SpaceX’s Dragon Splashes Down Safely

The Dragon capsule after splashing down successfully on October 28, 2012. Credit: SpaceX

After leaving the International Space Station earlier on Sunday, SpaceX’s Dragon capsule returned to Earth from the International Space Station, safely splashing down in the Pacific Ocean about 400 kilometers (250 miles) off the coast of southern California. Inside the capsule are 758 kg (1,673 pounds) of return cargo including hardware, supplies, and a GLACIER freezer packed with scientific samples, including blood and urine samples of the astronauts on the space station, being returned for medical analysis. Currently, Dragon is the only craft capable of returning a significant amount of supplies to Earth, and this mission marks the first time since the retirement of the space shuttle that NASA has been able to return research samples for analysis.

Both NASA and SpaceX were thrilled with the success of the mission.

“This historic mission signifies the restoration of America’s ability to deliver and return critical space station cargo,” said SpaceX CEO and Chief Technical Officer Elon Musk. “The reliability of SpaceX’s technology and the strength of our partnership with NASA provide a strong foundation for future missions and achievements to come.”

NASA Administrator Charles Bolden added his congratulations to SpaceX: “Just a little over one year after we retired the Space Shuttle, we have completed the first cargo resupply mission to the International Space Station. Not with a government owned and operated system, but rather with one built by a private firm — an American company that is creating jobs and helping keep the U.S. the world leader in space as we transition to the next exciting chapter in exploration. Congratulations to SpaceX and the NASA team that supported them and made this historic mission possible.”

Raw video footage of the Dragon splashing down:

The SpaceX recovery team is now transporting Dragon by boat to a port near Los Angeles, where early cargo will be delivered to NASA. Dragon then will be transported to SpaceX’s facility in McGregor, Texas for processing. There, the remaining cargo will be delivered to NASA.

After a successful test flight in May of this year, this was the first “official” resupply mission for SpaceX to the ISS. The Dragon was launched on October 7 and reached the ISS three days later.

“It was nice while she was on board,” station commander Suni Williams radioed to back to Mission Control after the spacecraft was unberthed Sunday. “Literally and figuratively, there is a piece of us on that spacecraft going home to Earth.”

NASA Video of the Dragon capsule leaving the ISS:

The flight didn’t go with a hitch, however. An anomaly occurred with one of Falcon 9’s first-stage engines during the launch, and while it didn’t affect the mission to the ISS, a satellite that tagged along on the flight, the ORBCOMM OG2 prototype communications satellite, was delivered to the wrong orbit and ultimately fell back to Earth.

SpaceX and NASA are investigating the anomaly and analysis to date supports initial findings: the engine experienced a rapid loss of pressure and Falcon 9’s flight computer immediately commanded shutdown, as it is designed to do in such cases. SpaceX said they will continue to analyze all data in an effort to determine root cause and will apply those findings to future flights.

The next resupply mission for Dragon is tentatively scheduled for January 2013. Additionally, Orbital Sciences Corp, NASA’s second cargo hauler, plans to launch the first Cygnus capsule in February or March 2013.

Dragon floating down on parachutes. Credit: SpaceX

Go Inside the Dragon Capsule with New Interactive Panorama

Wish you could be on the International Space Station right now, helping to unload the SpaceX Dragon capsule that is berthed to the Harmony Node? A new interactive panorama from SpaceX allows the closest experience of being inside Dragon. Inside, you can see all the storage compartments, and the panorama lets you zoom around inside as if you were floating in Zero-G. If you watch out the window port, the view will change from seeing Earth, to having the protective shutters closed and then (sadly) you end up back on Earth inside the SpaceX Hanger at Cape Canaveral. The panorama is a fun Friday diversion, but make sure you share it with your favorite budding astronaut — kids will love it! Click on the image above to get to the panorama, or use this link.

Falcon 9 Experienced Engine Anomaly But Kept Going to Orbit

During last night’s launch of the Dragon capsule by SpaceX’s Falcon 9 rocket, there was an anomaly on one of the rocket’s nine engines and it was shut down. But Dragon still made it to orbit – just a little bit later than originally expected. At about 1:20 into the flight, there was a bright flash and a shower of debris. SpaceX’s CEO Elon Musk issued a statement about the anomaly saying:

“Falcon 9 detected an anomaly on one of the nine engines and shut it down. As designed, the flight computer then recomputed a new ascent profile in realtime to reach the target orbit, which is why the burn times were a bit longer. Like Saturn V, which experienced engine loss on two flights, the Falcon 9 is designed to handle an engine flameout and still complete its mission. I believe F9 is the only rocket flying today that, like a modern airliner, is capable of completing a flight successfully even after losing an engine. There was no effect on Dragon or the Space Station resupply mission.”

UPDATE (2 pm EDT 8/10): SpaceX has now provided an update and more information: the engine didn’t explode, but (now updated from a previous update), “panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines.” Here’s their statement:

Approximately one minute and 19 seconds into last night’s launch, the Falcon 9 rocket detected an anomaly on one first stage engine. Initial data suggests that one of the rocket’s nine Merlin engines, Engine 1, lost pressure suddenly and an engine shutdown command was issued. We know the engine did not explode, because we continued to receive data from it. Panels designed to relieve pressure within the engine bay were ejected to protect the stage and other engines. Our review of flight data indicates that neither the rocket stage nor any of the other eight engines were negatively affected by this event.

As designed, the flight computer then recomputed a new ascent profile in real time to ensure Dragon’s entry into orbit for subsequent rendezvous and berthing with the ISS. This was achieved, and there was no effect on Dragon or the cargo resupply mission.

Falcon 9 did exactly what it was designed to do. Like the Saturn V (which experienced engine loss on two flights) and modern airliners, Falcon 9 is designed to handle an engine out situation and still complete its mission. No other rocket currently flying has this ability.

It is worth noting that Falcon 9 shuts down two of its engines to limit acceleration to 5 g’s even on a fully nominal flight. The rocket could therefore have lost another engine and still completed its mission.

We will continue to review all flight data in order to understand the cause of the anomaly, and will devote the resources necessary to identify the problem and apply those lessons to future flights. We will provide additional information as it becomes available.

In their initial press release following the launch SpaceX had originally described the performance of Falcon 9 as nominal “during every phase of its approach to orbit.”

During the press briefing following the launch SpaceX President Gwynne Shotwell replied to a question about the flash and said “I do know we had an anomaly on Engine 1, but I have no data on it. But Falcon 9 was designed to lose engines and still make mission, so it did what it was supposed to do. If you do end up with issues, you burn longer to end up where you need to go.”

SpaceX’s website also mentions this capability, saying, “”This vehicle will be capable of sustaining an engine failure at any point in flight and still successfully completing its mission. This actually results in an even higher level of reliability than a single engine stage.”

Dragon made it to orbit about 30 seconds later than originally planned, but Shotwell said it made it into the correct orbit, “within two or three kilometers in both apogee and perigee and Dragon is now on its way to Station.” The anomaly happened right at the time of Max-Q, just as the vehicle went supersonic.

The Space Shuttle was also designed to make it into orbit even if one of its three engines failed – after a certain point in the flight – and did so at least once to this reporter’s knowledge, on STS-51-F which resulted in an Abort To Orbit trajectory, where the shuttle achieved a lower-than-planned orbital altitude.

This was the first time SpaceX made lift-off at their originally planned “T-0” launch time, Shotwell noted. And they also deployed a tag-along, secondary payload in addition to the Dragon capsule, a prototype commercial communications satellite for New Jersey-based Orbcomm Inc. However, A report by Jonathan McDowell indicates the Orbcomm satellite is being tracked in low orbit instead of its elliptical target orbit because the Falcon 9 upper stage failed its second burn. (More info here from Jonathan’s Space Report).

SpaceX will undoubtedly review the anomaly, and we’ll provide more information about it when available.

