Spectacular Imagery Showcases SpaceX Thaicom Blastoff as Sea Landed Booster Sails Back to Port: Photo/Video Gallery

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

CAPE CANAVERAL AIR FORCE STATION, FL – Spectacular imagery showcasing SpaceX’s Thaicom blastoff on May 27 keeps rolling in as the firms newest sea landed booster sails merrily along back to its home port atop a ‘droneship’ landing platform.

Formally known as an Autonomous Spaceport Drone Ship (ASDS) the small flat platform is eclectically named “Of Course I Still Love You” or “OCISLY” by SpaceX Founder and CEO Elon Musk and is expected back at Port Canaveral this week.

Check out this expanding launch gallery of up close photos and videos captured by local space photojournalist colleagues and myself of Friday afternoons stunning SpaceX Falcon 9 liftoff.

The imagery shows Falcon roaring to life with 1.5 million pounds of thrust from the first stage Merlin 1 D engines and propelling a 7000 pound (3,100 kilograms) commercial Thai communications satellite to a Geostationary Transfer Orbit (GTO).

The recently upgraded Falcon 9 launched into sky blue sunshine state skies at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, accelerating to orbital velocity and arcing eastward over the Atlantic Ocean towards the African continent and beyond.

Relive the launch via these exciting videos recorded around the pad 40 perimeter affording a “You Are There” perspective!

They show up close and wide angle views and audio recording the building crescendo of the nine mighty Merlin 1 D engines.

Video caption: Compilation of videos of SpaceX Falcon 9 launch of Thaicom 8 on 5/27/2016 from Pad 40 on CCAFS, FL as seen from multiple cameras ringing pad and media viewing site on AF base. Credit: Jeff Seibert

Watch from the ground level weeds and a zoomed in view of the umbilicals breaking away at the moment of liftoff.

Video caption: SpaceX Falcon 9 lifts off with Thaicom-8 communications satellite on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

After the first and second stages separated as planned at about 2 minutes and 39 seconds after liftoff, the nosecone was deployed, separating into two halves at about T plus 3 minutes and 37 seconds.

Finally a pair of second stage firings delivered Thaicom-8 to orbit.

Onboard cameras captured all the exciting space action in real time.

When the Thai satellite was successfully deployed at T plus 31 minutes and 56 seconds exhuberant cheers instantly erupted from SpaceX mission control – as seen worldwide on the live webcast.

“Satellite deployed to 91,000 km apogee,” tweeted SpaceX CEO and founder Elon Musk.

Video caption: SpaceX – “Falcon In” “Falcon Out” – 05-27-2016 – Thaicom 8. The brand new SpaceX Falcon 9 for next launch comes thru main gate Cape Canaveral, just a few hours before Thaicom 8 launched and landed. Awesome ! Credit: USLaunchReport

Both stages of the 229-foot-tall (70-meter) Falcon 9 are fueled by liquid oxygen and RP-1 kerosene which burn in the Merlin engines.

Less than nine minutes after the crackling thunder and billowing plume of smoke and fire sent the Falcon 9 and Thaicom 8 telecommunications satellite skyward, the first stage booster successfully soft landed on a platform at sea.

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus

Having survived the utterly harsh and unforgiving rigors of demanding launch environments and a daring high velocity reentry, SpaceX engineers meticulously targeted the tiny ocean going ASDS vessel.

The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m).

“Of Course I Still Love You” is named after a starship from a novel written by Iain M. Banks.

OCISLY was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

Because the launch was target Thaicom-8 to GTO, the first stage was traveling at some 6000 kph at the time of separation from the second stage.

Thus the booster was subject to extreme velocities and re-entry heating and a successful landing would be extremely difficult – but not impossible.

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Just 3 weeks ago SpaceX accomplished the same sea landing feat from the same type trajectory following the launch of the Japanese JCSAT-14 on May 6.

The May 6 landing was the first fully successful sea landing from a GTO launch, brilliantly accomplished by SpaceX engineers.

With a total of 4 recovered boosters, SpaceX is laying the path to rocket reusability and Musk’s dream of slashing launch costs – by 30% initially and much much more down the road.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

Thaicom-8 is the fifth operational satellite for Thaicom.

It now enters a 30-day testing phase, says Orbital ATK.

Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

The Falcon 9 launch is the 5th this year for SpaceX.

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing from GTO on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles

SpaceX Falcon 9 Thunders to Space with Thai Comsat – Scores Double Headed Win with 3rd Straight Booster Landing

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL. – Atop a billowing plume of fire and smoke a SpaceX Falcon 9 rocket soared to space this afternoon, Friday, May 27, as the crackling thunder of the engines roared across the Florida space coast and the company scored a stunning double headed launch and landing success.

The 229 foot-tall (70 meter) Falcon 9 successfully delivered a 7000 pound commercial Thai telecommunications satellite to a Geostationary Transfer Orbit (GTO) and the first stage booster successfully soft landed on a platform at sea some nine minutes later.

Thus SpaceX is now an unfathomable 3 for 3 in the last three first stage landing attempts – both at sea and on land.

Even more remarkable is the string of two straight successes in landings via the high energy reentries as a consequence of launching the commercial payloads to GTO.

The Falcons screams were the loudest and most thrilling I’ve ever heard from a SpaceX launch as the two stage rocket lifted off on time at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL.

“Satellite deployed to 91,000 km apogee,” tweeted SpaceX CEO and founder Elon Musk.

“All looks good.”

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

The spectacular looking launch into mostly sunny Florida skies followed a days delay forced by a technical glitch in the second stage.

SpaceX engineers had to lower the Falcon 9 to the horizontal position and hurriedly fix the second engine actuator that gave concerning readings during Thursday’s original launch attempt and scrubbed the liftoff – and do so in time to safely carry out a launch attempt late this afternoon.

Hundreds of millions of dollars were at stake on this commercial flight slated to deliver the Thaicom-8 comsat to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

The first and second stages separated as planned about 2 minutes and 39 seconds after liftoff.

The nosecone, or payload fairing deployed into two halves at about T plus 3 minutes and 37 seconds.

Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The second stage with Thaicom-8 continued to orbit. A pair of burns carried Thaicom-8 to orbit and the satellite was deployed at T plus 31 minutes and 56 seconds.

The rocket arced over as it accelerated eastwards towards Africa.

The nine first stage Marlin 1D engines on the 229 foot tall Falcon 9 rocket generate approximately 1.5 million pounds of thrust.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016.  The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016.  Credit: Orbital ATK
Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016. The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016. Credit: Orbital ATK

The Falcon 9 launch is the 5th this year for SpaceX.

Meanwhile, the first stage began a series of propulsive burns of a Merlin 1 D engine to target a drone ship platform at sea.

SpaceX said the barge was positioned some 620 km off the Florida coast in the Atlantic Ocean.

After the primary goal of delivering Thaicom-8 to GTO, the secondary test objective of SpaceX was to land the Falcon 9 rockets first stage on the ocean going barge.

The Autonomous Spaceport Drone Ship (ASDS) platform is named “Of Course I Still Love You.”

SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016. Credit: Ken Kremer/kenkremer.com

However with this mission’s GTO destination, the first stage was subject to extreme velocities and re-entry heating and a successful landing would be difficult.

Altogether, SpaceX has now recovered 4 first stage boosters – 3 by sea and 1 by land.

The quartet of landings count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

SpaceX hopes to cut launch costs by one third initially, and much much more down the road.

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

SpaceX Falcon 9 arcs over eastwards with Thaicom-8 communications satellite after liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 arcs over eastwards with Thaicom-8 communications satellite after liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

THAICOM 8 spacecraft as seen during  deployment into a nominal supersynch transfer orbit. Credit: SpaceX
THAICOM 8 spacecraft as seen during deployment into a nominal supersynch transfer orbit. Credit: SpaceX

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 28: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, afternoon/evening

Falcon 9 first stage landed on the droneship in the Atlantic Ocean after launch of Thaicom-8 on May 27, 2016. Credit: SpaceX
Falcon 9 first stage landed on the droneship in the Atlantic Ocean after launch of Thaicom-8 on May 27, 2016. Credit: SpaceX

Technical Glitch Postpones SpaceX Thaicom Launch/Landing to Friday May 27 – Watch Live Webcast

Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL, in this file photo. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, Fla. – Thursday’s (May 26) planned blastoff of an upgraded SpaceX Falcon 9 rocket on a lucrative commercial mission to deliver a Thai telecommunications satellite to orbit, was postponed in the final stages of the countdown after engineers discovered a technical glitch in the booster’s second stage.

Liftoff of the two stage Falcon 9 is now planned for Friday, May 27 at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida.

Soon after liftoff, SpaceX will again execute a sea landing attempt of the first stage booster on a platform a sea following a tough reentry trajectory.

Since the launch window extends two hours, the SpaceX launch team took the time available to work the issue and tried as best they could to resolve it.

But in the end, and more than an hour into the available window, launch controllers decided it was best to stay safe and scrub for the day at about 6:40 p.m. EST and take the opportunity to thoroughly review all the data.

“Out of an abundance of caution, launch postponed until no earlier than tomorrow [May 27] for additional data review” SpaceX said via social media accounts.

Hundreds of millions of dollars are at stake on this commercial flight slated to deliver the Thaicom-8 comsat to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

“Falcon 9 & THAICOM 8 spacecraft remain healthy,” SpaceX tweeted.

SpaceX founder and CEO Elon Mush said that the problem was traced to an engine actuator in the second stage wich is critical for delivering Thaicom-8 to its required geostationary orbit.

“There was a tiny glitch in the motion of an upper stage engine actuator,” SpaceX CEO Musk tweeted.

“Probably not a flight risk, but still worth investigating.”

You can watch the launch live on Friday via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 5:19 p.m. EDT- at SpaceX.com/webcast
The two stage Falcon 9 rocket has a two-hour launch window that extends until Friday, May 27 at 7:39 p.m. EDT.

The Florida weather is much less favorable than yesterday. Air Force meteorologists are predicting only a 40 percent chance of favorable weather conditions at launch time Friday. The major concerns could be violations of the Thick Cloud Layer Rule, Cumulus Cloud Rule, and Liftoff Winds.

Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The backup launch opportunity is Saturday, May 28. The weather outlooks is somewhat better at a 50 percent chance of favorable conditions.

Watch this truly cool video showing the rocket rollout to pad 40, rocket erection and finally the short static fire test carried out on Tuesday May 24, 2016.

Video Caption: SpaceX – Thaicom 8 – Roll Out – Lift – Static Fire Test – 05-24-2016. Credit: USLaunchReport

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

The Falcon 9 launch is the 5th this year for SpaceX.

Tune in to the SpaceX webcast Thursday afternoon to catch all the exciting action !!

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 27: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, late evening

SpaceX Targets Thursday May 26 for Thai Comsat Launch and Tough Sea Landing – Watch Live

SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo.  Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer

CAPE CANAVERAL AIR FORCE STATION, Fla. – Just three weeks after SpaceX’s last launch from their Florida launch base, the growing and influential aerospace firm is deep into commencing their next space spectacular – targeting this Thursday, May 26, for launch of a Thai comsat followed moments later by a sea landing attempt of the booster on a tough trajectory.

SpaceX is slated to launch the Thaicom-8 telecommunications satellite atop an upgraded version of the SpaceX Falcon 9 on Thursday at 5:40 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida.

SpaceX is rapidly picking up the pace of rocket launches for their wide ranging base of commercial, government and military customers that is continuously expanding and reaping contracts and profits for the Hawthorne, Calif. based company.

This commercial mission involves lofting Thaicom-8 to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

This also counts as the second straight GTO launch and the second straight attempt to land a rocket on a sea based platform from the highly demanding GTO launch trajectory.

Will this mission make for 3 successful Falcon 9 1st stage booster landings in a row? Tune in and find out !!

Engineers have a two-hour window to launch the Falcon 9 and deliver Thaicom to orbit.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

The Falcon 9 launch is the 5th this year for SpaceX.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 5:20 a.m. EDT at SpaceX.com/webcast

The two stage Falcon 9 rocket has a two-hour launch window that extends until Thursday, May 26 at 7:40 p.m. EDT.

Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016.  The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016.  Credit: Orbital ATK
Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016. The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016. Credit: Orbital ATK

The path to liftoff was cleared late last night the company completed the customary pre-launch static fire test of the rocket’s first stage upgraded Merlin 1D engines for several seconds at pad 40.

The nine engines on the 229 foot tall Falcon 9 rocket generate approximately 1.5 million pounds of thrust.

Engineers monitored the test and after analyzing results declared the Falcon 9 was fit to launch Thursday afternoon.

The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Thursday morning with a minor concern for ground winds.

The backup launch opportunity is Friday, May 27. The weather outlooks is somewhat less promising at a 70 percent chance of favorable conditions.

After the Falcon 9 rocket delivers the satellite into its targeted geosynchronous transfer orbit it will enter a 30-day testing phase, says Orbital ATK.

Following in-orbit activation and after reaching its final orbital slot, Orbital ATK will then turn over control of the satellite to Thaicom to begin normal operations.

THAICOM 8’s orbital location will be positioned at 78.5 degrees east longitude and the satellite is designed to operate for more than 15 years.

Thaicom-8 is a Ku-band satellite that offers 24 active transponders that will deliver broadcast and data services to customers in Thailand, Southeast Asia, India and Africa.

Thaicom-8 has a mass of approximately 6,800 pounds (3,100 kilograms). It is based on Orbital ATK’s flight-proven GEOStar-2TM platform.

“We built and delivered this high-quality communications satellite for Thaicom PLC two months ahead of schedule, demonstrating our ability to manufacture reliable, affordable and innovative products that exceed expectations for our customer,” said Amer Khouri, Vice President of the Commercial Satellite Business at Orbital ATK.

“As one of Asia’s leading satellite operators, we are grateful for Thaicom’s continued confidence and look forward to more successful partnerships in the future.”

Thaicom-8 will join Thaicom-6 already in orbit. It was also designed, manufactured, integrated and tested by Orbital ATK. at the firm’s state-of-the-art satellite manufacturing facility in Dulles, Virginia.

Thaicom PLC commissioned Thaicom-8 in 2014, shortly after SpaceX launched the THAICOM 6 satellite into orbit in January 2014.

Thaicom-8 mission patch artwork.  Credit: SpaceX
Thaicom-8 mission patch artwork. Credit: SpaceX

The secondary test objective of SpaceX is to land the Falcon 9 rockets first stage on an ocean going barge several hundred miles offshore in the Atlantic Ocean.

The Autonomous Spaceport Drone Ship (ASDS) barge is named “Of Course I Still Love You.”

However with this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating and a successful landing will be difficult.

Having said that and despite those hurdles, the last GTO mission landing attempt did succeed brilliantly following the May 6 JCSAT-14 launch.

Tune in to the SpaceX webcast Thursday afternoon to catch all the exciting action !!

Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace.  Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX.  Composite:  Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 25/26: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Jun 2 to 5: “ULA, NRO, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Calls In The Lawyers For 2018 Mars Shot

An artist's illustration of SpaceX's Dragon capsule entering the Martian atmosphere. Image: SpaceX
An artist's illustration of SpaceX's Dragon capsule entering the Martian atmosphere. Image: SpaceX

A manned mission to Mars is a hot topic in space, and has been for a long time. Most of the talk around it has centred on the required technology, astronaut durability, and the overall feasibility of the mission. But now, some of the talk is focussing on the legal framework behind such a mission.

In April 2016, SpaceX announced their plans for a 2018 mission to Mars. Though astronauts will not be part of the mission, several key technologies will be demonstrated. SpaceX’s Dragon capsule will make the trip to Mars, and will conduct a powered, soft landing on the surface of the red planet. The capsule itself will be launched by another new piece of technology, SpaceX’s Falcon Heavy rocket.

It’s a fascinating development in space exploration; a private space company, in cooperation with NASA, making the trip to Mars with all of its own in-house technology. But above and beyond all of the technological challenges, there is the challenge of making the whole endeavour legal.

Though it’s not widely known or talked about, there are legal implications to launching things into space. In the US, each and every launch by a private company has to have clearance from the Federal Aviation Administration (FAA).
That’s because the US signed the Outer Space Treaty in 1969, a treaty that sets out the obligations and limitations to activities in space. The FAA has routinely given their ascent to commercial launches, but things may be starting to get a little tricky in space.

The most recent Humans To Mars Summit, a conference focussed on Mars missions and explorations, just wrapped up on May 19th. At that conference, George Nield, associate administrator for commercial space transportation at the FAA, addressed the issue. “That’ll be an FAA licensed launch as well,” said Nield of the SpaceX mission to Mars. “We’re already working with SpaceX on that mission,” he added. “There are some interesting policy questions that have to do with the Outer Space Treaty,” said Nield.

The Outer Space Treaty was signed in 1967, and has some sway over space exploration and colonization. Though it gives wide latitude to governments that are exploring space, how it will affect commercial activity like resource exploitation, and installations like settlements in other planets, is not so clear.

An artist's illustration of a Mars settlement. If a private company like SpaceX were to build a colony on Mars, would other countries cry foul? Image: Bryan Versteeg/MarsOne
An artist’s illustration of a Mars settlement. If a private company like SpaceX were to build a colony on Mars, would other countries cry foul? Image: Bryan Versteeg/MarsOne

According to Nield, the FAA is interested in Article VI of the treaty and how it might impact SpaceX’s planned mission to Mars. Article VI states that all signees to the treaty “shall bear international responsibility for national activities in outer space, including the Moon and other celestial bodies, whether such activities are carried on by governmental agencies or by non-governmental entities.”

Article VI also says, “the activities of non-governmental entities in outer space, including the Moon and other celestial bodies, shall require authorization and continuing supervision by the appropriate State Party to the Treaty.”

What this language means is that the US government itself will bear responsibility for the SpaceX Mars mission. Obviously, this kind of treaty obligation is important. There isn’t exactly a huge list of private companies exploring space, but that will change as the years pass. It seems likely that the bulk of commercial space exploration and resource utilization will be centred in the US, so how the US deals with their treaty obligations will be of immense interest now and in the future.

The treaty itself is mostly focused on avoiding military activity in space. It prohibits things like weapons of mass destruction in space, and weapons testing or military bases on the Moon or other celestial bodies. The treaty also states that the Moon and other planets and bodies cannot be claimed by any nation, and that these and other bodies “are the common heritage of mankind.” Good to know.

Taken as a whole, it’s easy to see why the Treaty is important. Space can’t become a free-for-all like Earth has been in the past. There has to be some kind of framework. “A government needs to oversee these non-governmental activities,” according to Nield.

There’s another aspect to all of this. Governments routinely sign treaties, and then try to figure out ways around them, while hoping their rivals won’t do the same. It’s a sneaky, tactical business, because governments can’t grossly ignore treaties, else the other co-signatories abandon said treaty completely. A case in point is last year’s law, signed by the US Congress, which makes it legal for companies to mine asteroids. This law could be interpreted as violating the Treaty.

The image of the American flag planted on the Moon, being saluted by an American astronaut, must have caused great consternation in the Kremlin. Will SpaceX's mission to Mars cause the same consternation? Will Russia and other nations use the mission to remind the US of their Outer Space Treaty obligations? Image: NASA
The US won the space race against its adversary, the USSR. The image of the American flag planted on the Moon, being saluted by an American astronaut, must have caused great consternation in the Kremlin. Will SpaceX’s mission to Mars cause the same consternation? Will Russia and other nations use the mission to remind the US of their Outer Space Treaty obligations? Image: NASA

Governments can claim, for instance, that their activities are scientific rather than military. Geo-political influence depends greatly on projecting power. If one nation can project power into space, while claiming their activities are scientific rather than military, they will gain an edge over their rivals. Countries also seek to bend the rules of a treaty to satisfy their own interests, while preventing other countries from doing the same. Just look at history.

We’re not in that type of territory yet. So far, no nation has had an opportunity to really violate the treaty, though the asteroid mining law passed by the US Congress comes close.

The SpaceX mission to Mars is a very important one, in terms of how the Outer Space Treaty will be tested and adhered to. More and more countries, and private companies, are becoming space-farers. The legality of increasingly complex missions in space, and the eventual human presence on the Moon and Mars, is a fascinating one not usually addressed by the space science community.

We in the space science community are primarily interested in technological advances, and in the frontiers of human knowledge. It might be time for us to start paying attention to the legal side of things. Space exploration could turn out to have an element of courtroom drama to it.

2 By Sea, 1 By Land, 3rd Recovered Booster Joins SpaceX Siblings: Up Close Gallery

Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace.  Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX.  Composite:  Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer

Rolling rolling rolling! Yee-haw!

2 By Sea, 1 By Land. The 3rd recovered Falcon 9 booster has joined her siblings inside SpaceX’s gleaming new processing hangar, laying side-by-side at Launch Complex 39A at NASA’s Kennedy Space Center (KSC) in Florida.

What was once unfathomable science fiction has turned into science fact.

In the space of 5 short months, SpaceX has recovered three of the company’s spent Falcon 9 first stage boosters following successful rocket delivery launches to orbit for NASA and commercial customers.

The trio of landings count as stunning successes towards SpaceX founder and CEO Elon Musk’s vision of rocket reusability and radically slashing the cost of sending rockets to space by recovering the boosters and eventually reflying them with new payloads from paying customers.

Over the weekend, the latest Falcon 9 booster recovered after nailing a spectacular middle-of-the-night touchdown on a sea based platform, was transported horizontally from a work site at Port Canaveral to the SpaceX rocket processing hanger at pad 39A at KSC.

Check out the extensive gallery of up close photos/videos herein of the boosters travels along the long and winding road from the port to KSC from my space photographer friends Jeff Seibert and Julian Leek. As well as booster trio hangar photos from SpaceX.

“Three’s company,” tweeted SpaceX’s Elon Musk, after the third booster met the first two inside the pad 39A hangar.

Video caption: Close-up video of SpaceX JCSAT-14 Falcon 9 booster rolls to SpaceX hanger at Pad 39A after removal from the drone ship where it landed on May 6th. Credit: Jeff Seibert/AmericaSpace

The 156 foot tall booster safely soft landed on the tiny drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 a week and a half ago on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time nighttime liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The used first stage then carried out an intricate propulsive soft landing on the waiting ocean going platform located some 400 miles off the east coast of Florida.

The booster was then towed into the Florida space coast at Port Canaveral where it was removed from the barge, defueled and had its four landing legs removed.

Thereafter it was tilted and lowered horizontally and placed onto the multi-wheeled transport for shipment back to SpaceX launch facilities at the Kennedy Space Center.

First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek

The newly recovered first stage joins the fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida.  Credit: SpaceX
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida. Credit: SpaceX

To date SpaceX has recovered 3 Falcon 9 first stages – 2 by sea and 1 by at land. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of separation from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Musk and SpaceX officials had openly doubted a successful outcome for this landing attempt.

Nevertheless it all worked out spectacularly as seen live at the time via the SpaceX launch and landing webcast.

However, the booster and the Merlin 1D first stage engines did sustain heavy damage as seen in the up close photos and acknowledged by Musk.

“Most recent rocket took max damage, due to v high entry velocity. Will be our life leader for ground tests to confirm others are good,” Musk tweeted.

So although this cannot be reflown, it still serves another great purpose for engineers seeking to determining the longevity of booster and its various components.

Apparent cracks in the recovered booster from SpaceX JCSAT-14 launch seen in this up close view revealing damage due to high velocity launch and touchdown on droneship at sea.  Credit: Jeff Seibert/AmericaSpace
The recovered booster from SpaceX JCSAT-14 launch seen in this up close view revealing possible damage due to high velocity launch and touchdown on droneship at sea. Credit: Jeff Seibert/AmericaSpace

“A few pictures show some signs of distress, this obviously was a rough re-entry,” Seibert told Universe Today.

Damage to the booster may be visible. Looking at the Falcon 9s Merlin 1D engines arranged in an octoweb configuration, the center engine appears to be held in place with restraining straps.

“It looks like the octoweb area may have been breached due to the high entry energy. It appears that for some reason, they are supporting the center Merlin engine for transport. They may be some burn through below the orange strap holding up the center engine.”

Apparent damage around Merlin 1D engines at base of recovered booster from SpaceX JCSAT-14 launch seen in this up close view showing straps around center engine.  Credit: Jeff Seibert/AmericaSpace
Apparent damage around Merlin 1D engines at base of recovered booster from SpaceX JCSAT-14 launch seen in this up close view showing straps around center engine. Credit: Jeff Seibert/AmericaSpace

Musk says the next SpaceX commercial launch is tentatively slated for late May – watch for my onsite reports.

Blastoff of the first reflown booster could follow sometime this summer.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Booster move gallery:

Recovered first stage booster after SpaceX JCSAT-14 launch rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016.  Credit: Julian Leek
Recovered first stage booster after SpaceX JCSAT-14 launch rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Base of recovered first stage booster with 9 Merlin 1D engines covered, after SpaceX JCSAT-14 launch, rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016.
Base of recovered first stage booster with 9 Merlin 1D engines covered and landing legs removed, after SpaceX JCSAT-14 launch, rolls into Cape Canaveral Air Force Station and Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
9 Merlin 1D engines powered the recovered first stage from SpaceX JCSAT-14 launch, rolls to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016.  Credit: Jeff Seibert/AmericaSpace
9 Merlin 1D engines powered the recovered first stage from SpaceX JCSAT-14 launch, rolls to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
Credit: Jeff Seibert/AmericaSpace
Credit: Jeff Seibert/AmericaSpace
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida.  Credit: SpaceX
3 landed SpaceX rockets in hangar at pad 39A at the Kennedy Space Center, Florida. Credit: SpaceX
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
First stage booster with landing legs removed from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Julian Leek
Up close look at top of recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Up close look at top of recovered first stage booster after SpaceX JCSAT-14 launch during transport to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
Scorched skin and US flag on recovered SpaceX first stage booster during roll  to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016.  Credit: Jeff Seibert/AmericaSpace
Scorched skin and US flag on recovered SpaceX first stage booster during roll to SpaceX hanger at Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida. Credit: Jeff Seibert/AmericaSpace
First stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA's Kennedy Space Center in Florida  for missions to the International Space Station. Pad 39A is  undergoing modifications by SpaceX to adapt it to the needs of the company's Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com
SpaceX Crew Dragon will blast off atop a Falcon 9 rocket from Launch Pad 39A at NASA’s Kennedy Space Center in Florida for missions to the International Space Station. Pad 39A is undergoing modifications by SpaceX to adapt it to the needs of the company’s Falcon 9 and Falcon Heavy rockets, which are slated to lift off from the historic pad in the near future. A horizontal integration facility (right) has been constructed near the perimeter of the pad where rockets will be processed for launch prior of rolling out to the top of the pad structure for liftoff. Credit: Ken Kremer/Kenkremer.com

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Amazing Time-lapse Shows Recovered SpaceX Falcon 9 Moving To Land After Port Canaveral Arrival

First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. See Time-lapse below. Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 11, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch was moved by crane on May 10, 2016 from the drone ship OCISLY to a work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The recovered SpaceX first stage booster that nailed a spectacular middle-of-the-night touchdown at sea last week sailed back to Port Canaveral, Florida, late Monday and was transferred by crane on Tuesday from the drone ship to land – as seen in an amazing time-lapse video and photos, shown above and below and obtained by Universe Today.

The exquisite up close time-lapse sequence shows technicians carefully hoisting the 15-story-tall spent booster from the drone ship barge onto a work pedestal on land some 12 hours after arriving back in port.

The time-lapse imagery (below) of the booster’s removal from the drone ship was captured by my space photographer friend Jeff Seibert on Tuesday, May 10.

Video Caption: 20X time-lapse of the first stage booster from the SpaceX JCSAT-14 launch being transferred on May 10, 2016 from the autonomous drone ship “Of Course I Still Love You” (OCISLY) to a work pedestal on land 12 hours after arriving at the dock. Credit: Jeff Seibert

Towards the end of the video there is a rather humorous view of the technicians climbing in unison to the bottom of the hoisted Falcon.

“I particularly like the choreographed ascent by the crew to the base of the Falcon 9 near the end of the move video,” Seibert told Universe Today.

The move took place from 11:55 AM until 12:05 PM, Seibert said.

First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 10, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
First stage booster from the SpaceX JCSAT-14 launch hoisted by crane on May 11, 2016 from drone ship to work pedestal on land 12 hours after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

The booster was towed into the space coast port around 11 p.m. Monday night, as seen in further up close images captured by my space photographer friend Julian Leek.

Leek also managed to capture a stunningly unique view of the rocket floating atop the barge when it was still out at sea and some 5 miles off shore waiting to enter the port at a safe time after most of the cruise ships had departed – as I reported earlier here.

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The 156 foot tall booster safely soft landed on the drone ship named “Of Course I Still Love You” or “OCISLY” barely nine minutes after liftoff of the SpaceX Falcon 9 last week on a mission to deliver the Japanese JCSAT-14 telecom satellite to a Geostationary Transfer Orbit (GTO).

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

The first stage then carried out a propulsive soft landing on the ocean going platform located some 400 miles off the east coast of Florida.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

The first rocket was flying faster and at a higher altitude at the time of seperatoin from the second stage and thus was much more difficult to slow down and maneuver back to the ocean based platform.

Thus SpaceX officials and CEO Elon Musk had been openly doubtful of a successful outcome for this landing attempt.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

Up closse view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016.  Credit:  Julian Leek
Up close view of SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket returns late at night to Port Canaveral, Florida on May 9, 2016. Credit: Julian Leek

The landing counts as another stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

The next step is to defuel the booster and remove the landing legs. Thereafter it will be tilted and lowered horizontally and then be placed onto a multi-wheeled transport for shipment back to SpaceX launch facilities at Cape Canaveral for refurbishment, exhaustive engine and structural testing.

The newly recovered first stage will join a fleet of two others recovered last December and in April.

“May need to increase size of rocket storage hangar,” tweeted Musk.

If all goes well the recovered booster will eventually be reflown.

The next SpaceX commercial launch is tentatively slated for the late May/early June timeframe.

Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida.  Credit: Jeff Seibert/AmericaSpace
Up close look at grid fins from recovered first stage booster from the SpaceX JCSAT-14 launch after arriving back in Port Canaveral, Florida. Credit: Jeff Seibert/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port.  Copyright:  Julian Leek
SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Returns to Earth After Splashdown with Critical NASA Science

A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station.  Credit: NASA
A SpaceX Dragon cargo spacecraft splashed down in the Pacific Ocean at 2:51 p.m. EDT today, May 11, with more than 3,700 pounds of NASA cargo, science and technology demonstration samples from the International Space Station. Credit: SpaceX

A SpaceX cargo Dragon spacecraft loaded with nearly two tons of critical NASA science and technology experiments and equipment returned to Earth this afternoon, Wednesday, May 11, safely splashing down in the Pacific Ocean – and bringing about a successful conclusion to its mission to the International Space Station (ISS) that also brought aloft a new room for the resident crew.

Following a month long stay at the orbiting outpost, the unmanned Dragon was released from the grip of the stations Canadian-built robotic arm at 9:19 a.m. EDT by European Space Agency (ESA) astronaut Tim Peake.

After being detached from its berthing port at the Earth-facing port on the stations Harmony module by ground controllers, Peake commanded the snares at the terminus of the 57 foot long (19 meter long) Canadarm2 to open – as the station was soaring some 260 miles (418 kilometers) over the coast of Australia southwest of Adelaide.

Dragon backed away and soon departed after executing a series of three departure burns and maneuvers to move beyond the 656-foot (200-meter) “keep out sphere” around the station.

European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. The spacecraft was released from the station’s robotic arm at 9:19 a.m. EDT. Following a series of departure burns and maneuvers Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California.  Credit: NASA
European Space Agency astronaut Tim Peake captured this photograph of the SpaceX Dragon cargo spacecraft as it undocked from the International Space Station on May 11, 2016. Following a series of departure burns Dragon returned to Earth for a splashdown in the Pacific Ocean at 2:51 p.m., about 261 miles southwest of Long Beach, California. Credit: NASA

“The Dragon spacecraft has served us well, and it’s good to see it departing full of science, and we wish it a safe recovery back to planet Earth,” Peake said.

Dragon fired its braking thrusters to initiate reentry back into the Earth’s atmosphere, and survived the scorching 3000+ degree F temperatures for the plummet back home.

A few hours after departing the ISS, Dragon splashed down in the Pacific Ocean at 2:51 p.m. EDT today, descending under a trio of huge orange and white main parachutes about 261 miles southwest of Long Beach, California.

“Good splashdown of Dragon confirmed, carrying thousands of pounds of @NASA science and research cargo back from the @Space_Station,” SpaceX notified via Twitter.

It was loaded with more than 3,700 pounds of NASA cargo, science and technology demonstration samples including a final batch of human research samples from former NASA astronaut Scott Kelly’s historic one-year mission that concluded in March.

“Thanks @SpaceX for getting our science safely back to Earth! Very important research,” tweeted Kelly soon after the ocean splashdown.

Among the study samples returned are those involving Biochemical Profile, Cardio Ox, Fluid Shifts, Microbiome, Salivary Markers and the Twins Study.

The goal of Kelly’s one-year mission was to support NASA’s plans for a human ‘Journey to mars’ in the 2030s. Now back on the ground Kelly continues to support the studies as a human guinea pig providing additional samples to learn how the human body adjusts to weightlessness, isolation, radiation and the stress of long-duration spaceflight.

Among the other items returned was a faulty spacesuit worn by NASA astronaut Tim Kopra. It will be analyzed by engineers to try and determine why a small water bubble formed inside Kopra’s helmet during his spacewalk in January that forced it to end prematurely as a safety precaution.

Dragon was plucked from the ocean by SpaceX contracted recovery ships and is now on its way to port in Long Beach, California.

“Dragon recovery team on site after nominal splashdown in Pacific,” said SpaceX.

“Some cargo will be removed and returned to NASA, and then be prepared for shipment to SpaceX’s test facility in McGregor, Texas, for processing,” says NASA.

Currently Dragon is the only station resupply craft capable of returning significant quantities of cargo and science samples to Earth.

The Dragon CRS-8 cargo delivery mission began with a spectacular blastoff atop an upgraded version of the two stage SpaceX Falcon 9 rocket, boasting over 1.5 million pounds of thrust on Friday, April 8 at 4:43 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The primary goal of the Falcon 9 launch was carrying the SpaceX Dragon CRS-8 cargo freighter to low Earth orbit on a commercial resupply delivery mission for NASA to the International Space Station (ISS).

Relive the launch via this video of the SpaceX Falcon 9/Dragon CRS-8 liftoff from my video camera placed at the pad:

Video Caption: Spectacular blastoff of SpaceX Falcon 9 rocket carrying Dragon CRS-8 cargo freighter bound for the International Space Station (ISS) from Space Launch Complex 40 on Cape Canaveral Air Force Station, FL at 4:43 p.m. EST on April 8, 2016. Up close movie captured by Mobius remote video camera placed at launch pad. Credit: Ken Kremer/kenkremer.com

The SpaceX commercial cargo freighter was jam packed with more than three and a half tons of research experiments, essential crew supplies and a new experimental inflatable habitat for it deliver run.

After a two day orbital chase it reached the ISS and the gleeful multinational crew of six astronauts and cosmonauts on Sunday, April 10.

Expedition 47 crew members Jeff Williams and Tim Kopra of NASA, Tim Peake of ESA (European Space Agency) and cosmonauts Yuri Malenchenko, Alexey Ovchinin and Oleg Skripochka of Roscosmos are currently living aboard the orbiting laboratory.

CRS-8 counts as the company’s eighth flight to deliver supplies, science experiments and technology demonstrations to the ISS for the crews of Expeditions 47 and 48 to support dozens of the approximately 250 science and research investigations in progress.

In a historic first, the arrival of the SpaceX Dragon cargo spacecraft marked the first time that two American cargo ships are simultaneously docked to the ISS. The Orbital ATK Cygnus CRS-6 cargo freighter arrived two weeks earlier on March 26 and is now installed at a neighboring docking port on the Unity module.

The Dragon spacecraft delivered almost 7,000 pounds of cargo, including the Bigelow Expandable Activity Module (BEAM), to the orbital laboratory which was carried to orbit inside the Dragon’s unpressurized truck section.

BEAM is a prototype inflatable habitat that the crew plucked from the Dragon’s truck with the robotic arm for installation on a side port of the Tranquility module on April 16.

Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra
Robotic arm attaches BEAM inflatable habitat module to International Space Station on April 16, 2016. Credit: NASA/Tim Kopra

Minutes after the successful April 8 launch, SpaceX accomplished their secondary goal – history’s first upright touchdown of a just flown rocket onto a droneship at sea.

The recovered booster arrived back at Port Canaveral a few days later and was transported back to the firms processing hanger at the Kennedy Space Center (KSC) for testing and eventual reflight.

Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station.  Credit: Julian Leek
Recovered SpaceX Falcon 9 rocket arrives back in port overnight at Port Canaveral, Florida on April 12, 2016 following successful launch and landing on April 8 from Cape Canaveral Air Force Station. Credit: Julian Leek

The next NASA contracted cargo launch to the ISS by SpaceX is currently slated for late June from Cape Canaveral.

The next Orbital ATK Cygnus cargo launch is slated for July from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module. Credits: Bigelow Aerospace
This artist’s concept depicts the Bigelow Expandable Activity Module attached to the International Space Station’s Tranquility module.
Credits: Bigelow Aerospace

Recovered SpaceX Falcon 9 Booster Headed Back to Port: Launch/Landing – Photos/Videos

SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket lurking off Port Canaveral waiting to enter the port. Copyright: Julian Leek
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

The SpaceX Falcon 9 first stage booster that successfully launched a Japanese satellite to a Geostationary Transfer Orbit (GTO) just 3 days ago and then nailed a safe middle of the night touchdown on a drone ship at sea minutes minutes later, is headed back to port and may arrive overnight or soon thereafter.

The 156 foot tall booster was spotted offshore earlier today while being towed back to her home port at Port Canaveral, Florida.

The SpaceX ASDS drone ship with the recovered Falcon 9 first stage rocket is lurking off Port Canaveral waiting to enter the port until after the cruise ships depart for safety reasons. Pictured above at 7:40 a.m.

The upgraded SpaceX Falcon 9 soared to orbit on May 6, roaring to life with 1.5 million pounds of thrust on a mission carrying the JCSAT-14 commercial communications satellite, following an on time liftoff at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

To date SpaceX has recovered 3 Falcon 9 first stages. But this was the first one to be recovered from the much more demanding, high velocity trajectory delivering a satellite to GTO.

“First landed booster from a GTO-class mission (final spacecraft altitude will be about 36,000 km),” tweeted SpaceX CEO and founder Elon Musk.

Musk was clearly ecstatic with the result, since SpaceX officials had been openly doubtful of a successful outcome with the landing.

Barely nine minutes after liftoff the Falcon 9 first stage carried out a propulsive soft landing on an ocean going platform located some 400 miles off the east coast of Florida.

The drone ship was named “Of Course I Still Love You.”

The Falcon 9 landed dead center in the bullseye.

Check out the incredible views herein from SpaceX of the Falcon 9 sailing serenely atop the “Of Course I Still Love You.”

Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Base of Recovered Falcon 9 first stage with landing legs after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Relive the launch through these pair of videos from remote video cameras set at the SpaceX launch pad 40 facility.

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Video caption: SpaceX Falcon 9 launch of JCSAT-14 on 5/6/2016 Pad 40 CCAFS. Credit: Jeff Seibert/AmericaSpace

The commercial SpaceX launch lofted the JCSAT-14 Japanese communications satellite to a Geostationary Transfer Orbit (GTO) for SKY Perfect JSAT – a leading satellite operator in the Asia – Pacific region.

The landing counts as nother stunning success for Elon Musk’s vision of radically slashing the cost of sending rocket to space by recovering the boosters and eventually reusing them.

Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: SpaceX
Recovered Falcon 9 first stage stands upright after drone ship landing following SpaceX launch of JCSAT-14 on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying JCSAT-14 Japanese communications satellite to orbit on May 6, 2016 at 1:21 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

SpaceX Maiden Falcon Heavy Launch May Carry Satellite In November

An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX
An artist's illustration of the Falcon Heavy rocket. The Falcon Heavy has 3 engine cores, each one containing 9 Merlin engines. Image: SpaceX

Move over Arianespace and United Launch Alliance. SpaceX’s Falcon Heavy rocket is set for its maiden launch this November. The long-awaited Falcon Heavy should be able to outperform both the Ariane 5 and the ULA Delta-4 Heavy, at least in some respects.

The payload for the maiden voyage is uncertain so far. According to Gwynne Shotwell, SpaceX’s President and CEO, a number of companies have expressed interest in being on the first flight. Shotwell has also said that it might make more sense for SpaceX to completely own their first flight, without the pressure to keep a client happy. But a satellite payload for the first launch hasn’t been ruled out.

Delivering a payload into orbit is what the Falcon Heavy, and its competitors the Ariane5 and the ULA Delta-4 Heavy, are all about. Since one of the main competitive points of the Falcon Heavy is its ability to put larger payloads into geo-stationary orbits, accomplishing that feat on its first flight would be a great coming out party for the Falcon Heavy.

This artist's illustration of the Falcon Heavy shows the rocket in flight prior to releasing its two side boosters. Image: SpaceX
This artist’s illustration of the Falcon Heavy shows the rocket in flight prior to releasing its two side boosters. Image: SpaceX

SpaceX has promised that it will make its first Falcon Heavy launch useful. They say that they will use the flight either to demonstrate to its commercial customers the rocket’s capability to deliver a payload to GTO, or to demonstrate to national security interests its ability to meet their needs.

National security satellites require different capabilities from launch vehicles than do commercial communication satellites. Since these spacecraft are top secret, and are used to spy on communications, they need to be placed directly into their GTO, avoiding the lower-altitude transfer orbit of commercial satellites.

The payload for the first launch of the Falcon Heavy is not the only thing in question. There’s some question whether the November launch date can be achieved, since the Falcon Heavy has faced some delays in the past.

The inaugural flight for the big brother to the Falcon 9 was originally set for 2013, but several delays have kept bumping the date. One of the main reasons for this was the state of the Falcon 9. SpaceX was focussed on Falcon 9’s landing capabilities, and put increased manpower into that project, at the expense of the Falcon Heavy. But now that SpaceX has successfully landed the Falcon 9, the company seems poised to meet the November launch date for the Heavy.

One of the main attractions to the Falcon Heavy is its ability to deliver larger payloads to geostationary orbit (GEO). This is the orbit occupied by communications and weather satellites. These types of satellites, and the companies that build and operate them, are an important customer base for SpaceX. SpaceX claims that the Falcon Heavy will be able to place payloads of 22,200 kg (48,940 lbs) to GEO. This trumps the Delta-4 Heavy (14,200 kg/31,350 lbs) and the Ariane5 (max. 10,500 kg/23,100 lbs.)

There’s a catch to these numbers, though. The Falcon Heavy will be able to deliver larger payloads to GEO, but it’ll do it at the expense of reusability. In order to recover the two side-boosters and central core stage for reuse, some fuel has to be held in reserve. Carrying that fuel and using it for recovery, rather than burning it to boost larger payloads, will reduce the payload for GEO to about 8,000 kg (17,637 lbs.) That’s significantly less than the Ariane 5, and the upcoming Ariane 6, which will both compete for customers with the Falcon Heavy.

The Falcon Heavy is essentially four Falcon 9 rockets configured together to create a larger rocket. Three Falcon 9 first stage boosters are combined to generate three times as much thrust at lift-off as a single Falcon 9. Since each Falcon 9 is actually made of 9 separate engines, the Falcon Heavy will actually have 27 separate engines powering its first stage. The second stage is another single Falcon 9 second-stage rocket, consisting of a single Merlin engine, which can be fired multiple times to place payloads in orbit.

The three main boosters for the Falcon Heavy will all be built this summer, with construction of one already underway. Once complete, they will be transported from their construction facility in California to the testing facility in Texas. After that, they will be transported to Cape Canaveral.

Once at Cape Canaveral, the launch preparations will have all of the 27 engines in the first stage fired together in a hold-down firing, which will give SpaceX its first look at how all three main boosters operate together.

Eventually, if everything goes well, the Falcon Heavy will launch from Pad 39A at Cape Canaveral. Pad 39A is the site of the last Shuttle launches, and is now leased from NASA by SpaceX.

The Falcon Heavy will be the most powerful rocket around, once it’s operational. The versatility to deliver huge payloads to orbit, or to keep its costs down by recovering boosters, will make its first flight a huge achievement, whether or not it does deliver a satellite into orbit on its first launch.