Drone Ship at Sea Preparing for Bold SpaceX Rocket Recovery Landing Attempt

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Aiming to one day radically change the future of the rocket business, SpaceX CEO Elon Musk has a bold vision unlike any other in a historic attempt to recover and reuse rockets set for Jan. 6 with the goal of dramatically reducing the enormous costs of launching anything into space.

Towards the bold vision of rocket reusability, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the first stage of his firm’s Falcon 9 rocket after it concludes its launch phase to the International Space Station (ISS).

“Drone spaceport ship heads to its hold position in the Atlantic to prepare for a rocket landing,” tweeted Musk today (Jan. 5) along with a photo of the drone ship underway (see above).

The history making and daring experimental landing is planned to take place in connection with the Tuesday, Jan. 6, liftoff of the Falcon 9 booster and Dragon cargo freighter bound for the ISS on a critical resupply mission for NASA.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for January 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX

The SpaceX Dragon CRS-5 mission is slated to blast off at 6:20 am EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Falcon 9 and Dragon have gone vertical in advance of the 6:20am ET launch on Jan. 6, 2015. Credit: SpaceX.
Falcon 9 and Dragon have gone vertical in advance of the 6:20 am ET launch on Jan. 6, 2015. Credit: SpaceX.

The absolute overriding goal of the mission is to safely deliver NASA’s contracted payload to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today (Jan. 5) at the Kennedy Space Center. Landing on the off shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Koenigsmann estimated the odds of success at the landing attempt at about 50% at best according to an estimate from Musk himself.

“It’s an experiment. There’s a certain likelihood that this will not work out right, that something will go wrong.”

The two stage Falcon 9 and Dragon stands 207.8 feet (63.3 meters) tall and is 12 feet in diameter. The first stage is powered by nine Merlin 1D engines that generate 1.3 million pounds of thrust at sea level and rises to 1.5 million pounds of thrust as the Falcon 9 climbs out of the atmosphere, according to a SpaceX fact sheet.

The first stage Merlins will fire for three minutes until the planned engine shutdown and main engine cutoff known as MECO, said Koenigsmann.

The rocket will be in space at an altitude of over 100 miles zooming upwards at 1300 m/s (nearly 1 mi/s).

Then, a single Merlin 1D will be commanded to re-fire for three separate times to stabilize and lower the rocket during the barge landing attempt.

Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gamboling of the engines.

It will take about nine minutes from launch until the first stage reaches the barge, said Koenigsmann. That’s about the same time it takes for Dragon to reach orbit.

He added that, depending on the internet connectivity, SpaceX may or may not know the outcome in real time.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

Here’s a description from SpaceX:

“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”

“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO, Elon Musk, briefs reporters, including Universe Today, in Cocoa Beach, FL, prior to a previous SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The cargo delivery is the entire point of the CRS-5 mission.

The official CRS-5 Mission Patch
The official CRS-5 Mission Patch

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, Antares launches are on hold.

Therefore the US supply train to the ISS is now wholly dependent on SpaceX.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

SpaceX and NASA On Track For Spectacular Predawn Jan. 6 Launch of Critical Cargo Mission to ISS

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

SpaceX is on track to rollout their Falcon 9 rocket carrying the Dragon cargo freighter this evening, Monday, Jan, 5, 2015 to launch pad 40 on a mission bound for the International Space Station (ISS) to deliver critical supplies.

The Dragon CRS-5 mission is slated to blast off at 6:20 a.m. EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The predawn launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Friday, Jan. 9.

SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission.  Credit: SpaceX
SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission. Credit: SpaceX

The launch has already been postponed several times, most recently from Dec. 19, 2014 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 successfully went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

The delay allowed the teams to recoup and recover and enjoy the festive holiday season.

“It was a good decision to postpone the launch until after the holidays,” said Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today at the Kennedy Space Center (KSC).

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, officials have been prudently cautious to ensure that all measures were carefully rechecked to maximize the possibilities of a launch success.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit:  SpaceX
SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

A frontal boundary has settled in over Central Florida. This front and its associated cloudiness will be very slow to move south of the Space Coast. With the clouds only slowly eroding overhead, the primary weather concern remains thick clouds, according to Sweat.

The unmanned cargo freighter is loaded with more than 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15.  Credit: NASA/Barry ‘Butch’ Wilmore
Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the ISS astronauts maneuvering the 57 foot-long (17 meter-long) Canadian built robotic arm.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance
(ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of replanned CRS-5 mission for NASA launching on Jan. 6, 2015. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Guest Post: Spaceflight is on the Verge of a Revolution, but don’t Count your Rockets Before they Land

One of the possible outcomes of today. Falcon 9 sits on the barge, ready to go back home. Image Credit: Reddit user zlsa (zlsa.github.io) CC-BY-SA.

Editor’s note: This guest post was written by Lukas Davia & Marijn Achternaam.

Typing “reusable rockets” into a search engine, you can’t help but be drawn to the allure of SpaceX-related links which fill the screen. In fact, the corporate brainchild of Elon Musk dominates the first few pages of results near-exclusively. The reason for this is understandable: with the death of the Space Shuttle and lack of clear planning for the future by most old players in the spaceflight field, SpaceX’s straightforward, near term plan and previous flight tests make them everyone’s favorite to drastically reduce cost to orbit with rockets which return home – ready to be reused.

And with the upcoming launch of SpaceX’s 14th Falcon 9 rocket on January 6 carrying Dragon to the ISS, the potential for true rocket reusability is certainly within reach for the first time ever in the near 90 years since Goddard launched the world’s first liquid fueled rocket from Massachusetts in 1926. Yet, now is a more important time than ever to temper our wild expectations for the possibility of rockets which fly themselves back to the launch pad. While a rocketry revolution may be among us, it is an iterative, multi-step process that transcends any single mission — and we shouldn’t expect to see regular airline-like reuse and large cost drops anytime soon.

It should be noted that Elon Musk, for all his amazing accomplishments, has never placed a hard and fast timeline on when cheap and accessible rocketry would be available, let alone a solid price. Why? Simply because we are entering territory that remains uncharted.

The only launch vehicle in history that has ever been re-flown several times after achieving orbit was the Space Shuttle. Despite reusing by far the most expensive part of any rocket — the engines and associated systems — the Shuttle cost at least $450 million to launch according to NASA, with a relatively small payload of 24 metric tons to Low Earth Orbit, or almost $19,000 per kilogram. Including development costs, summed and divided up per flight, the price to launch can average as high as $1.5 billion, or thrice NASA’s stated amount. What was supposed to drastically reduce the cost per kilogram of lifting cargo to orbit ended up being one of the most expensive launch vehicles in human history. Why did it become so expensive?

The conception of the Space Shuttle was a result of a marriage between NASA, the Air Force, and other partners. Each wanted their own design specifications, which ended up producing a wieldy vehicle with no well-defined purpose, and it became the “catch all” of the space industry. Mainly, it was that the amount of maintenance required after every mission was greatly underestimated by NASA. After each flight, the entire vehicle had to be essentially rebuilt: tiles replaced, engines inspected, boosters refurbished. In particular, the trio of RS-25 main engines had to be taken apart and checked for every possible defect that could cause a failure, and when things broke, there wasn’t a healthy supply-line that could replace them easily, causing the cost of spare parts to skyrocket, and maintaining a workforce ready and able to refurbish the Shuttle quickly became a money-sink that NASA was never able to recover.

SpaceX isn’t NASA though. They’ve introduced a more agile, responsive development approach to their products which has been overwhelmingly successful. They also have years of prior projects (from multiple sources) to learn from that NASA didn’t. However, these aren’t problems that can be simply waved away. Rather, they are fundamental issues that need addressing: there is no escaping the confines of physics.

A common theme of Musk’s statements is the audacious aspiration to revolutionize the “one use and throw it away” model that has dominated the rocket industry since the beginning, morphing it into something more closely related to a service-based airline model. This is a big task, even by Iron Man’s standards.

Reusable rockets could well become the norm, but when? Image Credit: SpaceX.
Reusable rockets could well become the norm, but when? Image Credit: SpaceX.

Many fans show an under appreciation of the barriers to entry. In fact, in a recent survey conducted on the SpaceX fan community at Reddit.com, when asked to place an educated guess on the price of a Falcon 9 rocket launch in 5 years time, a significant portion of the nearly 600 respondents selected a value beneath $20,000,000. Some even selected prices below $10,000,000. Although COO of SpaceX, Gwynne Shotwell has mentioned in passing that reusable Falcon 9 launches could eventually command a $5-7 million price tag, this is likely far in the future, far past merely the dawn of reusable rockets. For some perspective, five years ago in 2010, SpaceX launched two Falcon 9 rockets. Last year, they launched six, and suddenly, by 2020, the cost of a standard Falcon 9 launch will be three times as cheap? Where has this extra acceleration in development come from? Possibly it comes from the minds of some slightly too-optimistic fans.

In fact, something even as basic as long-term engine maintenance is still relatively unknown. Previously, SpaceX has clarified that each engine has a life of approximately 40 firings, and a casual observer would assume this results in an engine that can be used on 40 missions. However, with three engine test fires prior to each launch, the launch itself, and the three burns required to complete the reentry and re-landing process, the center engine is in fact required to fire 7 times to complete a mission, and with nine engines on every lower stage – even with most only firing a few times, that results in quite a number of parts that can break down after every flight. Checking for these failures and repairing them could become a lot more costly and time consuming than one might hope.

For example, with a diameter of 3.66m, and a height of approximately 42 meters, there is nearly 500 square meters of first stage surface that has been exposed on one side to the frigid temperatures of liquid oxygen and chilled kerosene, and on the other, various temperatures from reentry into the soupy lower atmosphere. In fact, even the ice buildup on the outer skin of the vehicle alone is significant enough to substantially alter the vehicle’s mass! Within that large area, tensile, thermodynamic, and pressure-related fatigue has the potential to accumulate. Striations could nucleate and form hairline cracks. This is a hazard that could lead to a critical failure on an operational mission, and such an event could permanently ingrain an association between the nascent reusable rocket and instability in the minds of satellite operators and the insurance industry. And although Falcon 9 could be considered over-engineered, it is unlikely SpaceX will play rocket roulette.

Although the rocket’s chief engineer estimated a coin toss’s probability of success, upon the hopeful propulsive landing of CRS-5 on the recently christened “autonomous drone landing ship,” the empty first stage will likely be shipped back to SpaceX’s Hawthorne, California headquarters and inspected with various methods of destructive and non-destructive analysis to quantify how the rigors of accelerating to a velocity of nearly 2 kilometers per second in less than three minutes and then decelerating enough, reentering through the atmosphere, to land in close proximity to sea and salt, affect the vehicle.

Another example of a potential refurbishment cost lies in SpaceX’s fuel of choice, kerosene. It burns relatively dirty, as evidenced by the translucent pillar of brown-black soot that Falcon 9 ascends on, a throwback to the days of early aircraft. This leads to an effect predominantly associated with kerolox engines known as “coking” – where incompletely combusted soot adheres to the near-molten engine and nozzle, reducing its ability to radiate away heat. Clean it off, you say? Congratulations, you’ve just introduced refurbishment into the equation, something that SpaceX is striving to avoid.

It’s not just rockets that are expensive. There are  other costs too… Image Credit: SpaceX.
It’s not just rockets that are expensive. There are other costs too… Image Credit: SpaceX.

Even ignoring the vehicle itself, launches and the chemicals needed are expensive! There’s the exorbitantly-priced helium which is required to keep the tanks pressurized, and the pyrophoric TEA-TEB ignition fluid used to begin the explosive marriage between the RP-1 & LOX. It’s not just chemicals either. There’s ground launch operation costs too, ranging from employee wages, to the dull process of permit applications, to the slightly more interesting ablative paint that coats the Transporter-Erector structure which holds Falcon 9 vertical, to transportation and relocation costs. In all likelihood, the current capital expenses of a single launch alone, ignoring the obvious value of the rocket itself, total in the region of $3 million plus.

Fundamentally, we must decouple re-landing, refurbishment, reusability, and financially viable and rapid reuse from each other. It can be a difficult concept to grasp that all four are distinct, and the success of one does not imply the next step is guaranteed. Because of this, question marks still remain over the cost, time, and complexity of the final steps necessary for SpaceX to complete its reusable rocket master plan. For example: re-landing a rocket does not necessarily make refurbishment nonexistent. This is the take home story of the Space Shuttle.

A landing alone doesn’t revolutionize rocketry; rather, we may only realize the revolution of refining rocketry into an airline-like model has occurred well only by looking back in the rear view mirror.

We live in hope that SpaceX achieves what it originally set out to do nearly 13 years ago. SpaceX has come far, far closer than anyone else to this goal, but as Musk himself has said, “Rockets are hard”. Good luck to the team at SpaceX for their upcoming CRS-5 launch and landing attempt, it’s the beginning of something far bigger.

Written by Lukas Davia & Marijn Achternaam

Bios: When not juggling being a software engineering student & full time web developer in New Zealand, Lukas Davia is a self professed SpaceX-addict, and can be found contributing to Reddit community /r/SpaceX, adding to his website SpaceXStats.com, and creating infographics. Believe it or not he does find time to go outside and hike in his spare time too!

Marijn Achternaam is a Dutch student, self proclaimed armchair engineer and spaceflight fanatic who can frequently be found contributing to the /r/space and /r/SpaceX Reddit communities.

Good Morning, Space Station … A Dragon Soars Soon!

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Good Morning, Space Station!

It’s sunrise from space – one of 16 that occur daily as the massive lab complex orbits the Earth about every 90 minutes while traveling swiftly at about 17,500 mph and an altitude of about 250 miles (400 kilometers).

Just stare in amazement at this gorgeous sunrise view of “Our Beautiful Earth” taken earlier today, Jan. 3, 2015, aboard the International Space Station (ISS) by crewmate and NASA astronaut Barry “Butch” Wilmore.

And smack dab in the middle is the Canadian-built robotic arm that will soon snatch a soaring Dragon!

Wilmore is the commander of the ISS Expedition 42 crew of six astronauts and cosmonauts hailing from three nations: America, Russia and Italy.

He is accompanied by astronauts Terry Virts from NASA and Samantha Cristoforetti from the European Space Agency (ESA) as well as by cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

All told the crew of four men and two women see 16 sunrises and 16 sunsets each day. During the daylight periods, temperatures reach 200 ºC, while temperatures plunge drastically during the night periods to -200 ºC.

Here’s another beautiful ISS sunset view captured on Christmas by Terry Virts:

Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying "Sunrise on Christmas morning - better than any present I could ask for!!!!"  Credit: NASA/Terry Virts
Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying “Sunrise on Christmas morning – better than any present I could ask for!!!!” Credit: NASA/Terry Virts

Virts tweeted the picture and wrote: “Sunrise on Christmas morning – better than any present I could ask for!!!!”

Another treasure from Virts shows the many splendid glorious colors of Earth seen from space but not from the ground:

“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry
Sunset Over the Gulf of Mexico
“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry

“In space you see intense colors, shades of blue that I’d never seen before,” says Virts from his social media accounts (http://instagram.com/astro_terry/) (http://instagram.com/iss).

“It’s been said a thousand times but it’s true: There are no borders that you can see from space, just one beautiful planet,” he says. “If everyone saw the Earth through that lens I think it would be a much better place.”

And many of the crews best images are taken from or of the 7 windowed Cupola.

Here’s an ultra cool shot of Butch waving Hi!

“Hi from the cupola!” #AstroButch.  Credit: NASA/ISS
“Hi from the cupola!” #AstroButch. Credit: NASA/ISS

And they all eagerly await the launch and arrival of a Dragon! Indeed it’s the SpaceX cargo Dragon currently slated for liftoff in three days on Tuesday, Jan. 6.

Weather odds are currently 60% favorable for launch of the unmanned space station resupply ship on the SpaceX CRS-5 mission.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

CRS-5 is slated to blast off at 6:20 a.m. EST Tuesday, Jan. 6, 2015, atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

NASA Television live launch coverage begins at 5 a.m. EST.

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the astronauts maneuvering the 57 foot-long (22 m) Canadian built robotic arm.

Remember that you can always try and catch of glimpse of the ISS flying overhead by checking NASA’s Spot the Station website with a complete list of locations.

It’s easy to plug in and determine visibilities in your area worldwide.

And don’t forget to catch up on the Christmas holiday and New Year’s 2015 imagery and festivities from the station crews in my recent stories – here, here and here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Happy New Year! Celebrating from space with @AstroTerry.  Credit: NASA/Terry Virts
Happy New Year! Celebrating from space with @AstroTerry. Credit: NASA/Terry Virts
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

10 Space Science Stories to Watch in 2015

Credit:

A new Avengers movie. A reboot of the Star Wars franchise. The final installment of the Hunger Games. The Martian makes it to the big screen. Yup, even if the zombie apocalypse occurs in 2015, it’ll still be a great year. But trading science fiction for fact, we’re also on track for a spectacular year in space science and exploration as well.

Humanity will get its first good look at Ceres and Pluto, giving us science writers some new pics to use instead of the same half dozen blurry dots and artist’s conceptions. SpaceX will also attempt a daring landing on a sea platform, and long duration missions aboard the International Space Station will get underway. And key technology headed to space and on Earth may lead the way to opening up the window of gravitational wave astronomy on the universe. Here’s 10 sure-fire bets to watch for in the coming year from Universe Today:

Credit
LISA Pathfinder deployed at L1. Credit: ESA/Artist’s concept.

10. LISA Pathfinder

A precursor to a full-fledged gravitational wave detector in space, LISA Pathfinder will be launching atop a Vega rocket from Kourou, French Guiana in July 2015. LISA stands for the Laser Interferometer Space Antenna, and the Pathfinder mission will journey to the L1 Lagrange point between the Earth and the Sun to test key technologies. LISA Pathfinder will pave the way for the full fledged LISA space platform, a series of three free flying spacecraft proposed for launch in the 2030s.

Credit:
Looking down one of the arms of LIGO Hanford. Credit: Photo by author.

9. AdLIGO Goes Online

And speaking of gravitational waves, we may finally get the first direct detection of the same in 2015, when Advanced LIGO is set to go online. Comprised of two L-shaped detectors, one based in Livingston Louisiana, and another in Hanford Washington, AdLIGO will feature ten times the sensitivity of the original LIGO observatory. In fact, as was the case of the hunt for the Higgs-Boson by CERN, a non-detection of gravitational waves by AdLIGO would be a much stranger result!

Credit
A replica of the Hubble Space Telescope on display at the Kennedy Space Center. Credit: Photo by author.

8. Hubble Turns 25

Launched on April 24th, 1990 aboard the Space Shuttle Discovery, the Hubble Space Telescope celebrates 25 years in space in 2015. The final servicing mission in 2009 gave Hubble a reprieve from the space junk scrap heap, and the orbiting telescope is still going strong. Hubble has no less than pushed the limits in modern astronomy to become a modern icon of the space age.

Credit:
MESSENGER wraps up its mission in 2015. Credit: NASA/MESSENGER/JPL/APL.

7. The End of MESSENGER

NASA’s Mercury exploring spacecraft wraps up its mission next year. Launched in 2004, MESSENGER arrived in orbit around Mercury after a series of flybys on March 18th, 2011. MESSENGER has mapped the innermost world in detail, and studied the space environment and geology of Mercury. In late March 2015, MESSENGER will achieve one final first, when it impacts the surface of Mercury at the end of its extended mission.

Credit:
Akatsuki on Earth prior to departure. Credit: JAXA.

6. Akatsuki at Venus

This Japanese spacecraft missed orbital insertion a few years back, but gets a second chance at life in 2015. Launched in 2010 atop an H-IIA rocket from the Tanegashima Space Center in Japan, Akatsuki failed to enter orbit around Venus at the end of 2010, and instead headed out for a heliocentric path around the Sun. Some quick thinking by JAXA engineers led to a plan to attempt to place Akatsuki in Venusian orbit in November 2015. This would be a first for the Japanese space agency, as attempts by JAXA at placing a spacecraft in orbit around another planet – including the Mars Nozomi probe – have thus far failed.

autonomous_spaceport_drone_ship
The target for the Falcon-9 first stage later next week. Credit: SpaceX.

5. SpaceX to Attempt to Land on a Sea Platform

It’ll definitely rock if they pull it off next week: on January 6th, a SpaceX Falcon 9 rocket will lift off from Cape Canaveral with its Dragon spacecraft headed to the International Space Station on mission CRS-5. Sure, these resupply missions are becoming routine, but after liftoff, SpaceX is attempting something new and daring: landing the Falcon-9 first stage Buck Rodgers style, “fins first” on a floating barge. This is the next step in ultimately proving the feasibility of having the rocket fly back to the launch site for eventual reuse. If nothing else, expect some stunning video of the attempt soon!

credit
An artist’s concept of an asteroid retrieval mission. Credit: NASA.

4. NASA to Decide on an Asteroid Mission

Some major decisions as to the fate and the future of manned space exploration are due next year, as NASA is expected to decide on the course of action for its Asteroid Redirect Mission. The current timeline calls for the test of the SLS rocket in 2018, and the launch of a spacecraft to recover an asteroid and place it in orbit around the Moon in 2019. If all goes according to plan – a plan which could always shift with the political winds and future changes in administrations – we could see astronauts exploring a captured asteroid by the early 2020s.

Credit: NASA/Roscomos.
Astronaut Scott Kelly (left), and cosmonaut Mikhail Korniyenko. Credit: NASA/Roscomos.

3. Long Duration ISS Missions

Beginning in 2015, astronauts and cosmonauts will begin year-long stays aboard the ISS to study the effects of long duration space missions. In March of 2015, cosmonaut Mikhail Korniyenko and U.S. astronaut Scott Kelly will launch as part of Expedition 43 headed to the ISS. The Russians have conducted stays in space longer than a year aboard the Mir space station, but Kelly’s stay aboard the ISS will set a duration record for NASA astronauts. Perhaps, a simulated “Mars mission” aboard the ISS could be possible in the coming years?

credit
An artist’s concept of Dawn approaching 1 Ceres. Credit: NASA/JPL.

2. Dawn at Ceres

Fresh off of exploring Vesta, NASA’s Dawn spacecraft will become the first mission to enter orbit around a second object, the asteroid 1 Ceres next year in April 2015. The largest asteroid and the first object of its kind discovered on the first day of the 19th century, Ceres looks to be a fascinating world in its own right. Does it possess water ice? Active geology? Moons of its own? If Dawn’s performance at Vesta was any indication, we’re in for another exhilarating round of space exploration!

credit
And artist’s conception of New Horizons at Pluto. Credit: NASA/JPL/Thierry Lombry.

1. New Horizons at Pluto

An easy No. 1,we finally get our first good look at Pluto in July, as NASA’s New Horizons spacecraft flies less than 14,000 kilometres from the surface of the distant world. Launched in 2006, New Horizons will “thread the needle” between Pluto and Charon in a flurry of activity as it passes by. New Horizons will then turn back as it passes into the shadows of Pluto and Charon and actually view the two worlds as they occult the distant Sun. And from there, New Horizons will head out to explore Kuiper Belt Objects of opportunity.

And these are just the top stories that are slated to be big news in space in 2015. Remember, another Chelyabinsk meteor or the next big comet could drop by at any time… space news can be unpredictable, and its doubtless that 2015 will have lots more surprises in store.

 

 

Rocket Issues force SpaceX and NASA to Postpone Falcon 9 Rocket Launch to January 2015

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com

KENNEDY SPACE CENTER, FL – Due to technical problems encountered during a hot fire test of the first stage engines this week with the SpaceX Falcon 9 rocket, the planned Dec. 19 launch of the commercial rocket and NASA contracted Dragon cargo freighter to the International Space Station (ISS) on a critical resupply mission has been postponed a few weeks into the new year to Jan. 6 at the earliest “out of an abundance of caution,” SpaceX officials told Universe Today.

Prior to every launch, SpaceX performs an internally required full countdown dress rehearsal and hot fire test of the first stage propulsion systems.

The hot fire test attempted on Tuesday “did not run for its full duration” of about three seconds, SpaceX spokesman John Taylor confirmed to me.

Therefore SpaceX and NASA managers decided to postpone the launch in order to run another static fire test.

“We are opting to execute a second static fire test prior to launch,” Taylor said.

In light of the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter, everything must be done to ensure a launch success.

Due to the large amount of work required to test and analyze all rocket systems and the impending Christmas holidays, the earliest opportunity to launch is Jan. 6.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX/Elon Musk
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch now reset for Jan. 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX/Elon Musk

The SpaceX Falcon 9 rocket carrying the Dragon cargo freighter had been slated to liftoff on its next unmanned cargo run dubbed CRS-5 to the ISS under NASA’s Commercial Resupply Services (CRS) contract.

Here is the full update from SpaceX.

“While the recent static fire test accomplished nearly all of our goals, the test did not run the full duration. The data suggests we could push forward without a second attempt, but out of an abundance of caution, we are opting to execute a second static fire test prior to launch.”

“Given the extra time needed for data review and testing, coupled with the limited launch date availability due to the holidays and other restrictions, our earliest launch opportunity is now Jan. 6 with Jan. 7 as a backup.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

“The ISS orbits through a high beta angle period a few times a year. This is where the angle between the ISS orbital plane and the sun is high, resulting in the ISS’ being in almost constant sunlight for a 10 day period.

“During this time, there are thermal and operational constraints that prohibit Dragon from being allowed to berth with the ISS. This high beta period runs from 12/28/14-1/7/15”

“Note that for a launch on 1/6 , Dragon berths on 1/8.”

“Both Falcon 9 and Dragon remain in good health, and our teams are looking forward to launch just after the New Year.”

Watch for Ken’s ongoing SpaceX launch coverage from onsite at the Kennedy Space Center.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Continues to Expand Facilities, Workforce in Quest for Space

A SpaceX Falcon 9 Grasshopper reusable rocket undergoing testing. Credit: SpaceX

SpaceX was founded by Elon Musk in 2002 with a dream of making commercial space exploration a reality. Since that time, Musk has seen his company become a major player in the aerospace industry, landing contracts with various governments, NASA, and other private space companies to put satellites in orbit and ferry supplies to the International Space Station.

But 2014 was undoubtedly their most lucrative year to date. In September, the company (along with Boeing) signed a contract with NASA for $6.8 billion to develop space vehicles that would bring astronauts to and from the ISS by 2017 and end the nation’s reliance on Russia.

And this past week, the company announced a plan to expand operations at its Rocket Development and Test Facility in McGregor, Texas. This move, which is costing the company a cool $46 million, is expected to create 300 new full-time jobs in the community and expand testing and development even further.

According to Mike Copeland of the Waco Tribute, an additional $1.5 million in funding could be allocated from McLennon County. This would give SpaceX a total of $3 million in funds from the Waco-McLennan County Economic Development Corportation, a fund which is used to attract and keep industry in the region.

A SuperDraco engine being tested at the McGregor Facility in Texas. Credit: SpaceX
A SuperDraco thruster being tested at the Rocket Development and Test Facility in McGregor, Texas. Credit: SpaceX

Copeland also indicates that a report prepared by the Waco City Council specified what types of jobs would be created. Apparently, SpaceX is is need of additional engineers, technicians and industry professionals. No doubt, this planned expansion has much to do with the company meeting its new contractual obligations with NASA.

Originally built in 2003, the Rocket Development and Test Facility has been the site of some exciting events over the years. Using rocket test stands, the company has conducted several low-altitude Vertical Takeoff and Vertical Landing (VTVL) test flights with the Falcon 9 Grasshopper rocket. In addition, the McGregor facility is used for post-flight disassembly and defueling of the Dragon spacecraft.

In the past ten years, SpaceX has also made numerous expansions and improvements to the facility, effectively doubling the size of the facility by purchasing several pieces of adjacent farmland. As of September 2013, the facility measured 900 acres (360 hectares). But by early 2014, the company had more than quadrupled its lease in McGregor, to a total of 4,280 acres.

Though far removed from the company’s rocket building facilities at their headquarters in Hawthorne, California, the facility plays an important role in the development of their space capsule and reusable rocket systems. According to SpaceX’s company website, “Every Merlin engine that powers the Falcon 9 rocket and every Draco thruster that controls the Dragon spacecraft is tested on one of 11 test stands.”

A Falcon 9 Grasshopper conducting VTVL testing. Credit: SpaceX
A Falcon 9 Grasshopper conducting VTVL testing. Credit: SpaceX

In short, the facility is the key testing grounds for all SpaceX technology. And now that the company is actively collaborating with NASA to restore indigenous space-launch ability to the US, more testing will be needed. Much has been made about the company’s efforts with VTVL rocket systems – such as the Falcon 9 Grasshopper (pictured above) – but the Dragon V2 takes things to another level.

As revealed by SpaceX in May of this year, the Dragon V2 capsule is designed to ferry crew members and supplies into orbit, and then land propulsively (i.e. under its own power) back to Earth before refueling and flying again. This is made possible thanks to the addition of eight side-mounted SuperDraco engines.

Compared to the standard Draco Engine, which is designed to give the Dragon Capsule (and the upper stages of the Falcon 9 rocket) attitude control in space, the SuperDraco is 100 times more powerful.

According to SpaceX, each SuperDraco is capable of producing 16,000 pounds of thrust and can be restarted multiple times if necessary. In addition, the engines have the ability to deep throttle, providing astronauts with precise control and enormous power.

With eight engines in total, that would provide a Dragon V2 with 120,000 pounds of axial thrust, giving it the ability to land anywhere without the need of a parachute (though they do come equipped with a backup chute).

Between this and ongoing developments with the Falcon 9 reusable rocket system, employees in McGregor are likely to have their hands full in the coming years. The expansion is expected to be complete by 2018.

Further Reading: NASA, SpaceX, Waco Tribute

SpaceX Dragon Departs Space Station after Delivering Slew of Science and Returns with Ocean Splashdown

A space-weathered @SpaceX #Dragon looking great moments before release today. Credit: NASA/Reid Wiseman

Concluding a busy five week mission, the SpaceX Dragon CRS-4 commercial cargo ship departed the International Space Station (ISS) this morning, Oct. 25, after delivering a slew of some 2.5 tons of ground breaking science experiments and critical supplies that also inaugurated a new era in Earth science at the massive orbiting outpost following installation of the ISS-RapidScat payload.

Dragon was released from the snares of the station’s robotic arm at 9: 57 a.m. EDT while soaring some 250 mi (400 km) over the northwest coast of Australia.

It returned safely to Earth with a splashdown in the Pacific Ocean some six hours later, capping the fourth of SpaceX’s twelve contracted station resupply missions for NASA through 2016.

“The Dragon is free!” exclaimed NASA commentator Rob Navias during a live broadcast on NASA TV following the ungrappling this morning. “The release was very clean.”

Dragon released from snares of ISS robotic arm on Oct. 25, 2014 for return to Earth.  Credit: NASA
Dragon released from snares of ISS robotic arm on Oct. 25, 2014, for return to Earth. Credit: NASA

The private resupply ship was loaded for return to Earth with more than 3,276 pounds of NASA cargo and science samples from the station crew’s investigations on “human research, biology and biotechnology studies, physical science investigations, and education activities sponsored by NASA and the Center for the Advancement of Science in Space, the nonprofit organization responsible for managing research aboard the U.S. national laboratory portion of the space station,” said NASA.

The release set up a quick series of three burns by the ship’s Draco thrusters designed to carry Dragon safely away from the station.

NASA astronauts Reid Wiseman and Butch Wilmore quickly retracted the arm working from their robotics workstation in the domed Cupola module.

“Thanks for the help down there,” the astronauts radioed. “It was a great day.”

Dragon moves away from ISS on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
Dragon moves away from ISS on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The first burn took place a minute later at about 9:58 a.m. EDT and the second at about 10:00 a.m. A yaw maneuver at 10:05 a.m. set up the orientation required for the third burn at about 10:08 a.m.

Dragon moved away quickly during the nighttime release and was already outside the Keep Out Sphere (KOS), an imaginary bubble surrounding the station at a distance of 200 m. It disappeared quickly in the dark and was barely visible within minutes.

“The propulsion systems are in good shape,” said Navias. “All systems on Dragon are functioning perfectly.”

With Dragon safely gone following the trio of burns, the next major event was the deorbit burn at 2:43 p.m. EDT at a distance of about 90 statute miles from the station.

Dragon slipped out of orbit. After surviving the scorching heat of reentry through the Earth’s atmosphere, the ship sequentially deployed its drogue chutes and three main parachutes at about 3:30 p.m.

Splashdown in the Pacific Ocean occurred as expected at about 3:39 p.m., approximately 265 miles west of the Baja peninsula.

Dragon is the only vehicle that can return intact from the ISS with a substantial load of cargo and is carrying critical science samples for distribution to researchers.

Today’s Dragon departure starts a week of heavy traffic of comings and goings to the ISS involving a series of US and Russian unmanned cargo ships.

SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014 for return to Earth.  Credit: NASA  TV
SpaceX Dragon captures view of ISS after departure on Oct. 25, 2014, for return to Earth. Credit: NASA TV

The Orbital Sciences Antares rocket with the commercial Cygnus cargo freighter is set to launch on Monday, Oct. 27, from NASA Wallops, VA. It will dock at the ISS on Nov. 2 at the Earth-facing port on the Harmony module just vacated by Dragon.

Russia’s Progress 56 unmanned cargo ship will also undock on Oct. 27. And Progress 57 will launch from Baikonur on Wednesday, Oct 29.

The SpaceX Dragon CRS-4 cargo resupply mission thundered to space on the company’s Falcon 9 rocket from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida on Sept. 21.

A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014 bound for the ISS.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket carrying a Dragon cargo capsule packed with science experiments and station supplies blasts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Florida, at 1:52 a.m. EDT on Sept. 21, 2014, bound for the ISS. Credit: Ken Kremer/kenkremer.com

Dragon was successfully berthed at the Harmony module on Sept. 23, 2014.

Among the nearly 5000 pounds of cargo hauled up by Dragon was as an Earth observation platform named ISS-RapidScat loaded in the unpressurized trunk section.

Also loaded aboard were a slew of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

It also carried the first 3-D printer to space for the first such space based studies ever attempted by the astronaut crews. The printer will remain at the station for at least the next two years.

20 mice housed in a special rodent habitat were also aboard, as well as fruit flies.

The ISS Rapid Scatterometer, or ISS-RapidScat, is NASA’s first research payload aimed at conducting near global Earth science from the station’s exterior and will be augmented with others in coming years.

ISS-RapidScat instrument, shown in this artist's rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014 and attached at ESA’s Columbus module.  It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.
ISS-RapidScat instrument, shown in this artist’s rendering, was launched to the International Space Station aboard the SpaceX CRS-4 mission on Sept. 21, 2014, and attached at ESA’s Columbus module. It will measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring. Credit: NASA/JPL-Caltech/Johnson Space Center.

The successful installation and activation of the ISS-RapidScat science instrument on the exterior of Europe’s Columbus module in late September and early October inaugurated a new era in space station science.

RapidScat is designed to monitor ocean winds for climate research, weather predictions, and hurricane monitoring.

The 1280 pound (580 kilogram) experimental instrument is already collecting its first science data following its recent power-on and activation at the station.

SpaceX Falcon 9 erect at Cape Canaveral launch pad 40  awaiting launch on Sept 20, 2014 on the CRS-4 mission. Credit: Ken Kremer - kenkremer.com
SpaceX Falcon 9 with Dragon spaceship erect at Cape Canaveral launch pad 40 awaiting launch on Sept. 21, 2014, on the CRS-4 mission. Credit: Ken Kremer – kenkremer.com

“This mission enabled research critical to achieving NASA’s goal of long-duration human spaceflight in deep space,” said Sam Scimemi, director of the International Space Station division at NASA Headquarters.

“The delivery of the ISS RapidScatterometer advances our understanding of Earth science, and the 3-D printer will enable a critical technology demonstration. Investigations in the returned cargo could aid in the development of more efficient solar cells and semiconductor-based electronics, the development of plants better suited for space, and improvements in sustainable agriculture.”

The next SpacX cargo Dragon on the CRS-5 mission is slated for launch no earlier then Dec. 9.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

How NASA and SpaceX are Working Together to Land on Mars

Thermal imagery of Falcon 9 rocket. Image Credit: NASA/Scifli Team/Applied Physics Laboratory Images

It is no secret that NASA is seeking out private space contractors to help bring some of its current plans to fruition. Naturally, these involve restoring indigenous launch capabilities to the US, but also include the more far-reaching goal of sending astronauts to Mars. Towards that end, NASA and SpaceX participated in an unprecedented data-sharing project that will benefit them both.

Continue reading “How NASA and SpaceX are Working Together to Land on Mars”

Every Falcon 9 Launch in One Image

A photo montage of every Falcon 9 launch so far. Used by permission. Credit: SpaceXStats.

If you’re a fan of SpaceX, you’ll love the website SpaceXStats. Writ large on the site are real-time countdowns to upcoming launches, all sorts of SpaceX statistics, launch manifest info, and fun trivia (there’s a countdown to how many days until Elon Musk’s bet about getting to Mars by 2020 or 2025 expires.)

The owner of the site, Lukas Davia, recently created a fantastic Falcon 9 launch collage, which was originally posted on imgur and discussed on Reddit (where there’s a 16,000-strong SpaceX community).

Lukas told Universe Today that one r/SpaceX user recently inquired if anyone had come across SpaceX montages. “While I don’t have the time for any serious video editing, I did have enough time spare to create a photo montage,” Lukas said via email. “Since I’m the owner of spacexstats.com, I already had all the launch images and assets necessary to produce it, stored locally on my computer. Using Adobe Photoshop, the whole process took just over an hour, from a blank canvas to the final image – and didn’t require much more than layer masks and guides to create. I then submitted it to /r/SpaceX & /r/space on Reddit, where it (quite surprisingly) managed to generate over 1,300,000 views in less than 24 hours.”

He added that he does plan on producing similar SpaceX graphics and perhaps updating this one in the future, “although I fear at SpaceX’s recent launch cadence, it’ll become unsuitably wide at some point!” he said.

Be sure to click on the image above to see the full resolution size.

Thanks to Lukas for sharing his montage with Universe Today.