Canadarm Ready to Ensnare Space Dragon after March 1 Blast Off

Canadarm pictured through a winow aboard the ISS will be used to grapple the SpaceX Dragon after planned March 1 liftoff. Credit: NASA/Thomas Mashburn

Wouldn’t you love to wake up to this gorgeous view of our home planet as a big hand waves a friendly good morning ?!

Well, having survived high speed wayward Asteroids and Meteors these past few days, the human crew circling Earth aboard the International Space Station (ISS) is game to snatch a flying Space Dragon before too long.

NASA will dispatch astronaut fun to orbit in the form of the privately built SpaceX Dragon in a tad less than two weeks time that the crew will ensnare with that robotic hand from Canada and join to the ISS.

On March 1 at 10:10 AM EST, a Space Exploration Technologies (SpaceX) Falcon 9 rocket is slated to blast off topped by the Dragon cargo vehicle on what will be only the 2nd commercial resupply mission ever to the ISS.

The flight, dubbed CRS-2, will lift off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying about 1,200 pounds of vital supplies and science experiments for the six man international crew living aboard the million pound orbiting outpost.

SpaceX, Dragon spacecraft stands inside a processing hangar at Cape Canaveral Air Force Station in Florida. Teams had just installed the spacecraft's solar array fairings. Credit: NASA/Kim Shiflett
SpaceX Dragon spacecraft stands inside processing hangar at Cape Canaveral Air Force Station in Florida. Teams had just installed the spacecraft’s solar array fairings. Credit: NASA/Kim Shiflett

The ISS would plummet from the sky like a flaming, exploding meteor and disintegrate without periodic and critical cargo and fueling resupply flights from the ISS partner nations.

There will be some heightened anticipation for the March 1 SpaceX launch following the premature shutdown of a 1st stage Merlin engine during the last Falcon 9 launch in 2012.

The solar powered Dragon capsule will rendezvous with the ISS a day later on March 2, when NASA astronauts Kevin Ford and Tom Marshburn will reach out with the Canadian built robotic marvel, grab the Dragon by the proverbial “tail” and attach it to the Earth-facing port of the station’s Harmony module.

The Dragon will remain docked to the ISS for about three weeks while the crew unloads all manner of supplies including food, water, clothing, spare parts and gear and new science experiments.

Then the astronauts will replace all that cargo load with numerous critical experiment samples they have stored during ongoing research activities, as well as no longer needed equipment and trash totaling about 2300 pounds, for the return trip to Earth and a Pacific Ocean splashdown set for March 25 – as things stand now.

SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com
SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com

SpaceX is under contract to NASA to deliver about 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

SpaceX comprises one half of NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

SpaceX also won a NASA contract to develop a manned version of the Dragon capsule and aims for the first crewed test flight in about 2 to 3 years – sometime during 2015 depending on the funding available from NASA.

The US is now totally dependent on the Russians to loft American astronauts to the ISS on their Soyuz capsules for at least the next 3 to 5 years directly as a result of the shuttle shutdown.

Along with SpaceX, Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver some 44,000 pounds of cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule – launching 8 times from a newly constructed pad at NASA’s Wallops Island Facility in Virginia.

The maiden launch of Orbital’s Antares/Cygnus system has repeatedly been delayed – like SpaceX before them.

NASA hopes the first Antares/Cygnus demonstration test flight will now occur in March or April. However, the Antares 1st stage hot fire test scheduled for earlier this week on Feb. 13 had to be aborted at the last second due to a technical glitch caused by a low nitrogen purge pressurization.

For the SpaceX launch, NASA has invited 50 lucky social media users to apply for credentials for the March 1 launch

Watch for my upcoming SpaceX launch reports from the Kennedy Space Center and SpaceX launch facilities.

Ken Kremer

Workers lift a solar array fairing prior to installation on the company's Dragon spacecraft. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. Credit: NASA/Kim Shiflett
SpaceX technicians lift a solar array fairing prior to installation on the company’s Dragon spacecraft. The spacecraft will launch on the upcoming SpaceX CRS-2 mission. Credit: NASA/Kim Shiflett

Antares Rocket Critical Hotfire Engine Test Set for Feb. 12

Orbital Antares rocket at Wallops Island Pad. Credit: Orbital Sciences

Orbital Sciences Corporation has at last scheduled a critical engine test for the firm’s new commercially developed Antares medium class rocket for Feb. 12 at the Mid-Atlantic Regional Spaceport’s (MARS) Pad-0A.

NASA’s Wallops Flight Facility will provide launch range support for the Antares rocket test which is a key milestone on the path to a flight that is crucial for eventual resupply of the International Space Station (ISS).

The window for the 29 second long engine test is 6-9 p.m EST. There will be no live broadcast or formal viewing of the test since it is only operational in nature.

For this hot fire test only the first stage of the Antares rocket will be rolled out to the launch pad – the first of its kind constructed in America in several decades.

The first stage of the Antares rocket stands on the pad at NASA's Wallops Flight Facility. Credit: Orbital Sciences
The first stage of the Antares rocket stands on the pad at NASA’s Wallops Flight Facility. Credit: Orbital Sciences

During the test, the Antares’ dual AJ26 first stage rocket engines will generate a combined total thrust of 680,000 lbs. In a unique capability for its duration, the rocket will be held down on the pad and accounts for the huge water tower built nearby.

The goal of the hot fire test is a complete checkout of the rocket’s first stage and all the support systems at Pad-0A being utilized for the first time.

Antares is the launcher for Orbital’s unmanned commercial Cygnus cargo spacecraft that NASA’s hopes will further reestablish American resupply missions to the International Space Station (ISS) lost with the shuttle’s shutdown.

If successful, a full up test flight of the 131 foot tall Antares with a Cygnus mass simulator bolted on top is planned for the maiden launch in roughly 4 to 6 weeks later, perhaps by late March 2013.

Antares/Cygnus will provide a similar service to the Falcon 9/Dragon system developed by SpaceX Corporation – which has already docked twice to the ISS during historic linkups in 2012.

Both the Orbital and SpaceX systems were developed under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo capability previously tasked to NASA Space Shuttle’s.

A docking demonstration mission to the ISS would follow later in 2013 which would be nearly identical in scope to the SpaceX Falcon 9/Dragon demonstration flight successfully accomplished in May 2012.

SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station.  Orbital hopes to duplicate the SpaceX feat in 2013.  Credit: Ken Kremer
SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. Orbital hopes to duplicate the SpaceX feat in 2013. Credit: Ken Kremer

The Antares first stage is powered by a pair of Soviet era NK-33 engines built during the 1960 and 1970’s as part of Russia’s ill-fated N-1 manned moon program. The engines have since been upgraded and requalified by Aerojet Corp. and integrated into the Ukrainian built first stage rocket as AJ-26 engines.

Tens of millions of US East Coast residents in the Mid-Atlantic and Northeast regions have never seen anything as powerful as an Antares rocket launch in their neighborhood.

“Antares is the biggest rocket ever launched from Wallops,” NASA Wallops spokesman Keith Koehler told me.

Ken Kremer

Private Test Pilots to Fly 1st Commercial Crewed Space Flights for NASA

Dream Chaser from Sierra Nevada docks at ISS

[/caption]

Image Caption: Dream Chaser commercial crew vehicle built by Sierra Nevada Corp docks at ISS

Commercial test pilots, not NASA astronauts, will fly the first crewed missions that NASA hopes will at last restore America’s capability to blast humans to Earth orbit from American soil – perhaps as early as 2015 – which was totally lost following the forced shuttle shutdown.

At a news briefing this week, NASA managers at the Kennedy Space Center (KSC) said the agency is implementing a new way of doing business in human spaceflight and purposely wants private companies to assume the flight risk first with their crews before exposing NASA crews as a revolutionary new flight requirement. Both NASA and the companies strongly emphasized that there will be no shortcuts to flying safe.

A trio of American aerospace firms – Boeing, SpaceX and Sierra Nevada Corp – are leading the charge to develop and launch the new commercially built human-rated spacecraft that will launch Americans to LEO atop American rockets from American bases.

The goal is to ensure the nation has safe, reliable and affordable crew transportation systems for low-Earth orbit (LEO) and International Space Station (ISS) missions around the middle of this decade.

The test launch schedule hinges completely on scarce Federal dollars from NASA for which there is no guarantee in the current tough fiscal environment.

The three companies are working with NASA in a public-private partnership using a combination of NASA seed money and company funds. Each company was awarded contracts under NASA’s Commercial Crew Integrated Capability Initiative, or CCiCap, program, the third in a series of contracts aimed at kick starting the development of the so-called private sector ‘space taxis’ to fly astronauts to and from the ISS.

MTF10-0014-01

Caption: Boeing CST-100 crew vehicle docks at the ISS

The combined value of NASA’s Phase 1 CCiCap contracts is about $1.1 Billion and runs through March 2014 said Ed Mango, NASA’s Commercial Crew Program manager. Phase 2 contract awards will follow and eventually lead to the actual flight units after a down selection to one or more of the companies, depending on NASA’s approved budget.

Since the premature retirement of NASA’s shuttle fleet in 2011, US astronauts have been 100% reliant on the Russians to hitch a ride to the ISS – at a price tag of over $60 Million per seat. This is taking place while American aerospace workers sit on the unemployment line and American expertise and billions of dollars of hi-tech space hardware rots away or sits idly by with each passing day.

Boeing, SpaceX and Sierra Nevada Corp seek to go where no private company has gone before – to low Earth orbit with their private sector manned spacecraft. And representatives from all three told reporters they are all eager to move forward.

All three commercial vehicles – the Boeing CST-100; SpaceX Dragon and Sierra Nevada Dream Chaser – are designed to carry a crew of up to 7 astronauts and remain docked at the ISS for more than 6 months.

“For well over a year now, since Atlantis [flew the last space shuttle mission], the United States of America no longer has the capability to launch people into space. And that’s something that we are not happy about,” said Garrett Reisman, a former space shuttle astronaut who is now the SpaceX Commercial Crew project manager leading their development effort. “We’re very proud to be part of the group that’s going to do something about that and get Americans back into space.”

IMG_3754a_SpaceX launch May 22 2012_Ken Kremer

Caption: Blastoff of SpaceX Cargo Dragon atop Falcon 9 from Cape Canaveral, Florida on May, 22, 2012, bound for the ISS. Credit: Ken Kremer

“We are the emotional successors to the shuttle,” said Mark Sirangelo, Sierra Nevada Corp. vice president and SNC Space Systems chairman. “Our target was to repatriate that industry back to the United States, and that’s what we’re doing.”

Sierra Nevada is developing the winged Dream Chaser, a mini-shuttle that launches atop an Atlas V rocket and lands on a runway like the shuttle. Boeing and SpaceX are building capsules that will launch atop Atlas V and Falcon 9 rockets, respectively, and then land by parachute like the Russian Soyuz capsule.

SpaceX appears to be leading the pack using a man-rated version of their Dragon capsule which has already docked twice to the ISS on critical cargo delivery missions during 2012. From the start, the SpaceX Dragon was built to meet the specification ratings requirements for a human crew.

DragonApproachesStation_640

Caption: Dragon spacecraft approaches the International Space Station on May 25, 2012 for grapple and berthing . Photo: NASA

Reisman said the first manned Dragon test flight with SpaceX test pilots could be launched in mid 2015. A flight to the ISS could take place by late 2015. Leading up to that in April 2014, SpaceX is planning to carry out an unmanned in-flight abort test to simulate and test a worst case scenario “at the worst possible moment.”

Boeing is aiming for an initial three day orbital test flight of their CST-100 capsule during 2016, said John Mulholland, the Boeing Commercial Programs Space Exploration vice president and program manager. Mulholland added that Chris Ferguson, the commander of the final shuttle flight by Atlantis, is leading the flight test effort.

Boeing has leased one of NASA’s Orbiter Processing Facility hangers (OPF-3) at KSC. Mulholland told me that Boeing will ‘cut metal’ soon. “Our first piece of flight design hardware will be delivered to KSC and OPF-3 within 5 months.”

IMG_9198a_Boeing CST_Ken Kremer

Caption: Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer

Sierra Nevada plans to start atmospheric drop tests of an engineering test article of the Dream Chaser from a carrier aircraft in the next few months in an autonomous mode. The test article is a full sized vehicle.

“It’s not outfitted for orbital flight; it is outfitted for atmospheric flight tests,” Sirangelo told me. “The best analogy is it’s very similar to what NASA did in the shuttle program with the Enterprise, creating a vehicle that would allow it to do significant flights whose design then would filter into the final vehicle for orbital flight.”

Now to the issue of using commercial space test pilots in place of NASA astronauts on the initial test flights.

At the briefing, Reisman stated, “We were told that because this would be part of the development and prior to final certification that we were not allowed, legally, to use NASA astronauts to be part of that test pilot crew.”

So I asked NASA’s Ed Mango, “Why are NASA astronauts not allowed on the initial commercial test flights?”

Mango replied that NASA wants to implement the model adopted by the military wherein the commercial company assumes the initial risk before handing the airplanes to the government.

“We would like them to get to a point where they’re ready to put their crew on their vehicle at their risk,” said Mango. “And so it changes the dynamic a little bit. Normally under a contract, the contractor comes forward and says he’s ready to go fly but it’s a NASA individual that’s going to sit on the rocket, so it becomes a NASA risk.

“What we did is we flipped it around under iCAP. It’s not what we’re going to do long term under phase two, but we flipped it around under iCAP and said we want to know when you’re ready to fly your crew and put your people at risk. And that then becomes something that we’re able to evaluate.”

“In the end all our partners want to fly safe. They’re not going to take any shortcuts on flying safe,” he elaborated. “All of us have the same initiative and it doesn’t matter who’s sitting on top of the vehicle. It’s a person, and that person needs to fly safely and get back home to their families. That’s the mission of all our folks and our partners – to go back home and see their family.”

Given the nations fiscal difficulties and lack of bipartisan cooperation there is no guarantee that NASA will receive the budget it needs to keep the commercial crew program on track.

Indeed, the Obama Administrations budget request for commercial crew has been repeatedly slashed by the US Congress to only half the request in the past two years. These huge funding cuts have already forced a multi-year delay in the inaugural test flights and increased the time span that the US has no choice but to pay Russia to launch US astronauts to the ISS.

“The budget is going to be an extremely challenging topic, not only for this program but for all NASA programs,” said Phil McAlister, NASA Commercial Spaceflight Development director.

NASA is pursuing a dual track approach in reviving NASA’s human spaceflight program. The much larger Orion crew capsule is simultaneously being developed to launch atop the new SLS super rocket and carry astronauts back to the Moon by 2021 and then farther into deep space to Asteroids and one day hopefully Mars.

Ken Kremer

Dream_Chaser_Atlas_V_Integrated_Launch_Configuration[1]

Caption: Dream Chaser awaits launch atop Atlas V rocket

SpaceX Grasshopper Takes Off and Lands Vertically in New 12-Story Hop

SpaceX recently released video of the latest test of their Grasshopper Vertical Take Off and Landing Vehicle, where it rose 40 meters (131 feet), hovered and landed safely on the pad using closed loop thrust vector and throttle control.

The test flight took place on December 17, 2012 at SpaceX’s rocket development facility in McGregor, Texas. The goal of Grasshopper is to eventually create a reusable first stage for SpaceX’s Falcon 9 rocket, which would be able to land safely instead of falling back into the ocean and not being usable again.

SpaceX CEO Elon Musk Tweeted that they strapped a 6-ft (2 meter) cowboy dummy to the side of the rocket “to provide a little perspective on the size of Grasshopper.”

See the pictures below:

SpaceX said the total test duration was 29 seconds. Grasshopper stands 10 stories tall and consists of a Falcon 9 rocket first stage, Merlin 1D engine, four steel landing legs with hydraulic dampers, and a steel support structure.

Cowboy dummy riding on the SpaceX Grasshopper. Via Elon Musk

“Cowboy riding the rocket no problemo,” Tweeted Elon Musk

Artist’s rendering of the SpaceX Grasshopper’s vertical landing. Credit: SpaceX

SpaceX’s 10-Story Re-useable Grasshopper Rocket Takes a Bigger Hop

SpaceX is developing the “Grasshopper” reusable vertical takeoff, vertical landing rocket. Back in September, the 32-meter- (106-ft-) tall Grasshopper made a tiny hop – barely lifting off the pad just to test-fire its engines. But now the Grasshopper has made a second, bigger hop. Over the weekend, Elon Musk quietly tweeted a link to a video, saying, “First flight of 10 story tall Grasshopper rocket using closed loop thrust vector & throttle control.” Update: SpaceX later confirmed that the Grasshopper rose “17.7 feet (5.4 meters), hovered, and touched back down safely on the pad at SpaceX’s rocket development facility in McGregor, Texas.”

SpaceX hasn’t talked much about this rocket, but reportedly the goal with Grasshopper is to eventually create a reusable first stage for its Falcon 9 rocket, which would be able to land safely instead of falling back into the ocean and not being usable again.

Artist’s rendering of SpaceX Falcon 9 rocket landing itself. Credit: SpaceX

Here’s some info about the Grasshopper from a draft environmental impact assessment put out by the FAA in 2011:

The Grasshopper RLV consists of a Falcon 9 Stage 1 tank, a Merlin-1D engine, four steel landing legs, and a steel support structure. Carbon overwrapped pressure vessels (COPVs), which are filled with either nitrogen or helium, are attached to the support structure. The Merlin-1D engine has a maximum thrust of 122,000 pounds. The overall height of the Grasshopper RLV is 106 feet, and the tank height is 85 feet.

The propellants used in the Grasshopper RLV include a highly refined kerosene fuel, called RP-1, and liquid oxygen (LOX) as the oxidizer.

The reports goes on to say that the Grasshopper test program is to have three phases of test launches, at SpaceX’s facility in McGregor, Texas. Phases 1 and 2 would consist of very low test fires with the rocket rising to not more than 73 meters (240 feet) during Phase 1 and 204 meters (670 feet), which is below controlled-airspace. Both Phase 1 and 2 flights would last up to 45 seconds.

Phase 3 tests have the goal of increasingly higher altitudes with higher ascent speeds and descent speeds. The altitude test sequence likely would be 366 meters (1,200 feet); 762 meters (2,500 feet); 1,524 meters (5,000 feet); 2,286 meters (7,500 feet); and 3,505 meters (11,500) feet. The maximum test duration would be approximately 160 seconds. If all goes well, the Grasshopper would land back on the launch pad.

Here’s Grasshopper’s first little test hop in September, which SpaceX said went 2 meters (6 feet):

Look for more details on this exciting reusable rocket as SpaceX continues its tests of the Grasshopper.

Sources: Twitter, Parabolic Arc

SpaceX’s Dragon Splashes Down Safely

The Dragon capsule after splashing down successfully on October 28, 2012. Credit: SpaceX

After leaving the International Space Station earlier on Sunday, SpaceX’s Dragon capsule returned to Earth from the International Space Station, safely splashing down in the Pacific Ocean about 400 kilometers (250 miles) off the coast of southern California. Inside the capsule are 758 kg (1,673 pounds) of return cargo including hardware, supplies, and a GLACIER freezer packed with scientific samples, including blood and urine samples of the astronauts on the space station, being returned for medical analysis. Currently, Dragon is the only craft capable of returning a significant amount of supplies to Earth, and this mission marks the first time since the retirement of the space shuttle that NASA has been able to return research samples for analysis.

Both NASA and SpaceX were thrilled with the success of the mission.

“This historic mission signifies the restoration of America’s ability to deliver and return critical space station cargo,” said SpaceX CEO and Chief Technical Officer Elon Musk. “The reliability of SpaceX’s technology and the strength of our partnership with NASA provide a strong foundation for future missions and achievements to come.”

NASA Administrator Charles Bolden added his congratulations to SpaceX: “Just a little over one year after we retired the Space Shuttle, we have completed the first cargo resupply mission to the International Space Station. Not with a government owned and operated system, but rather with one built by a private firm — an American company that is creating jobs and helping keep the U.S. the world leader in space as we transition to the next exciting chapter in exploration. Congratulations to SpaceX and the NASA team that supported them and made this historic mission possible.”

Raw video footage of the Dragon splashing down:

The SpaceX recovery team is now transporting Dragon by boat to a port near Los Angeles, where early cargo will be delivered to NASA. Dragon then will be transported to SpaceX’s facility in McGregor, Texas for processing. There, the remaining cargo will be delivered to NASA.

After a successful test flight in May of this year, this was the first “official” resupply mission for SpaceX to the ISS. The Dragon was launched on October 7 and reached the ISS three days later.

“It was nice while she was on board,” station commander Suni Williams radioed to back to Mission Control after the spacecraft was unberthed Sunday. “Literally and figuratively, there is a piece of us on that spacecraft going home to Earth.”

NASA Video of the Dragon capsule leaving the ISS:

The flight didn’t go with a hitch, however. An anomaly occurred with one of Falcon 9’s first-stage engines during the launch, and while it didn’t affect the mission to the ISS, a satellite that tagged along on the flight, the ORBCOMM OG2 prototype communications satellite, was delivered to the wrong orbit and ultimately fell back to Earth.

SpaceX and NASA are investigating the anomaly and analysis to date supports initial findings: the engine experienced a rapid loss of pressure and Falcon 9’s flight computer immediately commanded shutdown, as it is designed to do in such cases. SpaceX said they will continue to analyze all data in an effort to determine root cause and will apply those findings to future flights.

The next resupply mission for Dragon is tentatively scheduled for January 2013. Additionally, Orbital Sciences Corp, NASA’s second cargo hauler, plans to launch the first Cygnus capsule in February or March 2013.

Dragon floating down on parachutes. Credit: SpaceX

Go Inside the Dragon Capsule with New Interactive Panorama

Wish you could be on the International Space Station right now, helping to unload the SpaceX Dragon capsule that is berthed to the Harmony Node? A new interactive panorama from SpaceX allows the closest experience of being inside Dragon. Inside, you can see all the storage compartments, and the panorama lets you zoom around inside as if you were floating in Zero-G. If you watch out the window port, the view will change from seeing Earth, to having the protective shutters closed and then (sadly) you end up back on Earth inside the SpaceX Hanger at Cape Canaveral. The panorama is a fun Friday diversion, but make sure you share it with your favorite budding astronaut — kids will love it! Click on the image above to get to the panorama, or use this link.

Falcon 9 Experienced Engine Anomaly But Kept Going to Orbit

During last night’s launch of the Dragon capsule by SpaceX’s Falcon 9 rocket, there was an anomaly on one of the rocket’s nine engines and it was shut down. But Dragon still made it to orbit – just a little bit later than originally expected. At about 1:20 into the flight, there was a bright flash and a shower of debris. SpaceX’s CEO Elon Musk issued a statement about the anomaly saying:

“Falcon 9 detected an anomaly on one of the nine engines and shut it down. As designed, the flight computer then recomputed a new ascent profile in realtime to reach the target orbit, which is why the burn times were a bit longer. Like Saturn V, which experienced engine loss on two flights, the Falcon 9 is designed to handle an engine flameout and still complete its mission. I believe F9 is the only rocket flying today that, like a modern airliner, is capable of completing a flight successfully even after losing an engine. There was no effect on Dragon or the Space Station resupply mission.”

UPDATE (2 pm EDT 8/10): SpaceX has now provided an update and more information: the engine didn’t explode, but (now updated from a previous update), “panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines.” Here’s their statement:

Approximately one minute and 19 seconds into last night’s launch, the Falcon 9 rocket detected an anomaly on one first stage engine. Initial data suggests that one of the rocket’s nine Merlin engines, Engine 1, lost pressure suddenly and an engine shutdown command was issued. We know the engine did not explode, because we continued to receive data from it. Panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines. Our review of flight data indicates that neither the rocket stage nor any of the other eight engines were negatively affected by this event.

As designed, the flight computer then recomputed a new ascent profile in real time to ensure Dragon’s entry into orbit for subsequent rendezvous and berthing with the ISS. This was achieved, and there was no effect on Dragon or the cargo resupply mission.

Falcon 9 did exactly what it was designed to do. Like the Saturn V (which experienced engine loss on two flights) and modern airliners, Falcon 9 is designed to handle an engine out situation and still complete its mission. No other rocket currently flying has this ability.

It is worth noting that Falcon 9 shuts down two of its engines to limit acceleration to 5 g’s even on a fully nominal flight. The rocket could therefore have lost another engine and still completed its mission.

We will continue to review all flight data in order to understand the cause of the anomaly, and will devote the resources necessary to identify the problem and apply those lessons to future flights. We will provide additional information as it becomes available.

In their initial press release following the launch SpaceX had originally described the performance of Falcon 9 as nominal “during every phase of its approach to orbit.”

During the press briefing following the launch SpaceX President Gwynne Shotwell replied to a question about the flash and said “I do know we had an anomaly on Engine 1, but I have no data on it. But Falcon 9 was designed to lose engines and still make mission, so it did what it was supposed to do. If you do end up with issues, you burn longer to end up where you need to go.”

SpaceX’s website also mentions this capability, saying, “”This vehicle will be capable of sustaining an engine failure at any point in flight and still successfully completing its mission. This actually results in an even higher level of reliability than a single engine stage.”

Dragon made it to orbit about 30 seconds later than originally planned, but Shotwell said it made it into the correct orbit, “within two or three kilometers in both apogee and perigee and Dragon is now on its way to Station.” The anomaly happened right at the time of Max-Q, just as the vehicle went supersonic.

The Space Shuttle was also designed to make it into orbit even if one of its three engines failed – after a certain point in the flight – and did so at least once to this reporter’s knowledge, on STS-51-F which resulted in an Abort To Orbit trajectory, where the shuttle achieved a lower-than-planned orbital altitude.

This was the first time SpaceX made lift-off at their originally planned “T-0” launch time, Shotwell noted. And they also deployed a tag-along, secondary payload in addition to the Dragon capsule, a prototype commercial communications satellite for New Jersey-based Orbcomm Inc. However, A report by Jonathan McDowell indicates the Orbcomm satellite is being tracked in low orbit instead of its elliptical target orbit because the Falcon 9 upper stage failed its second burn. (More info here from Jonathan’s Space Report).

SpaceX will undoubtedly review the anomaly, and we’ll provide more information about it when available.

SpaceX Launches to the International Space Station. Credit: NASA

Liftoff! SpaceX Launches First Official Commercial Resupply Mission to ISS

The launch of SpaceX’s Falcon 9 rocket sending the Dragon capsule to orbit. Credit: KSC Twitter Feed

SpaceX has successfully launched the first official Cargo Resupply Services (CRS) mission to the International Space Station. The commercial company’s Falcon 9 rumbled rocket to life at 8:35 EDT on Oct 7 (00:35 UTC Oct. 8) in a picture perfect launch, sending the Dragon capsule on its way in the first of a dozen operational missions to deliver supplies to the orbiting laboratory. The launch took place at Launch Complex 40 at Cape Canaveral Air Force Station in Florida, just a few miles south of the space shuttle launch pads.

“This was a critical event for NASA and the nation tonight,” said NASA Administrator Charlie Bolden after the launch. “We are once again launching spacecraft from American soil with supplies that the ISS astronauts need.”

Watch the launch video below:

All the major milestones of the launch ticked off in perfect timing and execution, and the Dragon capsule is now in orbit with its solar arrays deployed. The Dragon capsule separated from the Falcon 9 about 10 minutes and 24 seconds after liftoff. Dragon should arrive at the ISS on Oct. 10 and the crew will begin berthing operations after everything checks out.

All three members of the current ISS crew were able to watch the launch live via a NASA uplink to the ISS, and Commander Suni Williams passed on her congratulations to the SpaceX team, saying “We are ready to grab Dragon!”

Williams and astronaut Akihiko Hoshide will use the CanadArm 2 to grapple the Dragon capsule around 7:22 a.m. EDT (11:22 UTC) Wednesday, moving it to a berthing at the Earth-facing port of the forward Harmony module.

Even though SpaceX sent the Dragon to the ISS in May, that was considered a demonstration flight and this flight is considered the first operational mission.

“No question, we are very excited,” said SpaceX President Gwynne Shotwell just before the launch. “Everyone was very excited in May and we are very much looking forward to moving forward with the operational missions.”

Dragon is carrying approximately 450 kg (1,000 pounds) of supplies, including food, water, scientific experiments and Space Station parts. There are also 23 student experiments from the Student Spaceflight Experiments Program (SSEP) involving 7,420 pre-college students engaged in formal microgravity experiment design, according to SSEP director Dr. Jeff Goldstein.

SpaceX and NASA revealed this weekend a special treat is on board a new freezer called GLACIER (General Laboratory Active Cryogenic ISS Experiment Refrigerator): Blue Bell ice cream, a brand that is a favorite of astronauts training at the Johnson Space Center in Houston. The freezer will be used to return frozen science experiments to Earth.

In the next three days, Dragon will perform systems checks, and start a series of Draco thruster firings to reach the International Space Station.

Dragon will return a total of 750 kg (1,673 pounds) of supplies and hardware to the ground. NASA says Dragon’s capability to return cargo from the station “is critical for supporting scientific research in the orbiting laboratory’s unique microgravity environment, which enables important benefits for humanity and vastly increases understanding of how humans can safely work, live and thrive in space for long periods. The ability to return frozen samples is a first for this flight and will be tremendously beneficial to the station’s research community. Not since the space shuttle have NASA and its international partners been able to return considerable amounts of research and samples for analysis.”

Dragon is currently scheduled to return to Earth at the end of the month, splashing down in the Pacific Ocean on October 29.

1000 SpaceX employees watch Falcon 9 and Dragon launch, at the Hawthorne, California headquarter. Credit: SpaceX

Taking a cue from the Mars Science Laboratory “Mohawk Guy” this SpaceX employee watching from Hawthorne sports a blue mohawk with a SpaceX logo shaved on her head. Credit: SpaceX.

Here’s a shorter video version of the launch from SpaceX: