NASA told two companies to halt work on the next phase of its commercial crew program — the spacecraft expected to replace Russian ones ferrying astronauts to the International Space Station — because of a protest related to the contract award, according to media reports.
Sierra Nevada Corp. (SNC) filed a complaint on Sept. 26, shortly after its Dream Chaser shuttle-like design was not selected for further funding under the Commercial Crew Transportation Capability (CCtCap) phase of the program. Competitors SpaceX and Boeing each received billions of dollars for further development for their Dragon and CST-100 spacecraft, which are expected to start flying around 2017.
A Spaceflight Now report, quoting NASA spokesperson Stephanie Schierholz, said the agency told both selectees that they must “stop performance of the CCtCap contract” pending the result of the challenge, which is before the Government Accountability Office. The office’s deadline for a response is Jan. 5, the report said.
In a statement, SNC said this is the first fight it undertook in relation to a government contract in more than five decades of operations. “Inconsistencies” in the process, SNC added, prompted it to go forward with the protest:
Importantly, the official NASA solicitation for the CCtCap contract prioritized price as the primary evaluation criteria for the proposals, setting it equal to the combined value of the other two primary evaluation criteria: mission suitability and past performance. SNC’s Dream Chaser proposal was the second lowest priced proposal in the CCtCap competition. SNC’s proposal also achieved mission suitability scores comparable to the other two proposals. In fact, out of a possible 1,000 total points, the highest ranked and lowest ranked offerors were separated by a minor amount of total points and other factors were equally comparable.
NASA administrator Charles Bolden declined to comment on the situation last week in response to questions from reporters at the International Astronautical Congress in Toronto, Canada, citing the legal situation.
Ask any space enthusiast, and almost anyone will say humankind’s ultimate destination is Mars. But NASA is currently gearing up to go to an asteroid. While the space agency says its Asteroid Initiative will help in the eventual goal of putting people on Mars, what if instead of going to an asteroid, we went to Mars’ moon Phobos?
Three prominent planetary scientists have joined forces in a new paper in the journal Planetary and Space Science to explain the case for a mission to the moons of Mars, particularly Phobos.
“Phobos occupies a unique position physically, scientifically, and programmatically on the road to exploration of the solar system,” say the scientists. In addition, the moons may possibly be a source of in situ resources that could support future human exploration in circum-Mars space or on the Martian surface. But a sample return mission first could provide details on the moons’ origins and makeup.
The Martian moons are riddles, wrapped in a mystery, inside an enigma.Phobos and its sibling Deimos seem like just two asteroids which were captured by the planet Mars, and they remain the last objects of the inner solar system not yet studied with a dedicated mission. But should the moons be explored with flybys or sample-return? Should we consider “boots or bots”?
The publications and mission concepts for Phobos and Deimos are numerous and go back decades. The authors of “The Value of a Phobos Sample Return,” Murchie, Britt, and Pieters, explore the full breadth of questions of why and how to explore Phobos and Deimos.
Dr. Murchie is the principal investigator of the Mars Reconnaissance Orbiter’s CRISM instrument, a visible/infrared imaging spectrometer. He is a planetary scientist from John Hopkins’ Applied Physics Lab (APL) which has been at the forefront of efforts to develop a Phobos mission. Likewise, authors Dr. Britt, from the University of Central Florida, and Dr. Pieters, from Brown University, have partnered with APL and JPL in Phobos/Deimos mission proposals.
APL scientists are not the only ones interested in Phobos or Deimos. The Jet Propulsion Laboratory, Ames Research Center and the SETI Institute have also proposed several missions to the small moons. Every NASA center has been involved at some level.
But the only mission to actually get off the ground is the Russian Space Agency’s Phobos-GRUNT[ref]. The Russian mission was launched November 9, 2011, and two months later took a bath in the Pacific Ocean. The propulsion system failed to execute the burns necessary to escape the Earth’s gravity and instead, its orbit decayed despite weeks of attempts to activate the spacecraft. But that’s a whole other story.
“The Value of a Phobos Sample Return” first discusses the origins of the moons of Mars. There is no certainty. There is a strong consensus that Earth’s Moon was born from the collision of a Mars-sized object with Earth not long after Earth’s formation. This is just one possibility for the Martian moons. Murchie explains that the impacts that created the large basins and craters on Mars could have spawned Phobos and Deimos: ejecta that achieved orbit, formed a ring and then coalesced into the small bodies. Alternative theories claim that the moons were captured by Mars from either the inner or outer solar system. Or they could have co-accreted with Mars from the Solar Nebula. Murchie and the co-authors describe the difficulties and implications of each scenario. For example, if captured by Mars, then it is difficult to explain how their orbits came to be “near-circular and near-equatorial with synchronous rotational periods.”
