Powerful Private Rocket Crucial to ISS Set for Maiden April Blast Off from Virginia – Launch Pad Gallery

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The first stage of the privately developed Antares rocket stands erect at newly constructed Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for mid-April 2013. Later operational flights are critical to resupply the ISS.
Credit: Ken Kremer (kenkremer.com)
See Antares photo gallery below[/caption]

The most powerful rocket ever to ascend near major American East Coast population centers is slated to blast off soon from the eastern Virginia shore on its inaugural test flight in mid April.

And Universe Today took an exclusive inspection tour around the privately developed Antares rocket and NASA Wallops Island launch complex just days ago.

NASA announced that the maiden flight of the commercial Antares rocket from Orbital Sciences is slated to soar to space between April 16 to 18 from the newly constructed seaside launch pad dubbed 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

The two stage Antares rocket is absolutely pivotal to NASA’s plans to ship essential cargo to the International Space Station (ISS) in the wake of the shutdown of the Space Shuttle program in July 2011.

No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager! Credit: Ken Kremer (kenkremer.com)
No admittance to the Orbital Sciences Corp. Antares rocket without permission from the pad manager. Credit: Ken Kremer (kenkremer.com)

Antares stands 131 feet tall and serves as the launcher for the unmanned commercial Cygnus cargo spacecraft.

Both Antares and Cygnus were developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle’s. The goal is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

I visited NASA Wallops for an up close personal tour of the impressive Antares 1st stage rocket erected at the launch pad following the successful 29 second hot fire engine test that cleared the last hurdle to approve the maiden flight of Antares. Umbilical lines were still connected to the rocket.

Antares rocket 1st stage and umbilicals at NASA Wallops Flight Facility.  Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and umbilical lines at NASA Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

The pads protective seawall was rebuilt following significant damage from Hurricane Sandy, NASA Wallops spokesman Keith Koehler told me.

Launch Complex 0-A sits just a few hundred yards (meters) from Virginia’s eastern shore line on the Atlantic Ocean. It’s hard to believe just how close the low lying pad complex is to the beach and potentially destructive tidal surges.

Barely 400 meters (1300 feet) away lies the adjacent Launch Pad 0-B – from which Orbital’s new and unflown solid fueled Minotaur 5 rocket will boost NASA’s LADEE lunar science probe to the Moon in August 2013 – see my upcoming article.

The maiden Antares test flight is called the A-One Test Launch Mission. It will validate the medium class rocket for the actual follow-on flights to the ISS topped with the Cygnus cargo carrier starting later this year with a demonstration docking mission to the orbiting lab complex.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
1st stage of private Antares rocket erect at new Launch Pad 0-A at NASA’s Wallops Flight Facility. This rocket will be rolled back to the hanger to make way for the complete Antares booster due to blast off in mid-April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The launch window opens at 3 p.m. and extends for a period of time since this initial test flight is not docking at the ISS, Orbital spokesman Barry Boneski told Universe Today.

Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares A-One will fly on a southeast trajectory and the Cygnus dummy will be instrumented to collect flight and payload data.

The simulated Cygnus will separate from the upper stage 10 minutes after liftoff for orbital insertion.

“All launches are to the south away from population centers. Wildlife areas are nearby,” said Koehler.

The goal of the ambitious A-One mission is to fully demonstrate every aspect of the operational Antares rocket system starting from rollout of the rocket and all required functions of an operational pad from range operation to fueling to liftoff to payload delivery to orbit.

Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). Credit: Ken Kremer (kenkremer.com)
Orbital Sciences Antares rocket and Launch Complex 0-A at the edge of Virginia’s shore at NASA Wallops are crucial to resupply the International Space Station (ISS). . Credit: Ken Kremer (kenkremer.com)

Antares/Cygnus will provide a cargo up mass service similar to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked three times to the ISS during historic linkups in 2012 and earlier this month following the tension filled March 1 liftoff of the SpaceX CRS-2 mission.

The Dragon is still docked to the ISS and is due to make a parachute assisted return to Earth on March 26.

The first stage of the privately developed Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)
Antares rocket 1st stage and huge water tower at NASA’s Wallops Flight Facility. Credit: Ken Kremer (kenkremer.com)

Orbital has eight commercial resupply missions manifested under a $1.9 Billion contact with NASA to deliver approximately 20,000 kilograms of supplies and equipment to the ISS, Orbital spokesman Barry Boneski told me.

Tens of millions of American East Coast residents in the Mid-Atlantic and Northeast regions have never before had the opportunity to witness anything as powerful as an Antares rocket launch in their neighborhood.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
NASA Wallops Launch Control Center. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore.  Only a few hundred feet separate the pad from the Atlantic Ocean. Credit: Ken Kremer (kenkremer.com)
Ken Kremer & Antares rocket at NASA Wallops launch pad at the Virginia Eastern Shore. Only a few hundred feet of beach sand and a low sea wall separate the pad from the Atlantic Ocean and Mother Nature. Credit: Ken Kremer (kenkremer.com)

SpaceX Grasshopper Takes a Leap Into a ‘Ring of Fire’

The SpaceX Grasshopper during its test flight on March 7, 2013. Credit: SpaceX.

Last week, SpaceX’s Grasshopper took its highest leap ever, doubling its past flights. On March 7, 2013, the vertical and takeoff and landing (VTVL) vehicle, rose 24 stories or 80.1 meters (262.8 feet), hovered for approximately 34 seconds and then landed safely – and more accurately than ever before. The goal of Grasshopper is to eventually create a reusable first stage for SpaceX’s Falcon 9 rocket, which would be able to land safely instead of falling back into the ocean and not being usable again.

SpaceX CEO Elon Musk revealed this video this weekend during the South by Southwest (SXSW) festival in Austin, Texas, calling the Grasshopper’s flight a “Johnny Cash Hover Slam,” since the video includes Cash’s iconic song, “Ring of Fire.” A cowboy dummy was strapped to the side of the rocket for good measure (and perhaps good luck, since the previous test fight included the cowboy).

The test was completed at SpaceX’s rocket development facility in McGregor, Texas.

This is Grasshopper’s fourth in a series of test flights, with each test demonstrating exponential increases in altitude. Last September, Grasshopper flew to 2.5 meters (8.2 feet), in November, it flew to 5.4 meters (17.7 feet) and in December, it flew to 40 meters (131 feet).

Grasshopper stands 10 stories tall and consists of a Falcon 9 rocket first stage tank, Merlin 1D engine, four steel and aluminum landing legs with hydraulic dampers, and a steel support structure.

Feel the Power of a Mighty Falcon 9 Blast Off Creaming Cameras

Remote cameras set up for Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com

Video: Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Mike Barrett/Wired4Space.com

Have you ever wondered what it would be like to be standing at the base of a launch pad when a powerful rocket ignites for the heavens?

It’s a question I get from many kids and adults.

So check out the fabulous video from my friends Mike Barrett and Jeff Seibert- and feel the power of the mighty SpaceX Falcon 9 which just rocketed to space on March 1 from Space Launch Complex 40 on Cape Canaveral Air Force Station, Florida.

Mike and Jeff set up a series of video recorders distributed around the Falcon 9 Launch Pad – for a ‘You Are There’ experience.

Well although you’d enjoy the awesome view for a split second, the deafening sound and fury would certainly drive you mad, and then leave you dead or vegetabilized and wishing you were dead.

The cameras get creamed in seconds with mud, soot and ash.

How is this view possible?

Those of us media folks lucky enough to cover rocket launches, usually get to visit around the pad the night before to view the behemoths up close – after they are rolled out and unveiled for liftoff.

We also have the opportunity to set up what’s called “remote cameras” spaced around the pad that take exquisite images and videos from just dozens of yards (meters) away – instead of from ‘safe’ distance a few miles (km) away.

The cameras can be triggered by sound or timers to capture up close sounds and sights we humans can’t survive.

After a shaky start, the SpaceX Dragon cargo resupply capsule launched atop the Falcon 9 safely docked at the International Space Station on Sunday, March 3.

The SpaceX CRS-3 flight is slated to blast off sometime during Fall 2013

Maybe we’ll see you there !

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building.  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
SpaceX Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission - posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission – posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Rocket exhaust blasts out of the concrete Flame Trench at right. Credit: Ken Kremer/www.kenkremer.com

Image Gallery: Astronauts Capture a Dragon

The SpaceX Dragon capsule is snared by the International Space Station's Canadarm 2. Credit: NASA

Sunday was a big day in space, and astronaut Chris Hadfield captured the excitement in photos, and shared them via Twitter. “What a day!” Hadfield tweeted. “Reached & grabbed a Dragon, berthed her to Station & opened the hatch to find fresh fruit, notes from friends, and peanut butter.”

SpaceX’s Dragon spacecraft overcame a problem with its thrusters after reaching orbit on Friday, and on Sunday Dragon successfully approached the Station, where it was captured by Expedition 34 Commander Kevin Ford and crewmate Tom Marshburn using the station’s Canadarm2 robotic arm. Dragon was grappled at 5:31 a.m. EST, and was berthed to the Earth-facing port of the Harmony module at approximately 8:56 a.m. EST on March 3.

See more photos below. The image captions are Hadfield’s Tweets.

'Dragon comes into view - first sight this morning, sneaking up on us from behind the Progress solar array,' Tweeted Chris Hadfied. Credit: NASA/Chris Hadfield.
‘Dragon comes into view – first sight this morning, sneaking up on us from behind the Progress solar array,’ tweeted Chris Hadfied. Credit: NASA/Chris Hadfield.
'The Dragon spaceship high over Mount Etna - both spitting fire.' Credit: NASA/Chris Hadfield.
‘The Dragon spaceship high over Mount Etna – both spitting fire.’ Credit: NASA/Chris Hadfield.
The Dragon approaches the ISS over sub-Saharan Africa. Credit: NASA/Chris Hadfield.
The Dragon approaches the ISS over sub-Saharan Africa. Credit: NASA/Chris Hadfield.
Hadfield's self-portrait in the Cupola with rising Dragon below, Africa behind. Credit: NASA/Chris Hadfield.
Hadfield’s self-portrait in the Cupola with rising Dragon below, Africa behind. Credit: NASA/Chris Hadfield.
'Like a Praying Mantis, Canadarm2 poised to reach out and grab Dragon.' Credit: NASA/Chris Hadfield.
‘Like a Praying Mantis, Canadarm2 poised to reach out and grab Dragon.’ Credit: NASA/Chris Hadfield.
'Success! Canadarm2 holds Dragon by the nose, to drag it up and hook it on to a Station hatch.' Credit: NASA/Chris Hadfield.
‘Success! Canadarm2 holds Dragon by the nose, to drag it up and hook it on to a Station hatch.’ Credit: NASA/Chris Hadfield.
'Happy crewmember - Dragon securely snared by Canadarm2, ready to be lifted around, hooked into place, and opened up.' Credit: NASA/Chris Hadfield.
‘Happy crewmember – Dragon securely snared by Canadarm2, ready to be lifted around, hooked into place, and opened up.’ Credit: NASA/Chris Hadfield.

In this video, Hadfield provides a tour of the Robotic Workstation where the crew commanded Canadarm2 to capture and dock the Dragon:

Berth of a Dragon after Thruster Failure Recovery Establishes American Lifeline to ISS

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Kennedy Space Center – After overcoming a frightening thruster failure that could have spelled rapid doom on the heels of a breathtakingly beautiful launch, the privately developed Dragon spacecraft successfully berthed at the International Space Station (ISS) a short while ago, at 8:56 a.m. EST Sunday morning, March 3, 2013 – thereby establishing an indispensable American Lifeline to the massive orbiting lab complex.

Hearts sank and hopes rose in the span of a few troubling hours following Friday’s (Mar. 1) flawless launch of the Dragon cargo resupply capsule atop the 15 story tall Falcon 9 rocket from Cape Canaveral Air Force Station, Florida and the initial failure of the life giving solar arrays to deploy and failure of the maneuvering thrusters to fire.

“Congrats to the @NASA/@SpaceX team. Great work getting #Dragon to the #ISS…our foothold for future exploration!” tweeted NASA Deputy Administrator Lori Garver.

Space station Expedition 34 crew members Kevin Ford and Tom Marshburn of NASA used the station’s 58 foot long Canadian supplied robotic arm to successfully grapple and capture Dragon at 5:31 a.m. Sunday as the station was flying 253 miles above northern Ukraine. See the grappling video – here.

SpaceX Dragon holding at 10m capture point. ISS crew standing by for "go" to perform grapple. Credit: NASA
SpaceX Dragon holding at 10m capture point. ISS crew standing by for “go” to perform grapple. Credit: NASA

“The vehicle’s beautiful, space is beautiful, and the Canadarm2 is beautiful too”, said station commander Kevin Ford during the operation.

The capsule pluck from free space came one day, 19 hours and 22 minutes after the mission’s launch.

Ground controllers at NASA’s Johnson Space Center in Houston then commanded the arm to install Dragon onto the Earth-facing port of the Harmony module – see schematic.

Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA
Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA

Originally, Dragon capture was slated only about 20 hours after launch. But that all went out the window following the serious post-launch anomalies that sent SpaceX engineers desperately scrambling to save the flight from a catastrophic finale.

The $133 million mission dubbed CRS-2 is only the 2nd contracted commercial resupply mission ever to berth at the ISS under NASA’s Commercial Resupply Services (CRS) contract. The contract is worth $1.6 Billion for at least a dozen resupply flights.

Following the forced retirement of NASA’s space shuttle orbiters in July 2011, American was left with zero capability to launch either cargo or astronauts to the primarily American ISS. NASA astronauts are 100% reliant on Russian Soyuz capsules for launch to the ISS.

Both the Falcon 9 rocket and Dragon spacecraft were designed and built by SpaceX Corporation based in Hawthorne, Calif., and are entirely American built.

The Falcon 9/Dragon commercial system restores America’s unmanned cargo resupply capability. But the time gap will be at least 3 to 5 years before American’s can again launch to the ISS aboard American rockets from American soil.

And continuing, relentless cuts to NASA’s budget are significantly increasing that human spaceflight gap and consequently forces more payments to Russia.

“Today we marked another milestone in our aggressive efforts to make sure American companies are launching resupply missions from U.S. shores,” said NASA Admisistrator Charles Bolden in a NASA statement.

“Our NASA-SpaceX team completed another successful berthing of the SpaceX Dragon cargo module to the International Space Station (ISS) following its near flawless launch on the Falcon-9 booster out of Cape Canaveral, Florida Friday morning. Launching rockets is difficult, and while the team faced some technical challenges after Dragon separation from the launch vehicle, they called upon their thorough knowledge of their systems to successfully troubleshoot and fully recover all vehicle capabilities. Dragon is now once again safely berthed to the station.”

“I was pleased to watch the launch from SpaceX’s facility in Hawthorne, CA, and I want to congratulate the SpaceX and NASA teams, who are working side by side to ensure America continues to lead the world in space.”

“Unfortunately, all of this progress could be jeopardized with the sequestration ordered by law to be signed by the President Friday evening. The sequester could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, hold up development of new space technologies, and jeopardize our space-based, Earth observing capabilities,” said Bolden.

ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013.  Credit: NASA
ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013. Credit: NASA

Dragon is loaded with about 1,268 pounds (575 kilograms) of vital supplies and provisions to support the ongoing science research by the resident six man crew, including more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and clothing.

NASA says that despite the one-day docking delay, the Dragon unberthing will still be the same day as originally planned on March 25 – followed by a parachute assisted splashdown in the Pacific Ocean off the coast of Baja California.

Dragon will spend 22 days docked to the ISS. The station crew will soon open the hatch and unload all the up mass cargo and research supplies. Then they will pack the Dragon with about 2,668 pounds (1,210 kilograms) of science samples from human research, biology and biotechnology studies, physical science investigations, and education activities for return to Earth.

Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013.  Credit:
Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013. Credit:

Dragon is the only spacecraft in the world today capable of returning significant amounts of cargo to Earth.

Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule.

NASA hopes the first Antares/Cygnus demonstration test flight from NASA’s Wallops Island Facility in Virginia will follow in April. Cygnus cargo transport is one way – to orbit only.

“SpaceX is proud to execute this important work for NASA, and we’re thrilled to bring this capability back to the United States,” said Gwynne Shotwell, President of SpaceX.

“Today’s launch continues SpaceX’s long-term partnership with NASA to provide reliable, safe transport of cargo to and from the station, enabling beneficial research and advancements in technology and research.”

The SpaceX CRS-3 flight is slated to blast off in September 2013.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

Video: Dragon Grappled and Berthed at Space Station

The Dragon approaches the ISS over sub-Saharan Africa. Credit: NASA/Chris Hadfield.

SpaceX’s Dragon spacecraft has arrived at the International Space Station! After overcoming a problem with its thrusters after reaching orbit on on Friday, today, Dragon successfully approached the Station, where it was captured by Expedition 34 Commander Kevin Ford and crewmate Tom Marshburn using the station’s Canadarm2 robotic arm. Dragon was grappled at 5:31 a.m. EST, and was berthed to the Earth-facing port of the Harmony module at approximately 8:56 a.m. EST on March 3.

Below, Canadian astronaut Chris Hadfield snapped a photo of Dragon as it approached the station over sub-Saharan Africa. “A surreal juxtaposition,” Hadfied said via Twitter.

SpaceX Dragon Recovers from Frightening Propulsion System Failure – Sunday Docking Set

Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert

Kennedy Space Center – Barely 11 minutes after the spectacular Friday morning, March 1 launch of the SpaceX Falcon 9 rocket and unmanned Dragon capsule bound for the International Space Station (ISS), absolute glee suddenly threatened to turn to total gloom when the mission suffered an unexpected failure in the critical propulsion system required to propel the Dragon to the Earth orbiting outpost.

An alarming issue with the Dragons thrust pods prevented three out of four from initializing and firing.

For several hours the outlook for the $133 million mission appeared dire, but gradually began to improve a few hours after launch.

“It was a little frightening,” said SpaceX CEO Elon Musk at a Friday afternoon media briefing for reporters gathered at the Kennedy Space Center, commenting on the moments after the glitch appeared out of nowhere.

“We noticed after separation that only one of the four thruster pods engaged or was ready to engage,” Musk explained. “And then we saw that the oxidizer pressure in three of the four tanks was low.”

Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert
Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Wired4Space.com

The situation progressed onto the road to recovery after SpaceX engineers immediately sprang into action and frantically worked to troubleshoot the thruster problems in an urgent bid to try and bring the crucial propulsion systems back on line and revive the mission.

By late Saturday afternoon sufficient recovery work had been accomplished to warrant NASA, ISS and SpaceX managers to give the go-ahead for the Dragon to rendezvous with the station early Sunday morning, March 3.

“The station’s Mission Management Team unanimously agreed that Dragon’s propulsion system is operating normally along with its other systems and ready to support the rendezvous two days after Friday’s launch on a Falcon 9 rocket from the Cape Canaveral Air Force Station in Florida,” NASA announced in a statement on Saturday, March 2.

A failure to ignite the thrusters within 1 or 2 days would have resulted in unacceptable orbital decay and a quick and unplanned fiery reentry into the earth’s atmosphere, said Musk.

Reentry would cause a total loss of the mission – carrying more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and provisions to orbit for the stations six man crew.

Shortly after the Dragon achieved orbit and separated from the second stage, the solar arrays failed to deploy and the live webcast stopped prematurely.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

During the course of the Friday afternoon briefing, Musk and NASA officials received continuous updates indicating the situating was changing and slowly improving.

Musk confirmed that SpaceX was able to bring all four of Dragon’s thruster pods back up and running. Engineers were able to identify and correct the issue, normalizing the pressure in the oxidation tanks.

The problem may have been caused by stuck valves or frozen oxidizer in the lines. Dragon has four oxidizer tanks and four fuel tanks.

“We think there may have been a blockage of some kind or stuck check valves going from the helium pressure tank to the oxidizer tank,” Musk hypothesized. “Whatever that blockage is seems to have alleviated.”

Three of the four thruster pods must be active before the Dragon would be permitted to dock, said Mike Suffredini, NASA program manager for the ISS. There are a total of 18 Draco thrusters.

SpaceX and the ISS partners conducted a thorough review process to assure that the thrusters will work as advertised and allow the Dragon to safely enter the stations keep out zone and physically dock at the berthing port onto the Earth-facing port of the Harmony module.

“SpaceX said it has high confidence there will be no repeat of the thruster problem during rendezvous, including its capability to perform an abort, should that be required,” NASA said in a statement.

Dragon is now slated to be grappled early Sunday morning at 6:31 a.m. by NASA Expedition 34 Commander Kevin Ford and NASA Flight Engineer Tom Marshburn – that’s one day past the originally planned Saturday morning docking.


Video: Falcon 9 SpaceX CRS-2 launch on March 1, 2013 bound for the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Matthew Travis/Spacearium

NASA says that despite the one-day docking delay, the Dragon unberthing and parachute assisted return to Earth will still be the same day as originally planned on March 25.

There are numerous docking opportunities available in the coming days if SpaceX and NASA determined that more time was needed to gain confidence that Dragon could safely carry out an attempt.

Musk said the Dragon could stay on orbit for several additional months if needed.

We have to review the data with NASA before docking to make sure it’s safe, Musk emphasized on Friday.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013.  Credit: Mike Killian/www.zerognews.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Mike Killian/www.zerognews.com

The mission dubbed CRS-2 will be only the 2nd commercial resupply mission ever to berth at the ISS. SpaceX is under contract to NASA to conduct a dozen Dragon resupply flight to the ISS over the next few years at a cost of about $1.6 Billion.

NASA TV coverage of rendezvous and grapple on Sunday, March 3 will begin at 3:30 a.m. EST. Coverage of berthing operations on NASA TV will begin at 8 a.m.

SpaceX’s live coverage at http://www.spacex.com/webcast begins at 6:00 a.m. Eastern.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013.  Credit: Mike Killian/www.zerognews.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Mike Killian/www.zerognews.com

Dragon Launches Successfully, But Suffers Anomaly After Reaching Orbit

Dragon launches on the SpaceX Falcon 9 on March 1, 2013. Credit: John O'Connor/nasatech

Just after 10 am Eastern time, the SpaceX successfully launched their Dragon capsule on a second resupply mission to the International Space Station. The launch, rocket stage and spacecraft separations went perfectly, but the Dragon experienced an anomaly at about the time the solar arrays should have deployed. The SpaceX webcast announced that the spacecraft experienced a problem and then ended the webcast. NASA TV has not offered information either. We’ll provide more information as soon it becomes available.

Update: (10:44 EST) Elon Musk, SpaceX CEO just tweeted: “Issue with Dragon thruster pods. System inhibiting 3 of 4 from initializing. About to inhibit override.” Then minutes later he added, “Holding on solar array deployment until at least two thruster pods are active.”

See below for a continuation of our live-blogging of the Dragon anomaly, as it happened..

Also, here’s the launch video from launch to separation (note, the separation video is spectacular!):

Dragon carries 18 Draco thrusters for attitude control and maneuvering, so there may be an issue with those. Dragon’s thruster problem may be preventing the spacecraft from going into array deploy attitude, thus preventing array deploy.

Only time will tell if this is a software or hardware problem. The SpaceX press kit describes what needs to happen for solar array deploy:

Dragon separates from Falcon 9’s second stage, and seconds later, Dragon will reach its preliminary orbit. It then deploys its solar arrays and begins a carefully choreographed series of Draco thruster firings to reach the space station.

If Dragon can’t make it to the ISS, then it would need to be decided if and how it can return back to Earth on a good trajectory with limited thruster control.

The SpaceX controllers are obviously working to try and resolve the problem.

Update: 11:10 EST An update from NASA TV at about 11:10 am, said that part of response to problem with Dragon may be reorganizing the burn sequences in order for the spacecraft to be able to approach to the ISS. Musk just tweeted: “About to pass over Australia ground station and command inhibit override.”

Update: 11:25 EST: A statement from SpaceX says that “One thruster pod is running. Two are preferred to take the next step which is to deploy the solar arrays. We are working to bring up the other two in order to plan the next series of burns to get to station.”

Update: 11:42 EST: Elon Musk just tweeted: “Thruster pod 3 tank pressure trending positive. Preparing to deploy solar arrays.” That is good news.

Update: 11:50 EST: Another Tweet from Musk, with some short but sweet news: “Solar array deployment successful” That means they were abe to get at least two of the four thruster pods working, per the minimum requirement. Now, to see if the thruster problem causes any issues with getting to the ISS.

Update: 12:05 EST: Elon Musk continues to be the best source of info. He’s just tweeted, “Attempting bring up of thruster pods 2 and 4.”
We’re assuming that means 1 and 3 are already working, since it was going to take at least 2 pods thrusting to enable solar array deploy.

Update: 12:14 EST: The latest statement from SpaceX : “After Dragon achieved orbit, the spacecraft experienced an issue with a propellant valve. One thruster pod is running. We are trying to bring up the remaining three. We did go ahead and get the solar arrays deployed. Once we get at least 2 pods running, we will begin a series of burns to get to station.”

So, they were able to deploy the arrays with just one thruster pod working, and they are now working to get at least one more working. One question to consider is if the spacecraft and arrays were able to be in the right position to gather sunlight and produce power.

Update: 12:42 EST: According to reports on Twitter, a NASA official has said that three Dragon thruster pods are needed to fly to the ISS, and at this point, only one pod is working.

SpaceX CRS-2 Launch on March 1, 2013. Credit: John O'Connor/nasatech
SpaceX CRS-2 Launch on March 1, 2013. Credit: John O’Connor/nasatech

Update: 2:00 EST: This update from SpaceX: “SpaceX is still working through issues in Dragon’s propulsion system. The mission’s first rendezvous burn was delayed at least one orbit to about 2 p.m. EST.” (which is now)….stay tuned for updates. There will be a press conference sometime today, NASA has said, but has not yet set a specific time.

Update: 2:28 EST: NASA says the Dragon capsule Dragon will no longer be able to make its scheduled rendezvous with the station tomorrow. SpaceX indicated the rendezvous with the ISS will now not happen until at least Sunday morning. There will be a news briefing at 3pm EST.

Communication between the ISS crew and mission control confirms the delay for the rendezvous: “They are making progress recovering their prop system, but it’s not going to be in time to support the rendezvous and capture for tomorrow,” NASA’s spacecraft communicator told the crew. “So that is not going to happen tomorrow.”

“OK, copy, sounds like another off-duty day for us,” said ISS commander Kevin Ford. “We don’t wish that. We wish it gets fixed and gets up here to us. That’s really awesome they’re working their way through the problems. That’s what it’s all about.”

Update: 2:58 EST: Latest Tweet from Elon Musk has good news: “Pods 1 and 4 now online and thrusters engaged. Dragon transitioned from free drift to active control. Yes!!”

Update: 4:11 EST: Here’s a brief synopsis of the press briefing:

During the press conference, Elon Musk indicated there was a blockage in the helium line leading to the oxidizer pressurization system, or perhaps a stuck valve, and the pressure was not high enough to turn on the thrusters. The engineering team cycled the valves several times, using pressure hammering to loosen up and debris that might be stuck in the valves. And now, the pressure is nominal, with all the oxidizer tanks holding the target pressure on all 4 pods, and so Musk said he is hopeful that all the thrusters will be able to work.

Musk said they decided to deploy Dragon arrays before two thrusters were online because the temperature of the array actuators was dropping rapidly. But they also deployed solar arrays partly to mitigate Dragon’s attitude rotation “like a skater extending arms during a spin,” he said.

Musk mentioned the batteries on board had 12-14 hours of life, so deploying the arrays early was not a question of running out of power, but making sure solar arrays didn’t get so cold that they couldn’t deploy later.

NASA’s Mike Suffredini said that at least 3 of the 4 pods have to be operational in order to make an approach to the ISS.

They will make a decision on when to make the rendezvous when they’ve ascertained if the thrusters are working.

Ken Kremer will provide a more detailed update later.

{End of live blogging}

Diagram of the Dragon capsule. Credit: SpaceX
Diagram of the Dragon capsule. Credit: SpaceX

The Dragon is carrying 544 kilograms (1,200 lbs) of scientific experiments and supplies to the space station, and docking was scheduled for Saturday at 6:30 a.m. ET (1100 GMT). That will likely change.

Dragon’s 18 Draco thrusters permit orbital maneuvering and attitude control. They are mounted on four pods: two of the pods contain five thrusters and the other two contain four thrusters. They are powered by nitrogen tetroxide/monomethylhydrazine, and the thrust is used to control the approach to the ISS, power departure from the ISS, and control Dragon’s attitude upon reentry.

As far as the solar arrays, each array is constructed of four panels. Each array measures 6.4 meters (21 feet). The arrays can draw up to 5,000 watts of power, which is about enough power to light about 85 light bulbs. For launch, the arrays are stowed in the unpressurized trunk of the Dragon and are covered by protective fairings. When the fairings jettison, the automated deployment of the arrays is triggered. On the way back to Earth the trunk is jettison and it, along with the arrays, burn up in the atmosphere.

If the arrays do not deploy, battery life on Dragon is only a few hours 12-14 hours, which would not be enough time to keep it alive until it would reach the ISS. It will be about 20 hours from launch until it approaches the ISS, if the mission continues on its scheduled timeline.

You may recall that during the previous mission to the ISS in October 2012 (the second flight to ISS, but first operational SpaceX resupply flight) one of the rocket’s first stage engines suffered an anomaly, where a combustion chamber ruptured. That engine was shut down, and the other engines fired longer to make up for it. The Dragon cargo made it to the correct orbit and continued on the ISS, but a satellite that was launched to orbit as a secondary payload by the Falcon 9 rocket was sent into the wrong orbit as a result of “a pre-imposed safety check required by NASA,” on October 7, and the ORBCOMM OG2 satellite later deorbited and fell back to Earth.

For this launch, all nine engines appeared to work nominally and all stages separated perfectly.

But obviously the SpaceX team saw the thruster problem immediately, as that’s when the webcast was ended.

SpaceX Commercial Rocket Poised for March 1 Blast Off to ISS

SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com

Kennedy Space Center – All systems are GO and the weather outlook looks spectacular for the March 1 blast off of the privately developed SpaceX Falcon 9 rocket to the International Space Station (ISS).

The Falcon 9 is slated to lift off at 10:10 AM EST with a Dragon capsule loaded with fresh supplies and science gear to continued full up operation and utilization of the ISS.

Right now the weather forecast is at 80% GO on March 1 – with superbly beautiful, clear blue skies here in sunny and comfortably warm Florida from Space Launch Complex 40 at Cape Canaveral Air Force Station.

Large crowds of eager tourists, sightseers and space enthusiasts are already gathering in local hotels – most are sold out including at my hotel where I have been holding well attended ISS star parties during excellent evening viewing opportunities this week.

NASA TV will provide live launch coverage starting at 8 30 AM. SpaceX will also provide a separate feed starting about 40 minutes prior to launch.

The two stage Falcon 9 rocket was rolled out horizontally to the pad late this afternoon (Thursday, Feb. 28) in anticipation of a Friday morning launch. Myself and Dave Dickinson are on-site for Universe Today

The mission dubbed CRS-2 will be only the 2nd commercial resupply mission ever to the ISS.

There are no technical concerns at this time. Saturday March 2 is the back-up launch date in case of a last second scrub. Weather is projected as 80% favorable.

SpaceX President Gwynne Shotwell and NASA officials told me that additional launch opportunities are available Sunday, Monday and Tuesday, if needed, and later until about March 11. After that, the launch team would have to stand down to make way for the next eventual departure of a docked Soyuz and launch of a manned Russian Soyuz capsule with a new three man crew.

SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station.  Credit: Ken Kremer
SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. Credit: Ken Kremer

The SpaceX Dragon capsule is carrying about 1,200 pounds of vital supplies and research experiments for the six man international crew living aboard the million pound orbiting outpost.

SpaceX is under contract to NASA to deliver over 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

The capsule is fully loaded Shotwell told me. An upgraded Falcon 9 will be used in the next launch that will allow for a significant increase in the cargo up mass, Shotwell elaborated.

The Dragon is due to dock with the ISS in record time some 20 hours after blast off.

Ken Kremer

Spotting the Dragon: How to See SpaceX on Approach to the ISS This Weekend

Capture of the Dragon during the October 2012 CRS-1 mission. (Credit: NASA/ISS).

SpaceX’s Dragon spacecraft may be appearing in a backyard sky near you this weekend. Scheduled to launch this Friday on March 1st at 10:10 AM Eastern Standard Time (EST)/15:10 Universal Time (UT), this will be the 3rd resupply flight for the Dragon spacecraft to the International Space Station (ISS).  And the great news is, you may just be able to catch the spacecraft as it chases down the ISS worldwide.

The Space Shuttle and the ISS captured by the author as seen from Northern Maine shortly after undocking in June, 2007. 

Catching a satellite in low Earth orbit is an unforgettable sight. Satellites appear as moving “stars” against the background sky, shining steadily (unless they’re tumbling!) in the sunlight overhead in the dawn or dusk sky. Occasionally, you may catch a flare in brightness as a reflective panel catches the sunlight just right. The Hubble Space Telescope and the Iridium constellation of satellites can flare in this fashion.

At 109 metres in size, the ISS is the largest object ever constructed in orbit and is easily visible to the naked eye. It has an angular diameter of about 50” when directly overhead (about the visual size of Saturn plus rings near opposition). I can just make out a tiny box-like structure with binoculars when it passes overhead. If the orientation of the station and its solar panels is just right, it looks like a tiny luminous Star Wars TIE fighter as viewed through binoculars!

Dragon in the processing hangar at Cape Canaveral. (Credit: NASA/Kim Shiflett).
Dragon in the processing hangar at Cape Canaveral. (Credit: NASA/Kim Shiflett).

But what’s even more amazing is to watch a spacecraft rendezvous with the ISS, as diligent observers may witness this weekend. Your best bet will be to use predictions for ISS passes from your location. Heavens-Above, CALSky and Space Weather all have simple trackers for sky watchers. More advanced observers may want to use an application known as Orbitron which allows you to manually load updated Two-Line Element sets (TLEs) from Celestrak or NORAD’s Space-Track website for use in the field sans Internet connection. Note that Space-Track requires permission to access; they welcome amateur sat-spotters and educators, but they also want to assure that no “rogue entities” are accessing the site! Continue reading “Spotting the Dragon: How to See SpaceX on Approach to the ISS This Weekend”