SpaceX Launches to the International Space Station. Credit: NASA

Liftoff! SpaceX Launches First Official Commercial Resupply Mission to ISS

The launch of SpaceX’s Falcon 9 rocket sending the Dragon capsule to orbit. Credit: KSC Twitter Feed

SpaceX has successfully launched the first official Cargo Resupply Services (CRS) mission to the International Space Station. The commercial company’s Falcon 9 rumbled rocket to life at 8:35 EDT on Oct 7 (00:35 UTC Oct. 8) in a picture perfect launch, sending the Dragon capsule on its way in the first of a dozen operational missions to deliver supplies to the orbiting laboratory. The launch took place at Launch Complex 40 at Cape Canaveral Air Force Station in Florida, just a few miles south of the space shuttle launch pads.

“This was a critical event for NASA and the nation tonight,” said NASA Administrator Charlie Bolden after the launch. “We are once again launching spacecraft from American soil with supplies that the ISS astronauts need.”

Watch the launch video below:

All the major milestones of the launch ticked off in perfect timing and execution, and the Dragon capsule is now in orbit with its solar arrays deployed. The Dragon capsule separated from the Falcon 9 about 10 minutes and 24 seconds after liftoff. Dragon should arrive at the ISS on Oct. 10 and the crew will begin berthing operations after everything checks out.

All three members of the current ISS crew were able to watch the launch live via a NASA uplink to the ISS, and Commander Suni Williams passed on her congratulations to the SpaceX team, saying “We are ready to grab Dragon!”

Williams and astronaut Akihiko Hoshide will use the CanadArm 2 to grapple the Dragon capsule around 7:22 a.m. EDT (11:22 UTC) Wednesday, moving it to a berthing at the Earth-facing port of the forward Harmony module.

Even though SpaceX sent the Dragon to the ISS in May, that was considered a demonstration flight and this flight is considered the first operational mission.

“No question, we are very excited,” said SpaceX President Gwynne Shotwell just before the launch. “Everyone was very excited in May and we are very much looking forward to moving forward with the operational missions.”

Dragon is carrying approximately 450 kg (1,000 pounds) of supplies, including food, water, scientific experiments and Space Station parts. There are also 23 student experiments from the Student Spaceflight Experiments Program (SSEP) involving 7,420 pre-college students engaged in formal microgravity experiment design, according to SSEP director Dr. Jeff Goldstein.

SpaceX and NASA revealed this weekend a special treat is on board a new freezer called GLACIER (General Laboratory Active Cryogenic ISS Experiment Refrigerator): Blue Bell ice cream, a brand that is a favorite of astronauts training at the Johnson Space Center in Houston. The freezer will be used to return frozen science experiments to Earth.

In the next three days, Dragon will perform systems checks, and start a series of Draco thruster firings to reach the International Space Station.

Dragon will return a total of 750 kg (1,673 pounds) of supplies and hardware to the ground. NASA says Dragon’s capability to return cargo from the station “is critical for supporting scientific research in the orbiting laboratory’s unique microgravity environment, which enables important benefits for humanity and vastly increases understanding of how humans can safely work, live and thrive in space for long periods. The ability to return frozen samples is a first for this flight and will be tremendously beneficial to the station’s research community. Not since the space shuttle have NASA and its international partners been able to return considerable amounts of research and samples for analysis.”

Dragon is currently scheduled to return to Earth at the end of the month, splashing down in the Pacific Ocean on October 29.

1000 SpaceX employees watch Falcon 9 and Dragon launch, at the Hawthorne, California headquarter. Credit: SpaceX

Taking a cue from the Mars Science Laboratory “Mohawk Guy” this SpaceX employee watching from Hawthorne sports a blue mohawk with a SpaceX logo shaved on her head. Credit: SpaceX.

