (LC-39A), Kennedy Space Center (KSC), Florida, at 7:15 a.m. EDT, on May 1, 2017,” the NRO said in a post launch statement.

“Thanks to the SpaceX team for the great ride, and for the terrific teamwork and commitment they demonstrated throughout. They were an integral part of our government/industry team for this mission, and proved themselves to be a great partner,” said Betty Sapp, Director of the National Reconnaissance Office.

The launch of the two stage 229 foot tall Falcon 9 was postponed a day after a last moment scrub was suddenly called on Sunday by the launch director at just about T minus 52 seconds due to a sensor issue in the first stage.

SpaceX engineers were clearly able to fully resolve the issue in time for today’s second launch attempt of the super secret NROL-76 for the NRO customer.

Barely nine minutes after the launch, the 156 foot tall first stage of the SpaceX Falcon 9 rocket made an incredibly precise and thrilling soft touchdown on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 39A.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The quartet of landing legs attached to the base of the first stage deployed only moments before touchdown – as can be seen in my eyewitness photos herein.

Multiple sonic booms screamed across the space coast as the 15 story first stage plummeted back to Earth and propulsively slowed down to pass though the sound barrier and safely came to rest fully upright.

This counts as SpaceX’s first ever launch of a top secret US surveillance satellite. It also counts as the fourth time SpaceX landed a first stage fully intact on the ground.

As is typical for NRO missions, nothing is publically known about the satellite nor has the NRO released any details about this mission in support of national security other than the launch window.

SpaceX Falcon 9 deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Overall SpaceX has now recovered 10 first stages via either land or at sea on an oceangoing platform.

NROL-76 marks the fifth SpaceX launch of 2017 and the 33rd flight of a Falcon 9.

Blastoff of SpaceX Falcon 9 delivering NROL-76 spy satellite to orbit on 1 May 2017 for the U.S. National Reconnaissance Office. Credit: Julian Leek

NROL-76 is the second of five launches slated for the NRO in 2017. The next NRO launch is on schedule for August 14 from Vandenberg Air Force Base (VAFB), California by competitor ULA.

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monopoly on the US military’s most critical satellite launches.

The NRO is a joint Department of Defense–Intelligence Community organization responsible for developing, launching, and operating America’s intelligence satellites to meet the national security needs of our nation, according to the NRO.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 1 May 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

Surveillance Sat Set for Sunday Sunrise SpaceX Blastoff and Landing Apr. 30 – Watch Live

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – A classified surveillance for the nation’s spymasters is set for blastoff shortly after sunrise on Sunday, Apr. 30 by SpaceX in a space first by the firm founded by billionaire entrepreneur Elon Musk that also features a ground landing attempt by the booster. Update: Scrub reset to May 1

Liftoff of the still mysterious NROL-76 classified payload for the National Reconnaissance Office, or NRO, is slated Sunday morning, April 30 from SpaceX’s seaside Launch Complex 39A on NASA’s Kennedy Space Center in Florida.

The Falcon 9 rocket and NROL-76 payload have been mated and rolled about a quarter mile up the ramp at pad 39A.

The 229-foot-tall (70-meter) Falcon 9/NROL-76 were raised erect this morning, Saturday, April 29 and are poised for liftoff and undergoing final prelaunch preparations.

The breakfast time launch window on Sunday, April 30 opens at 7 a.m. EDT (1100 GMT). It extends for two hours until 9.a.m. EDT.

#NROL76 will carry a classified payload designed, built and operated by @NatReconOfc. @SpaceX @45thSpaceWing. Credit: NRO

The exact time of the spy satellite launch within the two hour window is classified at less than T Minus one day.

Spectators have been gathering from across the globe to witness the exciting launch and landing and area hotels are filling up.

A brand new Falcon 9 is being used for the launch unlike the recycled rocket utilized for the prior launch of the SES-10 mission involving history’s first reflown orbit class booster.

As is typical for NRO missions, nothing is publicly known about the satellite nor has the NRO released any details about this mission in support of national security other than the launch window.

We also know that this is the first launch of a spy satellite for the US governments super secret NRO spy agency by SpaceX and a source of pride for Musk and all SpaceX employees.

However you can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 7:00 am EDT opening of the window.

Watch the SpaceX broadcast live at: SpaceX.com/webcast

As is customary for all national security launches live coverage of the launch will cease approximately five minutes after liftoff as the secret payload makes it way to orbit.

However, SpaceX will continue their live webcast with complete coverage of the ground landing attempt back at the Cape which is a secondary objective of the launch.

#NROL76 Mission Patch depicts Lewis & Clark heading into the great unknown to discover and explore the newly purchased Louisiana Territory. Launch slated for 30 April 2017 from KSC pad 39A. Credit: NRO

Everything is on track for Sunday’s launch of the 229 foot tall SpaceX Falcon 9 on the NRO launch of NROL-76.

And the weather looks promising at this time.

Sunday’s weather outlook is currently forecasting an 80% chance of favorable conditions at launch time. The concerns are for cumulus clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

SpaceX Falcon 9 rocket carrying classified NROL-76 surveillance satellite for the National Reconnaissance Office stands raised erect poised for sunrise liftoff from Launch Complex 39A on 30 April 2017 from NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

In case of a scrub for any reason on April 30, the backup launch opportunity Monday, May 1.

The path to launch was paved following a successful static hotfire test of the first stage booster on pad 39A which took place shortly after 3 p.m. Tuesday, April 25, as I reported here.

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on 25 Apr. 2017 as seen from Merritt Island National Wildlife Refuge, Titusville, FL. The Falcon 9 is slated to launch the NROL-76 super secret spy satellite for the U.S. National Reconnaissance Office (NRO) on 30 April 2017. Credit: Ken Kremer/Kenkremer.com

Until now launch competitor United Launch Alliance (ULA) and its predecessors have held a virtual monoploy on the US military’s most critical satellite launches.

The last first stage booster during the SES-10 launch of the first recycled rocket landed on a droneship barge at sea last month.

SpaceX will also attempt to achieve the secondary mission goal of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 39A.

This counts as the fourth time SpaceX will attempt a dramatic land landing potentially visible to hundreds of thousands of locals and tourists.

NROL-76 will be the fifth SpaceX launch of 2017.

Watch for Ken’s continuing onsite launch reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer