First SpaceX Falcon 9 Erected at Historic Launch Pad 39A for Feb. 18 Blastoff

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace
First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

KENNEDY SPACE CENTER, FL – The first SpaceX Falcon 9 rocket ever to grace historic launch pad 39A at NASA’s Kennedy Space Center in Florida was erected this afternoon, Friday, Feb. 10, to prepare the booster for a critical static fire sometime Saturday, and a launch to the space station next weekend – if all goes well.

This marks the first time any rocket has stood on pad 39A since the retirement of NASA’s Space Shuttles in July 2011.

Liftoff of the Falcon 9 is slated for no earlier than next Saturday, 18 Feb 2017 on a critical cargo flight for NASA to deliver over two and a half tons of science and supplies to the six person crew living and working on the International Space Station (ISS).

The rocket – minus the payload comprising the Dragon cargo spacecraft – was rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A this morning using a dedicated transporter-erector.

A wider-angle shot from the top of the CBS bureau at KSC showing the first SpaceX Falcon 9 atop pad 39A 3.1 miles away on Feb 20, 2017. Credit: Bill Harwood/CBS News

The booster was then hoisted into launch position this afternoon.

The scene was viewed by spectators including my space journalist colleague Jeff Seibert.

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.

SpaceX CEO Elon Musk also posted a photo on instagram with this caption:

“Falcon 9 rocket now vertical at Cape Canaveral on launch complex 39-A. This is the same launch pad used by the Saturn V rocket that first took people to the moon in 1969. We are honored to be allowed to use it.”

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017. The photo was posted to Instagram by SpaceX CEO Elon Musk. Credit: Elon Musk/SpaceX

After the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and the Dragon resupply ship will be integrated on top.

During the brief static fire test, all 9 Merlin 1D first stage engines are ignited for a few seconds to confirm they and the rocket are suited for liftoff while hold down clamps restrain the rocket on the pad.

Dragon will be loaded with more than 5500 pounds of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. New rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com

SpaceX Awaits FAA Falcon 9 Launch License for 1st Pad 39A Blastoff on NASA ISS Cargo Flight

SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. New rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com
SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. New rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – With liftoff tentatively penciled in for mid-February, SpaceX still awaits FAA approval of a launch license for what will be the firms first Falcon 9 rocket to launch from historic pad 39A at the Kennedy Space Center – on a critical NASA mission to resupply the space station – the Federal Aviation Administration (FAA) confirmed today to Universe Today.

“The FAA is working closely with SpaceX to ensure the activity described in the application meets all applicable regulations for a launch license,” FAA spokesman Hank Price confirmed to Universe Today.

As of today, Feb. 7, SpaceX has not yet received “a license determination” from the FAA – as launch vehicle, launch pad and payload preparations continue moving forward for blastoff of the NASA contracted flight to carry science experiments and supplies to the International Space Station (ISS) aboard a SpaceX cargo Dragon atop an upgraded SpaceX Falcon 9 rocket from Launch Complex 39A on the Florida Space Coast.

“The FAA will continue to work with SpaceX to provide a license determination in a timely manner,” Price told me.

SpaceX currently has license applications pending with the FAA for both the NASA cargo launch and pad 39A. No commercial launch can take place without FAA approval.

Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016. Credit: Ken Kremer/kenkremer.com

The goal of the 22-story tall SpaceX Falcon 9 is to carry an unmanned Dragon cargo freighter for the NASA customer on the CRS-10 resupply mission to the International Space Station (ISS).

Dragon will be loaded with more than two tons of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.

SpaceX, founded by billionaire CEO Elon Musk, leased Launch Complex 39A from NASA back in April 2014 and is modifying and modernizing the pad for unmanned and manned launches of the Falcon 9 as well as the Falcon Heavy.

The role of the FAA is to license commercial launches and protect the public.

“The FAA licenses commercial rocket launches and reentries to ensure the protection of public health and safety,” Price elaborated.

This FAA license situation is similar to that for last month’s Falcon 9 ‘Return to Flight’ launch from California, where the SpaceX approval was granted only days before liftoff of the Iridium-1 mission.

Last week SpaceX announced a shuffled launch schedule, whereby the NASA cargo flight on the CRS-10 resupply mission was placed first in line for liftoff from pad 39A – ahead of a commercial EchoStar communications satellite.

The aerospace company said the payload switch would allow additional time was to complete all the extensive ground support work and pad testing required for repurposing seaside Launch Complex 39A from launching the NASA Space Shuttle to the SpaceX Falcon 9.

The inaugural Falcon 9 blastoff from pad 39A has slipped repeatedly from January into February 2017.

The unofficial most recently targeted ‘No Earlier Than’ NET date for CRS-10 has apparently slipped from NET Feb 14 to Feb 17.

CRS-10 counts as SpaceX’s tenth cargo flight to the ISS since 2012 under contract to NASA.

Further launch postponements are quite possible at any time and NASA is officially stating a goal of “NET mid-February” – but with no actual target date specified.

SpaceX is repurposing historic pad 39A at the Kennedy Space Center, Florida for launches of the Falcon 9 rocket. Ongoing pad preparation by work crews is seen in this current view taken on Jan. 27, 2017. Credit: Ken Kremer/kenkremer.com

Crews have been working long hours to transform and refurbish pad 39A and get it ready for Falcon 9 launches. Furthermore, a newly built transporter erector launcher was seen raised at the pad multiple times in recent weeks. The transporter will move the rocket horizontally up the incline at the pad, and then erect it vertically for launch.

SpaceX was previously employing pad 40 on Cape Canaveral Air Force Station for Falcon 9 launches to the ISS as well as commercial launches.

But pad 40 suffered severe damage following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test.
Furthermore it is not known when pad 40 will be ready to resume launches.

Thus SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, and the refurbishing and repurposing work is not yet complete.

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

To date SpaceX has not rolled a Falcon 9 rocket to pad 39A, not raised it to launch position, not conducted a fueling exercise and not conducted a static fire test. All the fit checks with a real rocket remain to be run.

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

Once the pad is ready, SpaceX plans an aggressive launch schedule in 2017.

“The launch vehicles, Dragon, and the EchoStar satellite are all healthy and prepared for launch,” SpaceX stated.

The history making first use of a recycled Falcon 9 carrying the SES-10 communications satellite could follow as soon as March or April, if all goes well – as outlined here.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Used SpaceX Booster Set for Historic 1st Reflight is Test Fired in Texas

SpaceX Falcon 9 first stage previously flown to space is test fired at the firms McGregor, TX rocket development facility in late January 2017 to prepare for relaunch. Credit: SpaceX
SpaceX Falcon 9 first stage previously flown to space is test fired at the firms McGregor, TX rocket development facility in late January 2017 to prepare for relaunch. Credit: SpaceX

The first orbit class SpaceX rocket that will ever be reflown to launch a second payload to space was successfully test fired by SpaceX engineers at the firms Texas test facility last week.