To answer the question of origins, the paper turns to the questions of their nature. Murchie explains that the limited compositional knowledge leaves several possibilities for their origins. They seem like D-type asteroids of the outer asteroid belt. However, the moons of Mars are very dry, void of water, at least on their surfaces as the paper discusses in detail. The flybys of Phobos and Deimos by NASA and ESA spacecraft are simply insufficient for drawing any clear picture of their composition or structure, let alone their origins, Murchie and co-authors explain.
If the moons were captured then they have compositions different from Mars; however if they accreted with or from Mars, then they share similar compositions with the early Mars when forming, or from Martian crustal material, respectively.
The paper describes in some detail the problem that billions of years of Martian dust accumulation presents. Every time Mars has been hit by a large asteroid, a cloud of debris is launched into space. Some falls back to the planet but much ends up in orbit. Each time, some of the debris collided with Phobos and Deimos; Murchie uses the term “Witness plate” to describe what the two moons are to Mars. There is an accumulation of Martian material and also material from the impactors covering the surfaces of the moons. Flyby images of Phobos show a reddish surface similar to Mars, and numerous tracks along the surface as if passing objects struck, plowed or rolled along. However, the reddish hue could be weathering from Solar flux over billions of years.
The paper continues with questions of the composition and how rendezvous missions could go further to understanding the moons makeup and origins, however, it is sample return that would deliver, the pay dirt. Despite how well NASA and ESA engineers have worked to shrink and lighten the instruments that fly, orbit, and land on Mars, returning a sample of Phobos to labs on Earth would permit far more detailed analysis.
Science Fiction writers and mission designers have imagined Phobos, in particular, as a starting point for the human exploration and colonization of Mars. A notable contemporary work is “Red Mars” by Kim Stanley Robinson; however, the story line is dated due to the retirement of the Space Shuttle and the external tanks Robinson clustered to form the colonization vessel. While this paper by Murchie et al. is purely scientific, fiction writers have used the understanding that Phobos is far easier to reach from Earth than is the surface of Mars (see Delta-V chart below).
Phobos, orbiting at 9,400 kilometers (5,840 miles), and Deimos, at 23,500 km (14,600 miles), above Mars avoids the need for the 7-odd minutes of EDL terror – Entry, Descent, and Landing — and pulling oneself out of the Martian gravity well to return to Earth. Furthermore, there is the interest in using Phobos as a material resource – water, material for rocket fuel or building materials. “The Value of a Phobos Sample Return” discusses the potential of Phobos as a resource for space travelers – “In Situ Resource Utilization” (ISRU), in the context of its composition, how the solar flux may have purged the moons of water or how Martian impact debris covers materials of greater interest and value to explorers.
With so many questions and interests, what missions have been proposed and explored? The Murchie paper describes a half dozen missions but there are several others that have been conceived and proposed to some level over several decades.
At present, there is at least one mission actively pursuing funds. The SETI and Ames proposed “Phobos and Deimos & Mars Environment” (PADME) mission led by Dr. Pascal Lee is competing for Discovery program funding. Such projects must limit cost to $425 million or less and be capable of launching in less than 3 years. They are proposing a launch date of 2018 on a SpaceX Falcon 9. The PADME mission design would reuse Ames LADEE hardware and expertise, however, it does not go so far as what Murchie and co-authors argue – returning a sample from Phobos. PADME would maintain in a synchronized orbit with Phobos and then Deimos foe repeated flybys. The mission is likely to cost in the range of $300 million. Stardust, a relevant mission due to its sample return capsule, launched in 1999 and had costs which likely reached a similar level by end of mission in 2012.
The Russian Space Agency is attempting to gain funding for Phobos-Grunt 2 but possible launch dates continue to be moved back – 2020, 2022, and now possibly 2024.
Additionally, each of this papers’ authors has mission proposals described. Dr. Pieters, JPL, and Lockheed-Martin proposed the Aladdin mission; Dr. Britt at APL, also with Lockheed-Martin, proposed the mission Gulliver; both would re-use the Stardust sample-return capsule (photo, above). Dr. Murchie also describes his APL/JPL mission concept called MERLIN (Mars–Moon Exploration, Reconnaissance and Landed Investigation).
Phobos and Deimos are the last two of what one would call major objects of the inner Solar System that have not had dedicated missions of exploration. Several bodies of the Asteroid Belt have been targeted with flybys and Dawn is nearing its second target, the largest of the Asteroids, Ceres.
So sooner rather than later, a spacecraft from some nation (not necessarily the United States) will target the moons of Mars. Targeted Phobos/Deimos missions are also likely to include both flyby missions and one or more sample-return missions. A US-led mission with sample-return in the Discovery program will be strained to meet both criteria – $425 million cost cap and 3 year development period.
Those utilizing the Lockheed-Martin (LM) Stardust design have a proven return capsule and spacecraft buses (structure, mechanisms and avionics) for re-use for cost and time savings. This includes five generations of the LM flight software that holds an incredible legacy of mission successes starting with Mars Odyssey/Genesis/Spitzer to now Maven.
All three proposals by this paper’s authors could be re-vamped and proposed again and compete against each other. All three could use Lockheed-Martin past designs. Cooperation in writing this paper may be an indicator that they will join forces, combine concepts, and share investigator positions on a single NASA-led project. The struggle for federal dollars remains a tough, tight battle and with the human spaceflight program struggling to gain a new footing after Space Shuttle, dollars for inter-planetary missions are likely to remain very competitive. However, it appears a Phobos-Deimos mission is likely within the next ten years.
TORONTO, CANADA – There’s a big difference in thinking between governments and the private companies that participate in space. While entities such as NASA can work on understanding basic human health or exploring the universe for the sake of a greater understanding, companies have a limitation: they need to eventually make a profit.
This was brought up in a human spaceflight discussion at the International Astronautical Congress today (Oct. 1), which included participants from agencies and companies alike. Below are some concepts for how private companies in the space world today are making their money.
“We have in space a movement towards more privatization … and also for more use of space activities in general and human space activity in the future by individual private persons,” said Johann Dietrich Worner, chairman of the executive board of DLR (Germany’s space agency), in the panel.
“You can imagine that even for the upcoming 10 to 20 to 30 years, the public funding is the basic funding for [space] activities while in other areas, we are already seeing that private money is doing its work if you look to communication and if you look to other activities, like for instance, research in space.”
But commercial spaceflight is already taking place, as some of these examples show.
Commercial crew
The two successful companies in NASA’s latest round of commercial contracts — SpaceX (Dragon) and Boeing (CST-100) — are each receiving government money to develop their private space taxis. The companies are responsible for meeting certain milestones to receive funds. There is quite the element of risk involved because the commercial contracts are only given out in stages; you could be partway through developing the spacecraft and then discover you will not be awarded one for the next round. This is what happened to Sierra Nevada Corp., whose Dream Chaser concept did not receive more money in the announcement last month. The company has filed a legal challenge in response.
Private space travel
Virgin Galactic and its founder, Richard Branson, are perhaps the most visible of the companies that are looking to bring private citizens into space — as long as they can pay $250,000 for a ride. The first flight of Virgin into space is expected in the next year. Customers must pay a deposit upfront upon registering and then the balance before they head into suborbit. In the case of Virgin, Branson has a portfolio of companies that can take on the financial risk during the startup phase, but eventually the company will look to turn a profit through the customer payments.
Asteroid mining
The business case for Planetary Resources and Deep Space Industries, the two self-proclaimed asteroid mining companies, hasn’t fully been released yet. We assume that the companies would look to make a profit through selling whatever resources they manage to dig up on asteroids, but bear in mind it would cost quite a bit of money to get a spacecraft there and back. Meanwhile, Planetary Resources is diversifying its income somewhat by initiatives such as the Arkyd-100 telescope, which will look for asteroids from Earth orbit. They raised money for the project through crowdsourcing.
Space station research
NanoRacks is a company that has research slots available on the International Space Station that it sells to entities looking to do research in microgravity. The company has places inside the station and can also deploy small satellites through a Japanese system. While the company’s website makes it clear that they are focused on ISS utilization, officials also express an interest in doing research in geocentric orbit, the moon or even Mars.
SpaceX Falcon 9 erect at Cape Canaveral launch pad 40 awaiting launch on Sept 20, 2014 on the CRS-4 mission.
Credit: Ken Kremer – kenkremer.com
Story/launch date/headline updated[/caption]
KENNEDY SPACE CENTER, FL – SpaceX is on the cusp of launching the company’s fourth commercial resupply Dragon spacecraft mission to the International Space Station (ISS) shortly after midnight, Saturday, Sept. 20, 2014, continuing a rapid fire launch pace and carrying NASA’s first research payload – RapidScat – aimed at conducting Earth science from the stations exterior.
Final preparations for the launch are underway right now at the Cape Canaveral launch pad with the stowage of sensitive late load items including a specially designed rodent habitat housing 20 mice.
Update 20 Sept: Poor weather scrubs launch to Sept. 21 at 1:52 a.m.
Fueling of the two stage rocket with liquid oxygen and kerosene propellants commences in the evening prior to launch.
If all goes well, Saturday’s launch of a SpaceX Falcon 9 rocket would be the second in less than two weeks, and the fourth over the past ten weeks. The last Falcon 9 successfully launched the AsiaSat 6 commercial telecom satellite on Sept. 7 – detailed here.
“We are ready to go,” said Hans Koenigsmann, SpaceX vice president of mission assurance, at a media briefing at the Kennedy Space Center today, Sept. 19.
Liftoff of the SpaceX Falcon 9 rocket on the CRS-4 mission bound for the ISS is targeted for an instantaneous window at 2:14 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at the moment Earth’s rotation puts Cape Canaveral in the flight path of the ISS.
You can watch NASA’s live countdown coverage which begins at 1 a.m. on NASA Television and NASA’s Launch Blog: http://www.nasa.gov/multimedia/nasatv/
The weather forecast is marginal at 50/50 with rain showers and thick clouds as the primary concerns currently impacting the launch site.
The Dragon spacecraft is loaded with more than 5,000 pounds of science experiments, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.
The CRS-4 missions marks the start of a new era in Earth science. The truck of the Dragon is loaded Dragon with the $30 Million ISS-Rapid Scatterometer to monitor ocean surface wind speed and direction.
RapidScat is NASA’s first research payload aimed at conducting Earth science from the stations exterior. The stations robot arm will pluck RapidScat out of the truck and attach it to an Earth-facing point on the exterior trusswork of ESA’s Columbus science module.
Dragon will also carry the first 3-D printer to space for studies by the astronaut crews over at least two years.
The science experiments and technology demonstrations alone amount too over 1644 pounds (746 kg) and will support 255 science and research investigations that will occur during the station’s Expeditions 41 and 42 for US investigations as well as for JAXA and ESA.
“This flight shows the breadth of ISS as a research platform, and we’re seeing the maturity of ISS for that,” NASA Chief Scientist Ellen Stofan said during a prelaunch news conference held today, Friday, Sept. 19 at NASA’s Kennedy Space Center.
After a two day chase, Dragon will be grappled and berth at an Earth-facing port on the stations Harmony module.
The Space CRS-4 mission marks the company’s fourth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.
This week, SpaceX was also awarded a NASA contact to build a manned version of the Dragon dubbed V2 that will ferry astronauts crews to the ISS starting as soon as 2017.
NASA also awarded a second contact to Boeing to develop the CST-100 astronaut ‘space taxi’ to end the nation’s sole source reliance on Russia for astronaut launches in 2017.
Dragon V2 will launch on the same version of the Falcon 9 launching this cargo Dragon
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
SpaceX today released video from the Falcon 9 first stage flyback and landing video from the July 14 launch of six ORBCOMM advanced telecommunications satellites. This was a test of the reusability of the Falcon 9’s first stage and its flyback and landing system. It splashed down in the Atlantic Ocean, and SpaceX called it a “soft” landing, even though the booster did not survive the splashdown. SpaceX CEO Elon Musk tweeted on July 14 that the rocket booster reentry, landing burn and leg deployment worked well, but the hull of the first stage “lost integrity right after splashdown (aka kaboom).” He later reported that detailed review of rocket telemetry showed the booster took a “body slam, maybe from a self-generated wave.”
SpaceX today said last week’s test “confirms that the Falcon 9 booster is able consistently to reenter from space at hypersonic velocity, restart main engines twice, deploy landing legs and touch down at near zero velocity.”
This video is of much higher quality than the video from the first soft landing test in the ocean, back in April of this year following the launch of the CRS-3 mission for the Dragon spacecraft to the International Space Station.
Even though the booster has not been recoverable from either test (the April test saw too rough of seas to get the booster) SpaceX said that they received all the necessary data “to achieve a successful landing on a future flight. Going forward, we are taking steps to minimize the build up of ice and spots on the camera housing in order to gather improved video on future launches.
The booster tipping over is the nominal procedure (in water), but the booster did touch down in a vertical position; additionally, as seen in the video, the landing legs deployed perfectly, and the flyback boosters performed flawlessly.
“At this point, we are highly confident of being able to land successfully on a floating launch pad or back at the launch site and refly the rocket with no required refurbishment,” SpaceX said in today’s press release. “However, our next couple launches are for very high velocity geostationary satellite missions, which don’t allow enough residual propellant for landing. In the longer term, missions like that will fly on Falcon Heavy, but until then Falcon 9 will need to fly in expendable mode.”
The next attempt for a our next water landing will be on Falcon 9’s thirteenth flight, a launch to the ISS for the fourth resupply mission, but they indicated the test would have a “low probability of success.” That flight is currently scheduled for no earlier than September 12, 2014. The next big challenge comes in flights 14 (another ORBCOMM satellite launch) and 15 (Turkmen satellite), where the booster will attempt to land on a solid surface. Those flights are currently scheduled for NET October and November of 2014.
A SpaceX Falcon 9 rocket was rolled out to its Florida launch pad early this morning at 1 a.m., Friday, June 20, in anticipation of blastoff at 6:08 p.m. EDT this evening on an oft delayed commercial mission for ORBCOMM to carry six advanced OG2 communications satellites to significantly upgrade the speed and capacity of their existing data relay network, affording significantly faster and larger messaging services.
The Falcon 9 rocket is lofting six second-generation ORBCOMM OG2 commercial telecommunications satellites from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.
Update (6/23): The Saturday launch was scrubbed due to 2nd stage pressure decrease and then was scrubbed on Saturday and Sunday due to weather and technical reasons. SpaceX must now delay the launch until the first week in July because of previously scheduled maintenance for the Eastern Test Range, which supports launches from Cape Canaveral Air Force Station. This also allows SpaceX to take “a closer look at a potential issue identified while conducting pre-flight checkouts during [Sunday’s] countdown,” the company said in statement on its website on June 23.
The next generation SpaceX Falcon 9 rocket is launching in its more powerful v1.1 configuration with upgraded Merlin 1D engines, stretched fuel tanks, and the satellites encapsulated inside the payload fairing.
Falcon 9 will deliver all six next-generation OG2 satellites to an elliptical 750 x 615 km low-Earth orbit. They will be deployed one at a time starting 15 minutes after liftoff.
The first stage is also equipped with a quartet of landing legs to conduct SpaceX’s second test of a controlled soft landing in the Atlantic Ocean in an attempt to recover and eventually use the stage as a means of radically driving down overall launch costs – a top goal of SpaceX’s billionaire CEO and founder Elon Musk.
The launch has been delayed multiple times from May due to technical problems with both the Falcon 9 rocket and the OG2 satellites.
The May launch attempt was postponed when a static hot-fire test was halted due to a helium leak and required engineers to fix the issues.
Last week on June 13, SpaceX conducted a successful static hot-fire test of the 1st stage Merlin engines (see photos above and below) which had paved the way for blastoff as soon as Sunday, June 15.
However ORBCOMM elected to delay the launch in order to conduct additional satellite testing to ensure they are functioning as expected, the company reported.
“In an effort to be as cautious as possible, it was decided to perform further analysis to verify that the issue observed on one satellite during final integration has been fully addressed. The additional time to complete this analysis required us to postpone the OG2 Mission 1 Launch,” said ORBCOMM.
You can watch the launch live this evening with real time commentary from SpaceX mission control located at their corporate headquarters in Hawthorne, CA.
The six new satellites will join the existing constellation of ORBCOMM OG1 satellites launched over 15 years ago.
The weather outlook is currently not promising with only a 30% chance of favorable conditions at launch time. The launch window extends for 53 minutes.
The primary concerns according to the USAF forecast are violations of the Cumulus Cloud Rule, Thick Cloud Rule, Lightning Rule, Anvil Cloud Rule.
In the event of a scrub, the backup launch window is Saturday June 21. The weather outlook improves to 60% ‘GO’.
Fueling of the rocket’s stages begins approximately four hours before blastoff – shortly after 2 p.m. EDT. First with liquid oxygen and then with RP-1 kerosene propellant.
Each of the 170 kg OG2 satellites was built by Sierra Nevada Corporation and will provide a much needed boost in ORBCOMM’s service capacity.
10 more OG2 satellites are scheduled to launch on another SpaceX Falcon 9 in the fourth quarter of 2014 to complete ORBCOMM’s next generation constellation.
“ORBCOMM’s OG2 satellites will offer up to six times the data access and up to twice the transmission rate of ORBCOMM’s existing OG1 constellation,” according to the SpaceX press kit.
“Each OG2 satellite is the equivalent of six OG1 satellites, providing faster message delivery, larger message sizes and better coverage at higher latitudes, while drastically increasing network capacity. Additionally, the higher gain will allow for smaller antennas on communicators and reduced power requirements, yielding longer battery lives.”
The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter.
Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Well, this is cool: A new video from SpaceX shows the Falcon 9 Reusable (F9R) rocket during a 1,000 meter test flight at the SpaceX facility in McGregor, Texas. This was the first flight test of a set of steerable fins that provide control of the rocket during the fly-back portion of the return flight. The fins deploy approximately 1:15 into the test flight and return to their original locked position just prior to landing.
This seems like a truly smooth flight!
These types of fins are not new, but are new for human space flight. They’ve been used on missiles and bombs to aid in precision targeting, and likewise will help the F9R to land precisely on target.
SpaceX confirmed that during the early tests flights of F9R, the landing legs will be fixed in the down position, however soon they will transition to a liftoff with the legs stowed against the side of the rocket with the legs extending just before landing. The company also said that future test flights of F9R will be at SpaceX’s New Mexico facility which will allow them to test in higher altitude flights, give them the chance to prove unpowered guidance and to prove out landing cases that are “more flight-like.”
The full scale CST-100 mockup was unveiled at an invitation only ceremony for Boeing executives and media held inside a newly renovated shuttle era facility at the Kennedy Space Center where the capsule would start being manufactured later this year.
Universe Today was invited to tour the capsule for a first hand inspection of the CST-100’s interior and exterior and presents my photo gallery here.
The CST-100 is a privately built manrated capsule being developed with funding from NASA under the auspices of the agency’s Commercial Crew Program (CCP) in a public/private partnership between NASA and private industry.
The vehicle will be assembled inside the refurbished processing hangar known during the shuttle era as Orbiter Processing Facility-3 (OPF-3). Boeing is leasing the site from Space Florida.
Boeing is one of three American aerospace firms vying for a NASA contract to build an American ‘space taxi’ to ferry US astronauts to the space station and back as soon as 2017.
The SpaceXDragon and Sierra Nevada Dream Chaser are also receiving funds from NASA’s commercial crew program.
NASA will award one or more contracts to build Americas next human rated spaceship in August or September.
Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.
Chris Ferguson, the final shuttle commander for NASA’s last shuttle flight (STS-135) now serves as director of Boeing’s Crew and Mission Operations.
Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.
Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.
The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.
The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.
The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.
Credit: Ken Kremer – kenkremer.com
Story updated[/caption]
KENNEDY SPACE CENTER, FL – Boeing unveiled a full scale mockup of their CST-100 commercial ‘space taxi’ on Monday, June 9, at the new home of its future manufacturing site at the Kennedy Space Center located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for missions to the International Space Station (ISS).
The overriding goal is restart our country’s capability to reliably launch Americans to space from US territory as rapidly and efficiently as possible.
The CST-100 crew transporter was revealed at an invitation only ceremony and media event held on Monday, June 9, inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.
The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.
Universe Today was invited to be on location at KSC for the big reveal ceremony headlining US Senator Bill Nelson (FL) and Boeing executives including shuttle commander Ferguson, for a first hand personal inspection of the private spaceship and also to crawl inside and sit in the seats of the capsule designed to carry American astronauts to the High Frontier as soon as 2017.
“Today we celebrate this commercial crew capsule,” said Sen. Nelson at the unveiling ceremony. “This vehicle is pretty fantastic and the push into space the CST-100 represents is historic.”
“We are at the dawn of a new Space Age. It’s complemented by the commercial activities going to and from the space station and then going outside low Earth orbit [with Orion], as we go to the ultimate goal of going to Mars. There is a bright future ahead.”
The purpose of developing and building the private CST-100 human rated capsule is to restore America’s capability to ferry astronauts to low-Earth orbit and the space station from American soil aboard American rockets, and thereby end our total dependency on the Russian Soyuz capsule for tickets to space and back.
Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.
“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”
So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.
Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.
The stairway to America’s future human access to space is at last literally taking shape from coast to coast.
Sen. Nelson, a strong space exploration advocate for NASA and who also flew on a space shuttle mission on Columbia back in January 1986, was the first person to climb the steps and enter the hatch leading to Boeing’s stairway to the heavens.
“This is harder to get in than the shuttle. But the seats are comfortable,” Nelson told me as he climbed inside the capsule and maneuvered his way into the center co-pilots seat.
Nelson received a personal guided tour of the CST-100 spaceship from Ferguson.
The capsule measures 4.56 meters (175 inches) in diameter.
The media including myself were also allowed to sit inside the capsule and given detailed briefings on Boeing ambitious plans for building a simple and cost effective astronaut transporter.
The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.
The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.
Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, vying for the next round of contracts to build America’s ‘space taxi’ in a public/private partnership with NASA using seed money under the auspices of the agency’s Commercial Crew Program (CCP).
Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.
Boeing has received approximately $600 million and is on target to complete all of NASA’s assigned CCP milestones in the current contract phase known as Commercial Crew Integrated Capability initiative (CCiCAP) by mid-2014.
Boeing’s CST-100 crew capsule reveal on June 9 comes just two weeks after SpaceX CEO Elon Musk’s Hollywoodesqe glitzy live show on May 29 – pulling the curtain off his firms ‘Dragon’ crew vehicle entry into NASA’s commercial crew program.
NASA officials say that the next round of contracts aims at building a human rated flight vehicle to dock at the ISS by late 2017.
The next contract phase known as Commercial Crew Transportation Capability (CCtCap) will result in one or more awards by NASA later this summer around August or September .
Sen. Nelson expressed his hope that the competition will continue since Congress appears likely to finally approve something near the President’s CCP funding request of over $800 million in the Fiscal 2015 NASA budget.
“With about $800 million, that’s enough money for NASA to do the competition for at least two and maybe more,” said Nelson. “That of course is up to NASA as they evaluate all the proposals.”
NASA had hoped to fly the first commercial crew missions in mid-2015.
But repeated CCP funding cuts by Congress since its inception in 2010 has already caused significant delays to the start of the space taxi missions for all three companies contending for NASA’s commercial crew contracts.
In fact the schedule has slipped already 18 months to the right compared to NASA’s initial plans thus forcing the agency to buy more Soyuz seats from the Russians at a cost of over $70 million each.
The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.
It was glorious to be seated inside America’s next spaceship destined to carry humans.
The next generation of US human spaceflight is finally coming to fruition after a long down time.
Read my exclusive new interview with NASA Administrator Charles Bolden explaining the importance of getting Commercial Crew online to expand our reach into space- here.
Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.
Hot off the excitement of showing off the inside of its manned Dragon spacecraft, SpaceX is prepared to offer a few members of the public a rare chance for a tour of its facilities. There’s a lot on the agenda, including seeing an uncrewed Dragon that has actually returned from space.
Here’s the deal: SpaceX has partnered with Charitybuzz to offer a single tour for up to 10 people. Bidding is open now and closes June 19 at this site.
“At SpaceX your party will tour the world’s largest facility developing the complete design, fabrication and assembly of rockets, engines and spacecraft,” SpaceX stated on the Charitybuzz website.
“You will see Falcon 9 rockets being assembled, Merlin engines being constructed, Dragon spacecraft in production and even a Dragon that has returned from space! Following the tour, guests will have a chance to meet Gwynne Shotwell, President and COO [chief operating officer] of SpaceX in person.”
Just like for NASA Socials, you are responsible for your own travel and accommodation. The tour is expected to last 1.5 to 2 hours and will take place at the SpaceX headquarters in Hawthorne, Calif. The benefitting charity is the Women in Technology Foundation, whose stated mandate is “education to create awareness, excitement, and opportunity among girls and women, and to encourage them to work in technology-related fields.”
More details are available at Charitybuzz. SpaceX uses its Dragon spacecraft to make regular cargo shipments to the International Space Station, and is one of three companies competing for the chance to do the same with astronauts.