Here’s a shorter video version of the launch from SpaceX:

Hangout with Elon Musk

SpaceX’s Elon Musk with the Falcon rocket. Credit: SpaceX

You can now tell everyone that SpaceX CEO Elon Musk is a close personal friend and that you are going to hang out with him on Friday. A Google+ Hangout, that is. Musk and NASA Administrator Charlie Bolden will be part of a G+ Hangout, and will answer questions submitted by viewers. They will also discuss the upcoming launch of SpaceX’s first contracted cargo resupply flight to the International Space Station. The Hangout will take place on Friday, October 5, 2012 from 17:00-17:30 UTC (1-1:30 p.m. EDT). SpaceX’s Falcon 9 rocket and its Dragon cargo spacecraft are scheduled to lift off at 00:35 UTC on Monday, October 8 (8:35 p.m. EDT, Sunday, Oct. 7) from at Cape Canaveral Air Force Station in Florida.

Bolden and Musk will talk about the flight, which will be the first of 12 contracted for NASA by SpaceX to resupply the space station. Followers on Twitter may ask a question in advance of or during the event using the hashtag #askNASA. On NASA Facebook and Google+, a comment thread will open for questions on the morning of the event. To join the hangout, visit the NASA’s Google+ page.

Antares Commercial Rocket Reaches New Atlantic Coast Launch Pad

Image Caption: Antares Rocket At Wallops Flight Facility Launch Pad. Orbital Sciences Corporation’s Antares rocket at the launch pad at NASA’s Wallops Flight Facility. In a few months, Antares is scheduled to launch a cargo delivery demonstration mission to the International Space Station as part of NASA’s Commercial Orbital Transportation Services (COTS) program. Credit: NASA

At long last, Orbital Sciences Corporation has rolled their new commercially developed Antares medium class rocket to the nation’s newest spaceport – the Mid-Atlantic Regional Spaceport (MARS) at Wallops Island,Va – and commenced on pad operations as of Monday, Oct 1.

The long awaited rollout marks a key milestone on the path to the maiden test flight of the Antares, planned to blast off before year’s end if all goes well.

This is a highly noteworthy event because Antares is the launcher for Orbital’s unmanned commercial Cygnus cargo spacecraft that NASA’s hopes will reestablish resupply missions to the International Space Station (ISS) lost with the shuttle’s shutdown.

“MARS has completed construction and testing operations on its launch complex at Wallops Island, the first all-new large-scale liquid-fuel launch site to be built in the U.S. in decades,” said David W. Thompson, Orbital’s President and Chief Executive Officer.

“Accordingly, our pad operations are commencing immediately in preparation for an important series of ground and flight tests of our Antares medium-class launch vehicle over the next few months. In fact, earlier today (Oct. 1), an Antares first stage test article was transported to the pad from its final assembly building about a mile away, marking the beginning of full pad operations.”

Antares 1st stage rocket erected at Launch Pad 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Flight Facility in Virginia. Credit: NASA

In about 4 to 6 weeks, Orbital plans to conduct a 30 second long hot fire test of the first stage, generating a total thrust of 680,000 lbs. If successful, a full up test flight of the 131 foot tall Antares with a Cygnus mass simulator bolted on top is planned for roughly a month later.

An ISS docking demonstration mission to the ISS would then occur early in 2013 which would be nearly identical in scope to the SpaceX Falcon 9/Dragon demonstration flight successfully launched and accomplished in May 2012.

The first commercial resupply mission to the ISS by SpaceX (CRS-1) is now set to lift off on Oct. 7 from Cape Canaveral, Florida.

The 700,000 lb thrust Antares first stage is powered by a pair of Soviet era NK-33 engines built during the 1960 and 1970’s as part of Russia’s ill-fated N-1 manned moon program. The engines have since been upgraded and requalified by Aerojet Corp. and integrated into the Ukrainian built first stage rocket as AJ-26 engines.

Image Caption: Antares first stage arrives on the pad at NASA_Wallops on Oct. 1. First stage approaching adapter ring on the right. Credit: NASA

NASA awarded contracts to Orbital Sciences Corp and SpaceX in 2008 to develop unmanned commercial resupply systems with the goal of recreating an American capability to deliver cargo to the ISS which completely evaporated following the forced retirement of NASA’s Space Shuttle orbiters in 2011 with no follow on program ready to go.

“Today’s (Oct. 1) rollout of Orbital’s Antares test vehicle and the upcoming SpaceX mission are significant milestones in our effort to return space station resupply activities to the United States and insource the jobs associated with this important work,” said NASA Associate Administrator for Communications David Weaver. “NASA’s commercial space program is helping to ensure American companies launch our astronauts and their supplies from U.S. soil.”

The public will be invited to watch the Antares blastoff and there are a lot of locations for spectators to gather nearby for an up close and personal experience.

“Antares is the biggest rocket ever launched from Wallops,” NASA Wallops spokesman Keith Koehler told me. “The launches will definitely be publicized.”

Ken Kremer

NASA Announces Winners in Commercial Crew Funding; Which Company Will Get to Space First?

Inside the SpaceX Dragon capsule, testing out the seating arrangement for a crew of seven. Test crew included (from top left): NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA Astronaut Tony Antonelli, NASA Astronaut Lee Archambault, SpaceX Mission Operations Engineer Laura Crabtree, SpaceX Thermal Engineer Brenda Hernandez, NASA Astronaut Rex Walheim, and NASA Astronaut Tim Kopra. Photo: Roger Gilbertson / SpaceX

[/caption]

NASA announced today the winners of the third round of commercial crew development funding, called the Commercial Crew Integrated Capability (CCiCap). This will ultimately allow commercial space companies to be able to provide commercial human spaceflight services for both NASA and other commercial customers. The winners are SpaceX ($440 million), Boeing ($460 million) and Sierra Nevada Corporation ($212.5 million). NASA said these awards will enable a launch of astronauts from U.S. soil in the next five years.

NASA’s Ed Mango said that the differences in the amount each company received was not a difference of two companies getting “full” awards and one getting a half award, but each company negotiated how much work they could get done in the 21-month period that this award covers.

NASA wants to have at least one commercial company able to bring astronauts to and from the International Space Station by 2017, but the three winning companies said they can either meet or beat that deadline, with optimal funding.

During conference calls with reporters, SpaceX’s Elon Musk said his company is shooting for a demonstration flight in mid-2015, with the anticipated Boeing says it can do crewed test flight in late 2016, assuming optimal funding, and Sierra Nevada said they will likely start their operations in 2016 or 2017.

Musk said the cost of getting to first crewed SpaceX flight to ISS would be about $1 billion. The first orbital demo crewed flight probably wouldn’t go to the space station, but would on a subsequent flight, about a year later.

SpaceX is well ahead of the other two companies because of their work – and success – with the unmanned Dragon capsule, which traveled to and from the ISS earlier this year, and was the first commercial spacecraft to be berthed to the Station. For the most part, SpaceX has paid their own way during the development of Dragon and their crewed version, the 7-passenger DragonRider, spending about $300 million of their own money in addition to about $75 million from NASA.

The plans for DragonRider have it making its return landing in the ocean, but SpaceX has completed the development of the SuperDraco thruster, which will mainly be used as a launch abort system but also allow for powered landings on land.

Boeing’s CST-100 capsule, also capable of carrying a crew of seven, has met many milestones, such as drop tests and parachute tests. Like Dragon, the spacecraft will initially land in the ocean, but the company hopes to allow for land-based landings later on. It will launch on an Atlas V rocket.

Sierra Nevada’s Dream Chaser spacecraft, perhaps the most fascinating of the trio of commercial spacecraft, looks like a mini-space shuttle, and comes from the line of NASA experimental vehicles, the HL-20. It can serve as both a transport vehicle and a rescue vehicle from the ISS, and has the capability to land at almost any commercial airport within six hours of leaving the ISS. Dream Chaser will also launch on an Atlas V.

Caption: NASA Commercial Crew Program Manager Ed Mango discusses the agency’s new Commercial Crew Integrated Capability (CCiCap) partnerships from Kennedy Space Center in Florida. Kennedy’s Director Bob Cabana, left, and NASA Administrator Charlie Bolden also spoke about the CCiCap initiative during Friday’s news conference. Image credit: NASA

“Today, we are announcing another critical step toward launching our astronauts from U.S. soil on space systems built by American companies,” NASA Administrator Charles Bolden said at the agency’s Kennedy Space Center in Florida. “We have selected three companies that will help keep us on track to end the outsourcing of human spaceflight and create high-paying jobs in Florida and elsewhere across the country.”

The Commercial Crew Program is a competitive program where commercial companies develop and build vehicles to meet NASA’s requirements, and when fixed milestones are met, NASA provides funding.

NASA says the objective of the CCP is to facilitate the development of a U.S. commercial crew space transportation capability with the goal of achieving safe, reliable and cost-effective access to and from the International Space Station and low Earth orbit.

“For 50 years American industry has helped NASA push boundaries, enabling us to live, work and learn in the unique environment of microgravity and low Earth orbit,” said William Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate. “The benefits to humanity from these endeavors are incalculable. We’re counting on the creativity of industry to provide the next generation of transportation to low Earth orbit and expand human presence, making space accessible and open for business.”

Of course, NASA is also working to develop the Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS), a crew capsule and heavy-lift rocket to provide transportation to distant destinations like the Moon, asteroids or ultimately Mars.

For more details on the program see: http://www.nasa.gov/offices/c3po/home/

Historic SpaceX Dragon Docking to ISS – Highlights Video

SpaceX has released a cool video (above) recapping the mission highlights of the historic May 22 blastoff of the firm’s Falcon 9 rocket with the Dragon spacecraft that went on to become the first privately developed vehicle in history to successfully dock to the International Space Station (ISS) on May 25, 2012.

Dragon was captured with a robotic arm operated by astronauts Don Pettit and Andre Kuipers working in tandem aboard the ISS as it approached the massive orbiting lab complex and was then berthed at an Earth facing port.

Dragon was the first US spacecraft to attach to the ISS since the retirement of NASA’s Space Shuttle program last July 2011 following the STS-135 mission of shuttle Atlantis. The 14.4 ft (4.4 meter) long resupply vehicle delivered over 1000 pounds of non-critical gear, food, clothing and science equipment to the ISS.

After spending six days at the ISS, the Dragon undocked and splashed down in the Pacific Ocean some 560 miles off the coast of California on May 31, 2012.

Image Caption: SpaceX Falcon 9 rocket clears the tower after liftoff at 3:44 a.m. on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla.,on the first commercial mission to loft the Dragon cargo resupply vehicle to the International Space Station. Credit: Ken Kremer/www.kenkremer.com

The Falcon 9 rocket and Dragon cargo carrier were designed, developed and built by Hawthorne, Calif., based SpaceX Corporation, founded in 2002 by CEO and Chief Designer Elon Musk.

SpaceX signed a contract with NASA in 2006 to conduct twelve Falcon 9/Dragon resupply missions to carry about 44,000 pounds of cargo to the ISS at a cost of some $1.6 Billion over the next few years. The first operational Dragon CRS mission is slated to blast off around October 2012.

Read my Universe Today articles starting here for further details about the historic SpaceX Falcon 9/Dragon mission to the ISS.

Ken Kremer

Awesome Video of a Dragon’s Descent!

Dragon's Apollo-esque drogue chutes deployed (NASA)


Just in from SpaceX and NASA, here’s a video of the descent of the Dragon capsule on the morning of May 31, 2012.

[/caption]

Taken from a chase plane, the footage shows the spacecraft’s dramatic chute deployment and splashdown into the Pacific at 8:42 a.m. PT, approximately 560 miles southwest off the coast of Los Angeles. The event marked the end of a successful and historic mission that heralds a new era of commercial spaceflight in the U.S.

Read more about the completion of the first Dragon mission here.

Video: NASA