The once fanciful dream of rocket recycling is now closer than ever to becoming reality, after successful completion of the static fire test on a test stand in McGregor, Texas, paved the path to relaunch, SpaceX announced via twitter.

The history making first ever reuse mission of a previously flown liquid fueled Falcon 9 first stage booster equipped with 9 Merlin 1D engines could blastoff as soon as March 2017 from the Florida Space Coast with the SES-10 telecommunications satellite, if all goes well.

The booster to be recycled was initially launched in April 2016 for NASA on the CRS-8 resupply mission under contract for the space agency.

“Prepping to fly again — recovered CRS-8 first stage completed a static fire test at our McGregor, TX rocket development facility last week,” SpaceX reported.

The CRS-8 Falcon 9 first stage booster successfully delivered a SpaceX cargo Dragon to the International Space Station (ISS) in April 2016.

The Falcon 9 first stage was recovered about 8 minutes after liftoff via a propulsive soft landing on an ocean going droneship in the Atlantic Ocean some 400 miles (600 km) off the US East coast.

First launch of flight-proven Falcon 9 first stage will use CRS-8 booster that delivered Dragon to the International Space Station in April 2016. Credit: SpaceX

SpaceX, founded by billionaire and CEO Elon Musk, inked a deal in August 2016 with telecommunications giant SES, to refly a ‘Flight-Proven’ Falcon 9 booster.

Luxembourg-based SES and Hawthrone, CA-based SpaceX jointly announced the agreement to “launch SES-10 on a flight-proven Falcon 9 orbital rocket booster.”

Exactly how much money SES will save by utilizing a recycled rocket is not known. But SpaceX officials have been quoted as saying the savings could be between 10 to 30 percent.

The SES-10 launch on a recycled Falcon 9 booster was originally targeted to take place before the end of 2016.

That was the plan until another Falcon 9 exploded unexpectedly on the ground at SpaceX’s Florida launch pad 40 during a routine prelaunch static fire test on Sept. 1 that completed destroyed the rocket and its $200 million Amos-6 commercial payload on Cape Canaveral Air Force Station.

The Sept. 1 launch pad disaster heavily damaged the SpaceX pad and launch infrastructure facilities at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

Pad 40 is still out of commission as a result of the catastrophe. Few details about the pad damage and repair work have been released by SpaceX and it is not known when pad 40 will again be certified to resume launch operations.

Therefore SpaceX ramped up preparations to launch Falcon 9’s from the firms other pad on the Florida Space Coast – namely historic Launch Complex 39A which the company leased from NASA in 2014.

SpaceX is repurposing historic pad 39A at the Kennedy Space Center, Florida for launches of the Falcon 9 rocket. Ongoing pad preparation by work crews is seen in this current view taken on Jan. 27, 2017. Credit: Ken Kremer/kenkremer.com

Pad 39A is being repurposed by SpaceX to launch the Falcon 9 and Falcon Heavy rockets. It was previously used by NASA for more than four decades to launch Space Shuttles and Apollo moon rockets.

But SES-10 is currently third in line to launch atop a Falcon 9 from pad 39A.

The historic first launch of a Falcon 9 from pad 39A is currently slated for no earlier than Feb. 14 on the CRS-10 resupply mission for NASA to the ISS – as reported here.

The EchoStar 23 comsat is slated to launch next, currently no earlier than Feb 28.

SES-10 will follow – if both flights go well.

SpaceX successfully launched SES-9 for SES in March 2016.

Sunset blastoff of SpaceX Falcon 9 carrying SES-9 communications satellite from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Last July, SpaceX engineers conducted a test firing of another recovered booster as part of series of test examining long life endurance testing. It involved igniting all nine used first stage Merlin 1D engines housed at the base of a used landed rocket.

The Falcon 9 first stage generates over 1.71 million pounds of thrust when all nine Merlin engines fire up on the test stand for a duration of up to three minutes – the same as for an actual launch.

Watch the engine test in this SpaceX video:

Video Caption: Falcon 9 first stage from May 2016 JCSAT mission was test fired, full duration, at SpaceX’s McGregor, Texas rocket development facility on July 28, 2016. Credit: SpaceX

SES-10 satellite mission artwork. Credit: SES

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Bullseye: Amazing SpaceX Images Highlight Perfect Falcon 9 Landing

A SpaceX Falcon 9 rocket just before landing on the drone ship ‘Just Read the Instructions’ in the Pacific Ocean, on January 14, 2017 following the launch of 10 Iridium NEXT satellites into orbit. Credit: SpaceX.

SpaceX was able to celebrate a successful return to flight this week with a picture-perfect launch of the Falcon 9 rocket on January 14, 2017 that successfully delivered a fleet of ten advanced Iridium NEXT mobile voice and data relay satellites to orbit. But the icing on the cake was the dead-center landing and recovery of the Falcon 9 booster on their drone barge (named “Just Read The Instructions”) in the Pacific Ocean, off the west coast of California.

SpaceX released some images from the landing that are absolutely stunning, like this one, below:

A stunning view of the Falcon 9 rocket just before landing on a barge in the Pacific Ocean, on January 14, 2017 following the launch of 10 Iridium NEXT satellites into orbit. Credit: SpaceX.

The Falcon 9 launched from Space Launch Complex 4E on Vandenberg Air Force Base in California, and the main goal of the mission was to deploy the payload of the first ten Iridium Next communication satellites to low Earth orbit. Iridium plans to eventually have a fleet of 81 such satellites.

It was the first launch for the commercial company since the September 1, 2016 explosion on the launchpad at Cape Canaveral Air Force Station in Florida during a routine launchpad test. The explosion destroyed the Falcon 9 rocket and the payload of the Amos-6 communications satellite, which had an estimated value of $200 million. The explosion was traced back to a failure of a high-pressure helium vessel inside the Falcon 9’s second-stage liquid-oxygen tank.

Enjoy more images and video from the landing below:

Another view of the SpaceX Falcon 9 booster after landing on a barge in the Pacific Ocean on January 14, 2017. Credit: SpaceX.
The Falcon 9 booster sitting successfully on the barge after landing. Credit: SpaceX.

Here’s the full webcast of both the launch and landing:

You can see all of SpaceX’s latest images on their Flickr stream.

SpaceX Falcon 9 Comes Roaring Back to Life with Dramatically Successful Iridium Fleet Launch and Ocean Ship Landing

Picture perfect blastoff of SpaceX Falcon 9 on Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX
Picture perfect blastoff of SpaceX Falcon 9 on Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX

With Billions and Billions of dollars at stake and their reputation riding on the line, SpaceX came roaring back to life by dramatically executing a picture perfect Falcon 9 rocket launch this morning (Jan. 14) that successfully delivered a fleet of ten advanced Iridium NEXT mobile voice and data relay satellites to orbit while simultaneously recovering the first stage on a ship at sea off the west coast of California.

BREAKING NEWS – check back for updates.

The primary goal of SpaceX’s Falcon 9 launch from Space Launch Complex 4E on Vandenberg Air Force Base in California was to deploy the payload of the first ten Iridium Next communication satellites to low Earth orbit on the Iridium-1 mission.

“Thanks @elonmusk – a perfect flight! Loved watching sats deploy with you in the control room,” tweeted Matt Desch, Iridium Communications CEO, soon after receiving full confirmation that all 10 Iridium NEXT satellites were successfully deployed from their second stage satellite dispensers.

“More to go, but now to celebrate!!”

The inaugural ten will serve as the vanguard of a fleet that will eventually comprise 81 satellites.

SpaceX Falcon 9 first stage successfully soft lands on drone ship stationed in the Pacific Ocean off California coast after launching on Jan. 14, 2017, from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX

Today’s successful blastoff took place barely four and a half months after another Falcon 9 and its $200 million Israeli commercial payload were suddenly destroyed during a prelaunch fueling test on the Florida Space Coast on Sept. 1, 2016.

Another launch failure would have dealt a devastating blow to confidence in SpaceX’s hard won reputation.

The Sept. 1, 2016 calamity was the second Falcon 9 failure within 15 months time. Both occurred inside the second stage and called into question the rockets reliability.

The 229-foot (70-meter) Falcon 9 rocket was rolled out from its processing hangar to the launch pad and raised vertically yesterday.

Picture perfect blastoff of SpaceX Falcon 9 on Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying fleet of ten advanced Iridium NEXT comsats to low Earth orbit. Credit: SpaceX

Today’s entire land, landing and satellite deployment event was shown live on a SpaceX hosted webcast. It offered extremely sharp views of Saturdays on time liftoff at 9:54:34 a.m. PST or 12:54:34 p.m. EST, and unbelievably clear images of the first stage descending back to Earth towards a tiny drone ship.

“Overall a wonderfully nominal mission,” gushed the SpaceX commentator during the webcast.

Since the Iridium 1 mission only had an instantaneous launch opportunity precisely at 9:54:34 a.m. PST or 12:54:34 p.m. EST, there was no margin for any technical or weather delays. And none happened. Although an errant boat had to be quickly escorted out of the exclusion zone less than 20 minutes before blastoff.

Confirmation of a successful deployment of all 10 Iridium NEXT satellites came at about T plus 1 hour and 17 minutes after liftoff from Vandenberg.

“So, so excited – finally breathing again!” tweeted Desch.

“Thanks for all the great vibes – I felt it! All 10 sats deployed; good orbit; good telemetry! WOW.”

The mobile relay satellites were delivered into a circular orbit at an altitude of 625 kilometers (388 miles) above Earth.

They were released one at a time from a pair of specially designed satellite dispensers at approximately 100 second intervals.

“It was a clean sweep, 10 for 10,” said SpaceX commentator John Insprucker during the live webcast.

“All the bridge wires show open, and that is a conclusion of the primary mission today, a great one for the first stage, second stage, and the customer’s satellites deployed into a good orbit.”

The Iridium NEXT satellites were built by Thales Alenia and Orbital ATK.

In the final moments before the propulsive landing, you could read the lettering on the “Just Read the Instructions” drone ship as the engine was firing to slow the descent and the landing legs deployed.

Really there was no cutout or loss of signal the whole way down. So the world could watch every key moment as it happened in real time.

The first stage softly landed approx. 8 minutes and 18 seconds after the California liftoff.

“First stage has landed on Just Read the Instructions,” SpaceX tweeted post landing.

This was the first launch by SpaceX since last August from the Florida Space Coast, and it came off without a hitch.

Iridium 1 is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

At least 70 will be launched by SpaceX.

The inaugural launch of the advanced Iridium NEXT satellites will start the process of replacing an aging Iridium fleet in orbit for nearly two decades.

SpaceX Falcon 9 poised for Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying ten Iridium NEXT comsats to orbit. Credit: SpaceX

This Falcon 9 was been outfitted with four landing lags and grid fins for a controlled landing on the tiny barge prepositioned in the Pacific Ocean several hundred miles off the west coast of California.

SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Watch this space for continuing updates on SpaceX.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium
Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium

SpaceX Set for High Stakes Falcon 9 Blastoff Resumption with Iridium Satellite Fleet on Jan. 14 – Watch Live

SpaceX Falcon 9 poised for Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying ten Iridium NEXT comsats to orbit. Credit: SpaceX
SpaceX Falcon 9 poised for Jan. 14, 2017, Return to Flight launch from Vandenberg Air Force Base in California carrying ten Iridium NEXT comsats to orbit. Credit: SpaceX

The stakes could almost not be higher for SpaceX as the firm readies their twice failed Falcon 9 rocket for a blastoff resumption on Saturday morning, Jan. 14 carrying the vanguard of the commercial Iridium NEXT satellite fleet to orbit from their California rocket base.

Barely four and a half months after another Falcon 9 and its $200 million Israeli commercial payload were suddenly destroyed during a prelaunch fueling test on the Florida Space Coast on Sept. 1, 2016, SpaceX says all systems are GO for the ‘Return to Flight’ launch of a new Falcon 9 on the Iridium-1 mission from the California coast tomorrow.

Another launch failure would deal a devastating blow to confidence in SpaceX’s hard won reputation – so ‘Failure is Not an Option’ as they say in the space business.

The Sept. 1, 2016 calamity was the second Falcon 9 failure within 15 months time. Both occurred inside the second stage and called into question the rockets reliability.

The 229-foot (70-meter) Falcon 9 rocket has been rolled out from its processing hangar to the launch pad and raised vertically.

“Beautiful picture of our ride to space tomorrow on the launch pad this morning!” tweeted Matt Desch, Iridium Communications CEO, featuring the lead photo in this story.

A license for permission to proceed with the launch originally last Sunday was only granted by the FAA last Friday, Jan. 6. But poor California weather in the form of stormy rains and high winds forced further delays to Saturday.

Today, Friday the 13th, it’s T-Minus 1 Day to the inaugural launch of the advanced Iridium NEXT voice and data relay satellites.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation Iridium NEXT communications satellites is slated for 9:54:39 am PST or 5:54:39 pm UTC from Space Launch Complex 4E on Vandenberg Air Force Base in California.

The Iridium 1 mission only has an instantaneous launch opportunity precisely at 9:54:34 a.m. PST or 12:54:34 p.m. EST.

You can watch the launch live via a SpaceX webcast starting about 20 minutes prior to the planned liftoff time:

The launch will be broadcast at : http://www.spacex.com/webcast

Weather forecasters currently predict about a 60 percent chance of favorable conditions at launch time.

Sunday, Jan. 15 is available as a back-up launch opportunity in case of a delay for any reason including technical and weather related issues.

The Iridium NEXT payload has been secured to the SpaceX Falcon 9 rocket at T-2 days to launch. Credit: SpaceX/Iridium

“The teams from Iridium, SpaceX and our partners are in the homestretch for the first launch of the Iridium NEXT satellite constellation,” said satellite owner Iridium Communications.

Meanwhile the launch teams have completed the countdown dress rehearsal’ and Launch Readiness Review in anticipation of the morning liftoff.

“Final preparations are being made for tomorrow’s inaugural launch, and with that comes a number of high-stakes verifications, involving all parties. Traditionally referred to as the ‘countdown dress rehearsal’ and ‘Launch Readiness Review’ (LRR), these milestones represent the final hurdles to clearing the path for the January 14th launch.”

“The countdown dress rehearsal and LRR include several prelaunch inspections and quality control measures. These include final clearances for the SpaceX Falcon 9 rocket, Iridium NEXT payload, SpaceX and Iridium® ground infrastructure and associated team member responsibilities.”

Iridium says that every precaution has been taken to ensure a successful launch.

“There are so many variables that need to be considered when finalizing launch preparations, and a slight deviation or unexpected behavior by any of them can jeopardize the launch integrity,” said Iridium COO Scott Smith, in a statement.

“We’ve perfected the necessary procedures, taken every precaution we can imagine, and tomorrow, after what has felt like centuries, we’ll take the first step on a long-awaited journey to revolutionize satellite communications. The success of today’s events has brought us to an apex moment.”

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Iridium 1 is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

At least 70 will be launched by SpaceX.

The inaugural launch of the advanced Iridium NEXT satellites will start the process of replacing an aging Iridium fleet in orbit for nearly two decades.

Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium

After the Sept .1 calamity SpaceX conducted a four month long investigation seeking to determine the root cause.

And it was just last Friday, Jan. 6, that the FAA finally granted SpaceX a license to launch the ‘Return to Flight’ Falcon 9 mission – as I confirmed with the FAA.

“The FAA accepted the investigation report on the AMOS-6 mishap and has closed the investigation,” FAA spokesman Hank Price confirmed to Universe Today.

“SpaceX applied for a license to launch the Iridium NEXT satellites from Vandenberg Air Force Base. The FAA has granted a license for that purpose.”

The SpaceX investigation report into the total loss of the Falcon 9 rocket and AMOS-6 payload has not been released at this time. The FAA has oversight responsibility to encourage, facilitate, and promote U.S. commercial space transportation and ensure the protection of public safety.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

In addition to the launch, SpaceX plans to continue its secondary objective of recovering the Falcon 9 first stage via a propulsive soft landing – as done several times previously and witnessed by this author.

The Iridium-1 mission patch featured herein highlights both the launch and landing objectives.

The goal is to eventually recycle and reuse the first stage – and thereby dramatically slash launch costs per Musk’s vision.

This Falcon 9 has been outfitted with four landing legs and grid fins for a controlled landing on a tiny barge prepositioned in the Pacific Ocean several hundred miles off the west coast of California.

Watch this space for continuing updates on SpaceX.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Poor Weather Pushes SpaceX Return Debut with Revolutionary Iridium Relay Sats to Jan. 14

Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium
Mission patch for Iridium-1 mission showing launch of the first 10 Iridium NEXT voice and data relay satellites on SpaceX Falcon 9 from Vandenberg Air Force Base, California, for Iridium Communications, and planned landing of the first stage on a droneship in the Pacific Ocean. Credit: SpaceX/Iridium

In the face of unrelenting days of very poor weather and a range conflict with another very critical rocket launch, SpaceX is pushing back the return debut of their private Falcon 9 rocket carrying a revolutionary fleet of voice and data commercial communications relay satellites for Iridium to no earlier than next weekend, Jan 14.

Earlier indications of a nearly weeks long launch delay from Monday, Jan. 9 to next Saturday morning, Jan. 14, were officially confirmed today, Jan. 8, by SpaceX and their Iridium Communications customer.

“Launch moving due to high winds and rains at Vandenberg,” SpaceX announced today, Jan. 8.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation Iridium NEXT communications satellites had been slated for 10:22 am PST (1:22 pm EST), Jan. 9, 2017 from Space Launch Complex 4E on Vandenberg Air Force Base in California.

The advanced next satellites will start the process of replacing an aging Iridium fleet in orbit for nearly two decades.

And it was less than 48 hours ago on Friday, Jan. 6, that the FAA finally granted SpaceX a license to launch the ‘Return to Flight’ Falcon 9 mission – as I confirmed with the FAA here.

“The FAA accepted the investigation report on the AMOS-6 mishap and has closed the investigation,” FAA spokesman Hank Price confirmed to Universe Today.

“SpaceX applied for a license to launch the Iridium NEXT satellites from Vandenberg Air Force Base. The FAA has granted a license for that purpose.”

The SpaceX investigation report into the total loss of the Falcon 9 rocket and AMOS-6 payload has not been released at this time. The FAA has oversight responsibility to encourage, facilitate, and promote U.S. commercial space transportation and ensure the protection of public safety.

The private rocket – developed by CEO Elon Musk and his company – has been grounded for four months since a catastrophic launch pad explosion last September suddenly destroyed another Falcon 9 and its $200 million Israeli owned satellite during a prelaunch fueling test on the Florida Space Coast.

The Sept. 1, 2016 calamity was the second Falcon 9 failure within 15 months time. Both occurred inside the second stage and called into question the rockets reliability.

The prognosis of a week of bad California weather had been known for some time and finally prompted an official announcement just 24 hours before the hoped for launch.

“With high winds and rain in the forecast at Vandenberg Air Force Base, the first launch of 10 Iridium NEXT satellites is now planned for January 14th at 9:54:34 am PST with a back-up date of January 15th,” Iridium officials elaborated in a statement.

The mission, known as Iridium 1, has an instantaneous launch opportunity at 9:54:34 a.m. PST (12:54:34 p.m. EST).

Next Sunday, Jan. 15 is available as a back-up launch opportunity in case of a delay for any reason including technical and weather related issues.

Furthermore, humorous pleas by Iridium CEO Matt Desch for divine intervention went unheeded !

“Can now confirm: new launch date Jan 14 at 9:54am pst. Bad weather the cause. Anti-rain dances didn’t work – oh well. Cal needs rain?” said Iridium CEO Matt Desch when he threw in the towel this morning by tweet.

Things change fast and furious in the rocket business, and flexibility is the name of the game if you want to survive the frequently changing landscape.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

A contributing factor to the delay is a range conflict with an upcoming Atlas rocket launch for the U.S National Reconnaissance Organization (NRO) at Vandenberg AFB.

“Other range conflicts this week results in next available launch date being Jan 14,” SpaceX confirmed.

The United Launch Alliance Atlas V is scheduled to launch the super secret NROL-79 spy satellite for the NRO on Jan. 26.

Prior to the launch, ULA must conduct a wet dress rehearsal (WDR) of the Atlas V by fueling it with propellants to confirm its readiness to launch.

The clandestine NROL-79 intelligence-gathering payload is critical to US national defense. Surly it was manufactured over a time span of several years at an unknown classified cost probably amounting to billions of dollars.

For the Iridium – 1 mission the 229-foot (70-meter) Falcon 9 will carry a fleet of ten Iridium NEXT mobile voice and data relay satellites to orbit from Vandenberg Air Force Base, Ca, for Iridium Communications.

Video Caption: Iridium NEXT: Changing the Paradigm In Space Communications. Credit: Iridium/SpaceX

Iridium 1 is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

The FAA license approved on Jan. 6 covers all seven launches.

“Space Explorations Technologies is authorized to conduct seven launches of Falcon 9 version 1.2 vehicles from Space Launch Complex 4E at Vandenberg Air Force Base with each flight transporting ten Iridium NEXT payloads to low Earth orbit.

The license also allows SpaceX to land the first stage on a droneship at sea in the Pacific Ocean.

SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com

So besides the launch, SpaceX plans to continue its secondary objective of recovering the Falcon 9 first stage via a propulsive soft landing – as done several times previously and witnessed by this author.

The Iridium-1 mission patch featured herein highlights both the launch and landing objectives.

The goal is to eventually recycle and reuse the first stage – and thereby dramatically slash launch costs per Musk’s vision.

This Falcon 9 has been outfitted with four landing lags and grid fins for a controlled landing on a tiny barge prepositioned in the Pacific Ocean several hundred miles off the west coast of California.

Desch says that all seven of his Falcon’s will be new – not reused.

“All our seven F9s are new,” Desch tweeted.

On Jan. 2, SpaceX issued a statement ascribing the Sept. 1, 2016 AMOS-6 launch pad anomaly as being traced to a failure wherein one of three high pressure helium storage tanks located inside the second stage liquid oxygen (LOX) tank of the Falcon 9 rocket suddenly burst. Cold helium is used to pressurize the propellant tanks. They provided some but not many technical details.

The failure apparently originated at a point where the helium tank “buckles” and accumulates oxygen – “leading to ignition” of the highly flammable superchilled oxygen propellant in the second stage when it came into contact with carbon fibers covering the helium tanks – also known as composite overwrapped pressure vessels (COPVs).

“Friction ignition” between the carbon fibers acting as a friction source and super chilled oxygen led to the calamitous explosion, SpaceX concluded was the most likely cause of the disaster.

Watch this space for continuing updates as SpaceX rolls the rocket out from the processing hangar and we watch the saga of the foggy weather forecast with great anticipation !

SpaceX rocket processing hangar at Vandenberg Air Force Base in California, fogged by common fog. Credit Julian Leek

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

FAA Accepts Accident Report, Grants SpaceX License for Falcon 9 ‘Return to Flight’

SpaceX Falcon 9 poised for launch from Vandenberg Air Force Base in California, in this file photo ahead of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX
SpaceX Falcon 9 poised for launch from Vandenberg Air Force Base in California, in this file photo ahead of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

The Federal Aviation Administration (FAA) today “accepted the investigation report” regarding the results of SpaceX’s investigation into the cause of the company’s catastrophic Sept. 1, 2016 launch pad explosion of a Falcon 9 rocket in Florida, and simultaneously “granted a license” for the ‘Return to Flight’ blastoff of the private rocket from California as soon as next week – the FAA confirmed today to Universe Today, Friday, Jan. 6.

“The FAA accepted the investigation report on the AMOS-6 mishap and has closed the investigation,” FAA spokesman Hank Price confirmed to Universe Today.

All SpaceX launches were immediately grounded when their Falcon 9 booster and its $200 million AMOS-6 Israeli communications satellite payload were suddenly destroyed without warning during a routine preflight fueling test on Sept. 1, 2016, at pad 40 on Cape Canaveral Air Force Station in Florida.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

With today’s definitive action from the FAA the path is now clear for Hawthorne, Ca based SpaceX to resume launches of the Falcon 9 rocket as soon as Monday, Jan. 9. It will carry a fleet of ten Iridium NEXT mobile voice and data relay satellites to orbit from Vandenberg Air Force Base, Ca, for Iridium Communications.

“SpaceX applied for a license to launch the Iridium NEXT satellites from Vandenberg Air Force Base. The FAA has granted a license for that purpose,” Price added.

The SpaceX investigation report has not been released at this time.

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation IridiumNEXT communications satellites is slated for 10:22 am PST (1:22 pm EST), Jan. 9, 2017 from Space Launch Complex 4E on Vandenberg Air Force Base in California.

Furthermore all technical systems would appear to be ‘GO’ for the commercial rocket and commercial payload, following the official announcement by SpaceX CEO Elon Musk that the Falcon 9 rocket successfully passed its normally routine prelaunch static fire test of the first stage engines, on Thursday, Jan. 5.

“Hold-down firing of @SpaceX Falcon 9 at Vandenberg Air Force completed,” SpaceX CEO Elon Musk tweeted Jan. 5.

“All systems are go for launch next week.”

“Payload/rocket mating underway,” Iridium CEO Matt Desch elaborated and confirmed via twitter today.

The static fire test involves briefly firing the first stage Merlin 1D engines for several seconds while the rocket remains anchored to the launch pad. The test is run to confirm that all the engines and rocket systems are technically ready for launch.

In contrast to AMOS-6, the Iridium NEXT payload was not installed atop the rocket this time during Thursday’s test to keep them safely and prudently stored out of harms way – just in case another unexpected mishap were to occur.

Members of the Iridium Communications team were on hand to observe Thursday’s static fire test first hand.

“With great anticipation, team members observed the static fire test of the Falcon 9 rocket that will deliver the first ten Iridium NEXT satellites to orbit. Iridium is excited to share that the test is complete, and that SpaceX is reporting that the rocket should be ready for the first launch of the Iridium NEXT satellite constellation next week,” said Iridium officials.

“The target launch date is now Monday, January 9th at 10:22 am PST, weather permitting.”

And since the launch window is instantaneous, there is no margin for error or delay from either a technical or weather standpoint.

Currently, next weeks weather outlook is not promising with a forecast of rain and clouds on Monday morning and beyond. But only time will tell.

“With completion of the static fire test, our first launch has just gotten that much closer,” said Matt Desch, chief executive officer at Iridium, in a statement.

“The Iridium team has been anxiously awaiting launch day, and we’re now all the more excited to send those first ten Iridium NEXT satellites into orbit.”

“Looks like we’re good to go for Monday!” Desch tweeted today.

“Payload/rocket mating underway; we’ll just have to see about the weather. Anti-rain dances, anyone?”

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Also known as Iridium 1, this is the first of seven planned Falcon 9 launches to establish the Iridium NEXT constellation – eventually consisting of 81 advanced satellites.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Indeed the FAA license approved today covers all seven launches.

“Space Explorations Technologies is authorized to conduct seven launches of Falcon 9 version 1.2 vehicles from Space Launch Complex 4E at Vandenberg Air Force Base with each flight transporting ten Iridium NEXT payloads to low Earth orbit.

The license also allows SpaceX to land the first stage on a droneship at sea in the Pacific Ocean.

After the Sept. 1 accident at pad 40, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

On Jan. 2, SpaceX issued a statement ascribing the Sept. 1 anomaly as being traced to a failure wherein one of three high pressure gaseous helium storage tanks located inside the second stage liquid oxygen (LOX) tank of the Falcon 9 rocket suddenly burst. Helium is used to pressurize the propellant tanks. They provided some but not many technical details.

The failure apparently originated at a point where the helium tank “buckles” and accumulates oxygen – “leading to ignition” of the highly flammable liquid oxygen propellant in the second stage when it came into contact with carbon fibers covering the helium tank.

The helium tanks – also known as composite overwrapped pressure vessels (COPVs) – are used in both stages of the Falcon 9 to store cold helium which is used to maintain tank pressure.

SpaceX says investigators identified “an accumulation of super chilled liquid oxygen LOX or SOX in buckles under the overwrap” as “credible causes for the COPV failure.”

Apparently the super chilled LOX or SOX can pool in the buckles and react with carbon fibers in the overwrap – which act as an ignition source. “Friction ignition” between the carbon fibers and super chilled oxygen led to the calamitous explosion.

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and both occurred inside the second stage.

Up close look at a SpaceX Falcon 9 second stage and payload fairing from the JCSAT-16 launch from pad 40 at Cape Canaveral Air Force Station, FL. Both Falcon 9 rocket failures took place inside the second stage. Credit: Ken Kremer/kenkremer.com

If the Iridium liftoff is successful, SpaceX hopes to resume launches on the Florida Space Coast soon thereafter involving both commercial and NASA payloads using pad 39A at the Kennedy Space Center.

SpaceX could launch an EchoStar communications satellite later in January and a cargo resupply mission for NASA to the ISS in February from KSC.

Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016. Credit: Ken Kremer/kenkremer.com

Watch this space for continuing updates as SpaceX rolls the rocket out from the processing hangar and we watch the foggy weather forecast with great anticipation !

SpaceX rocket processing hangar at Vandenberg Air Force Base in California, fogged by common fog. Credit Julian Leek

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 erected at Vandenberg AFB launch pad in California in advance of Jason-3 launch for NASA on Jan. 17, 2016. Credit: SpaceX

NASA Orders Additional Astronaut Taxi Flights from Boeing and SpaceX to the ISS

Boeing and SpaceX commercial crew vehicles ferrying astronauts to the International Space Station (ISS) in this artists concept. Credit: NASA
Boeing and SpaceX commercial crew vehicles ferrying astronauts to the International Space Station (ISS) in this artists concept. Credit: NASA

In a significant step towards restoring America’s indigenous human spaceflight capability and fostering the new era of commercial space fight, NASA has awarded a slew of additional astronaut taxi flights from Boeing and SpaceX to carry crews to the International Space Station (ISS).

NASA’s new announcement entails awarding an additional four crew rotation missions each to commercial partners, Boeing and SpaceX, on top of the two demonstration fights previously awarded to each company under the agency’s Commercial Crew Program (CCP) initiative, in a Jan. 3 statement.

However, the newly awarded crew rotation missions will only take place after NASA has certified that each provider is fully and satisfactorily meeting NASA’s long list of stringent safety and reliability requirements to ensure the private missions will be safe to fly with humans aboard from NASA and its partner entities.

And NASA officials were careful to point out that these orders “do not include payments at this time.”

In other words, NASA will pay for performance, not mere promises of performance – because human lives are on the line.

“They fall under the current Commercial Crew Transportation Capability contracts, and bring the total number of missions awarded to each provider to six,” NASA officials announced.

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The goal of the CCP program is to ensure robust and reliable crew transportation to the International Space Station in this decade and beyond – using American rockets and capsules launching from American soil.

A further goal is to end America’s sole reliance on Russia for transporting American astronauts to and from the space station using Russia’s Soyuz crew capsules.

Since the forced retirement of NASA’s Space Shuttle’s in July 2011, NASA astronauts and its partners have been 100% dependent on Russia for rides to space – currently to the tune of over $80 million per seat.

By awarding these new contracts, Boeing and SpaceX should be able to plan further ahead in the future, order long lead time hardware and software, and ultimately cut costs through economy of scale.

“Awarding these missions now will provide greater stability for the future space station crew rotation schedule, as well as reduce schedule and financial uncertainty for our providers,” said Phil McAlister, director, NASA’s Commercial Spaceflight Development Division, in a statement.

“The ability to turn on missions as needed to meet the needs of the space station program is an important aspect of the Commercial Crew Program.”

Each spaceship can deliver a crew of four and 220 pounds of cargo, experiments and gear to the million pound science laboratory orbiting Earth at an altitude of appox. 250 miles (400 km). They also serve as a lifeboat in case the occupants need to evacuate the station for any reason.

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2018. Credit: NASA

Boeing and SpaceX were awarded contracts by NASA Administrator Charles Bolden in September 2014 worth $6.8 Billion to complete the development and manufacture of the privately developed Starliner CST-100 and Crew Dragon astronaut transporters, respectively, under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

The CCP initiative was started back in 2010 under the Obama Administration to replace NASA’s outgoing space shuttle orbiters.

However, launch targets for first fight by the Boeing Starliner and SpaceX Crew Dragon have been repeatedly postponed from 2015 to 2018 – in the latest iteration – due to severe and extremely shortsighted funding cutbacks by Congress year after year.

Thus NASA has been forced to order several years more additional Soyuz taxi seat flights and send hundreds and hundreds of millions of more US dollars to Putin’s Russia – thanks to the US Congress.

Congress enjoys whining about Russia on one hand, while at the same time they put America’s aerospace workers on the unemployment line by curtailing NASA’s ability to move forward and put Americans back to work. There is ample bipartisan blame for this sad state of affairs.

The Boeing Starliner and SpaceX Crew Dragon are both Made in America.

The Boeing Starliner is being manufactured at the Kennedy Space Center inside a repurposed and renovated former Space Shuttle Orbiter Processing hangar. This author has visited the C3PF facility periodically to observe and assess Boeing’s progress.

The honeycombed upper dome of a Boeing Starliner spacecraft on a work stand inside the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida. The upper dome is part of Spacecraft 1 , the first flightworthy Starliner being developed in partnership with NASA’s Commercial Crew Program. Credit: Ken Kremer/kenkremer.com

Indeed, Boeing has already started construction of the first flight worthy Starliner – currently dubbed Spacecraft 1- at KSC this past summer 2016.

Looking inside the newly upgraded Starliner mockup with display panel, astronauts seats, gear and hatch at top that will dock to the new International Docking Adapter (IDA) on the ISS. Credit: Ken Kremer/kenkremer.com

The SpaceX Crew Dragon is being manufactured at company headquarters in Hawthorne, California.

Blastoff of the first SpaceX Crew Dragon spacecraft on its first unmanned test flight, or Demonstration Mission 1, is postponed from May 2017 to November 2017, according to the latest quarterly revision just released by NASA last month in Dec. 2016.

Liftoff of the first piloted Crew Dragon with a pair of NASA astronauts strapped in has slipped from August 2017 to May 2018.

Launch of the first uncrewed Boeing Starliner, known as an Orbital Flight Test, has slipped to June 2018.

Liftoff of the first crewed Starliner is now slated for August 2018, possibly several months after SpaceX. But the schedules keep changing so it’s anyone’s guess as to when these commercial crew launches will actually occur.

Boeing’s uncrewed flight test, known as an Orbital Flight Test, is currently scheduled for June 2018 and its crewed flight test currently is planned for August 2018.

“Once the flight tests are complete and NASA certifies the providers for flight, the post-certification missions to the space station can begin,” NASA official said.

Fiery blastoff of a United Launch Alliance (ULA) Atlas V rocket like this one will launch the Boeing CST-100 Starliner to the ISS. Note the newly installed crew access tower and crew access arm and white room. Here is is carrying the EchoStar XIX satellite from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fl., at 2:13 p.m. EST on Dec. 18, 2016. Credit: Ken Kremer/kenkremer.com

Meanwhile the rockets and launch pads for Boeing and SpaceX are also being developed, modified and refurbished as warranted.

The launch pads for both are located on Florida’s Space Coast.

The Boeing CST-100 Starliner will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station.

The SpaceX Crew Dragon will launch on the company’s own Falcon 9 from Launch Pad 39A at NASA’s Kennedy Space Center.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A crane lifts the Crew Access Arm and White Room for Boeing’s CST-100 Starliner spacecraft for mating to the Crew Access Tower at Cape Canaveral Air Force Station’s Space Launch Complex 41 on Aug. 15, 2016. Astronauts will walk through the arm to board the Starliner spacecraft stacked atop a United Launch Alliance Atlas V rocket. Credit: Ken Kremer/kenkremer.com

SpaceX Finds Failure Cause, Announces Sunday Jan. 8 as Target for Falcon 9 Flight Resumption

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

After an intensive four month investigation into why a SpaceX Falcon 9 rocket exploded without warning on the launch pad last September, the company today announced the failures likely cause as well as plans of a rapid resumption of flights as soon as next Sunday, Jan. 8, from their California launch complex – carrying a lucrative commercial payload of 10 advanced mobile relay satellites to orbit for Iridium Communications.

“Targeting return to flight from Vandenberg with the @IridiumComm NEXT launch on January 8,” SpaceX announced on their website today, Monday, Jan. 2., 2017.

“Our date is now public. Next Sunday morning, Jan 8 at 10:28:07 pst. Iridium NEXT launch #1 flies!” Iridium Communications CEO Matt Desch quickly confirmed by tweet today, Jan 2.

SpaceX has been dealing with the far reaching and world famous fallout from the catastrophic launch pad explosion that eviscerated a Falcon 9 and its expensive $200 million Israeli Amos-6 commercial payload in Florida without warning, during a routine preflight fueling test on Sept. 1, 2016, at pad 40 on Cape Canaveral Air Force Station.

The first ten IridiumNEXT satellites are stacked and encapsulated in the Falcon 9 fairing for launch from Vandenberg Air Force Base, Ca., in early 2017. Credit: Iridium

After the Sept. 1 accident at pad 40, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

“We have been working closely with NASA, and the FAA [Federal Aviation Administration] and our commercial customers to understand it,” said SpaceX CEO Elon Musk.

Via the “fault tree analysis” the Sept. 1 anomaly has been traced to a failure in one of three gaseous helium storage tanks located inside the second stage liquid oxygen (LOX) tank of the Falcon 9 rocket, according to a statement released by SpaceX today which provided some but not many technical details.

The failure apparently originated at a point where the helium tank “buckles” and accumulates oxygen – “leading to ignition” of the highly flammable liquid oxygen propellant in the second stage.

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

The helium tanks – also known as composite overwrapped pressure vessels (COPVs) – are used in both stages of the Falcon 9 to store cold helium which is used to maintain tank pressure.

“The accident investigation team worked systematically through an extensive fault tree analysis and concluded that one of the three composite overwrapped pressure vessels (COPVs) inside the second stage liquid oxygen (LOX) tank failed.”

“Each COPV consists of an aluminum inner liner with a carbon overwrap.”

“Specifically, the investigation team concluded the failure was likely due to the accumulation of oxygen between the COPV liner and overwrap in a void or a buckle in the liner, leading to ignition and the subsequent failure of the COPV.”

SpaceX says investigators identified “an accumulation of super chilled LOX or SOX in buckles under the overwrap” as “credible causes for the COPV failure.”

Apparently the super chilled LOX or SOX can pool in the buckles and react with carbon fibers in the overwrap – which act as an ignition source.

As part of the most recent upgrade to the Falcon 9, SpaceX changed their fueling procedure to include the use of densified oxygen – or super chilled oxygen – in order to load more propellant into the same volume, at a lower temperature of about minus 340 degrees Fahrenheit for SOX vs. about minus 298 degrees Fahrenheit for LOX.

In essence SpaceX gets more gallons of super chilled oxygen into the same tank volume because of the higher density – and they don’t have to change the rocket’s dimensions.

This temperature change enables the Falcon 9 to launch heavier payloads.

However the side effect of the superchilling process is that the oxygen is now very close to its freezing point – with the potential to partially solidify , rather than being a completely free flowing liquid. Then the resulting friction with carbon fibers can ignite the pooled oxygen resulting in an instantaneous fireball and destruction of the rocket – as happened to Falcon 9 and Amos-6 at pad 40 on Sept. 1, 2016.

“Investigators concluded that super chilled LOX can pool in these buckles under the overwrap. When pressurized, oxygen pooled in this buckle can become trapped; in turn, breaking fibers or friction can ignite the oxygen in the overwrap, causing the COPV to fail.”

Very concerning to this author is the fact that the helium loading conditions are confirmed to be so low that they can actually freeze the liquid oxygen into solid form. Thus it cannot flow freely and significantly increases the chances of a “friction ignition.”

This same Falcon 9 rocket will be used to launch our astronauts to the ISS in 2018 – seated inside a Crew Dragon atop the helium tank bathed in super chilled LOX.

“Investigators determined that the loading temperature of the helium was cold enough to create solid oxygen (SOX), which exacerbates the possibility of oxygen becoming trapped as well as the likelihood of friction ignition.”

SpaceX says they will address the causes of the mishap through a mix of both short term and long term “corrective actions.”

“The corrective actions address all credible causes and focus on changes which avoid the conditions that led to these credible causes.”

The short term fixes involve simpler changes to the COPV configuration and modifying the helium loading conditions.

“In the short term, this entails changing the COPV configuration to allow warmer temperature helium to be loaded, as well as returning helium loading operations to a prior flight proven configuration based on operations used in over 700 successful COPV loads.”

So it remains to be seen if SpaceX continues the use of densified oxygen or not in the near term.

The long term fixes involve changing the COPV hardware itself and will take longer to implement. They are also likely to be more effective – but only time will tell.

“In the long term, SpaceX will implement design changes to the COPVs to prevent buckles altogether, which will allow for faster loading operations.”

Liftoff of the SpaceX Falcon 9 with the payload of 10 identical next generation IridiumNEXT communications satellites will take place from Space Launch Complex 4E on Vandenberg Air Force Base in California – assuming the required approval is first granted by the Federal Aviation Administration (FAA).

No Falcon 9 launch will occur until the FAA gives the ‘GO.’

Furthermore, in anticipation of announcing the targeted ‘Return to Flight’ launch date, technicians have already processed the Falcon 9 rocket for the ‘Return to Flight’ blastoff with the vanguard of a fleet of IridiumNEXT mobile voice and data relay satellites for Iridium Communications – as I reported last week in my story here – and subsequently tweeted by Iridium CEO Matt Desch saying “Nice recap.”

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

Last week, the first ten IridiumNEXT mobile voice and data relay satellites were fueled, stacked and tucked inside the nose cone of the Falcon 9 rocket designated as SpaceX’s ‘Return to Flight’ launcher in order to enable a blastoff as soon as possible after an approval is received from the FAA.

“Iridium is pleased with SpaceX’s announcement on the results of the September 1 anomaly as identified by their accident investigation team, and their plans to target a return to flight on January 8 with the first Iridium NEXT launch” Iridium Communications said on their website today, Jan. 2.

Another milestone to watch for is the first stage engine static fire test that SpaceX routinely conducts several days prior to the launch. Thats exactly the same type test where the Falcon 9 blew up in Florida some five minutes before the short Merlin 1D engine ignition to confirm readiness for the real launch that had been planned for 2 days later.

Iridium’s SpaceX Falcon9 rocket in processing at Vandenberg Air Force Base, getting ready for launch in early Jan. 2017. Credit: Iridium

The Iridium 1 mission is the first of seven planned Falcon 9 launches – totaling 70 satellites.

“Iridium is replacing its existing constellation by sending 70 Iridium NEXT satellites into space on a SpaceX Falcon 9 rocket over 7 different launches,” says Iridium.

The goal of this privately contracted mission is to deliver the first 10 Iridium NEXT satellites into low-earth orbit to inaugurate what will be a new constellation of satellites dedicated to mobile voice and data communications.

Iridium eventually plans to launch a constellation of 81 Iridium NEXT satellites into low-earth orbit.

“At least 70 of which will be launched by SpaceX,” per Iridium’s contract with SpaceX.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. Credit: Ken Kremer/kenkremer.com

Meanwhile pad 40, which was heavily damaged during the Sept. 1 explosion, is undergoing extensive repairs and refurbishments to bring it back online.

It is not known when pad 40 will be fit to resume Falcon 9 launches.

In the interim, SpaceX plans to initially resume launches from the Florida Space Coast at the Kennedy Space Center (KSC) from pad 39A, the former shuttle pad that SpaceX has leased from NASA.

Commercial SpaceX launches at KSC could start from pad 39A sometime in early 2017 – after modifications for the Falcon 9 are completed.

Up close look at a SpaceX Falcon 9 second stage and payload fairing from the JCSAT-16 launch from pad 40 at Cape Canaveral Air Force Station, FL. Both Falcon 9 rocket failures took place inside the second stage. Credit: Ken Kremer/kenkremer.com

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and called into question the rockets overall reliability. Both incidents involved the second stage helium system, but SpaceX maintains that they are unrelated.

The first Falcon 9 failure involved a catastrophic mid air explosion in the second stage about two and a half minutes after liftoff, during the Dragon CRS-7 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author. The accident was traced to a failed strut holding the helium tank inside the liquid oxygen tank. The helium tank dislodged and ultimately ruptured the second stage as the first stage was still firing resulting in a total loss of the rocket and payload.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer