New Phenomenon: “Coreshine” Provides Insight into Stellar Births

The molecular cloud CB 244 in the constellation Cepheus, 650 light-years from Earth. Credit: MPIA

[/caption]

From the Max Planck Institut für Astronomie:

Science is literally in the dark when it comes to the birth of stars, which occurs deep inside clouds of gas and dust: These clouds are completely opaque to ordinary light. Now, a group of astronomers has discovered a new astronomical phenomenon that appears to be common in such clouds, and promises a new window onto the earliest phases of star formation. The phenomenon – light that is scattered by unexpectedly large grains of dust, which the discoverers have termed “coreshine” – probes the dense cores where stars are born. The results are being published in the September 24, 2010 edition of the journal Science.

Stars are formed as the dense core regions of cosmic clouds of gas and dust (“molecular clouds”) collapse under their own gravity. As a result, matter in these regions becomes ever denser and hotter until, finally, nuclear fusion is ignited: a star is born. This is how our own star, the Sun, came into being; the fusion processes are responsible for the Sun’s light, on which life on Earth depends. The dust grains contained in the collapsing clouds are the raw material out of which an interesting by-product of star formation is made: solar systems and Earth-like planets.

What happens during the earliest phases of this collapse is largely unknown. Enter an international team of astronomers led by Laurent Pagani (LERMA, Observatoire de Paris) and Jürgen Steinacker (Max Planck Institute for Astronomy, Heidelberg, Germany), who have discovered a new phenomenon which promises information about the crucial earliest phase of the formation of stars and planets: “coreshine”, the scattering of mid-infrared light (which is ubiquitous in our galaxy) by dust grains inside such dense clouds. The scattered light carries information about the size and density of the dust particles, about the age of the core region, the spatial distribution of the gas, the prehistory of the material that will end up in planets, and about chemical processes in the interior of the cloud.

The molecular cloud CB 244 in the constellation Cepheus, 650 light-years from Earth. Credit: MPIA

The discovery is based on observations with NASA’s SPITZER Space Telescope. As published this February, Steinacker, Pagani and colleagues from Grenoble and Pasadena detected unexpected mid-infrared radiation from the molecular cloud L 183 in the constellation Serpens Cauda (“Head of the snake”), at a distance of 360 light-years. The radiation appeared to originate in the cloud’s dense core. Comparing their measurements with detailed simulations, the astronomers were able to show that they were dealing with light scattered by dust particles with diameters of around 1 micrometer (one millionth of a meter). The follow-up research that is now being published in Science clinched the case: The researchers examined 110 molecular clouds at distances between 300 and 1300 light-years, which had been observed with Spitzer in the course of several survey programs. The analysis showed that the L 183 radiation was more than a fluke. Instead, it revealed that coreshine is a widespread astronomical phenomenon: Roughly half of the cloud cores exhibited coreshine, mid-infrared radiation associated with scattering from dust grains in their densest regions.

The discovery of coreshine suggests a host of follow-on projects – for the SPITZER Space Telescope as well as for the James Webb Space Telescope, which is due to be launched in 2014. The first coreshine observations have yielded promising results: The unexpected presence of larger grains of dust (diameters of around a millionth of a meter) shows that these grains begin their growth even before cloud collapse commences. An observation of particular interest concerns clouds in the Southern constellation Vela, in which no coreshine is present. It is known that this region was disturbed by several stellar (supernova) explosions. Steinacker and his colleagues hypothesize that these explosions have destroyed whatever larger dust grains had been present in this region.

Source: Max Planck

Near Earth Asteroids Vary Widely in Composition, Origin

Eros Asteroid
The asteroid Eros, as seen by the NEAR mission. Credit: NASA

[/caption]

From the Spitzer website:

New research from NASA’s Spitzer Space Telescope reveals that asteroids somewhat near Earth, termed near-Earth objects, are a mixed bunch, with a surprisingly wide array of compositions. Like a piñata filled with everything from chocolates to fruity candies, these asteroids come in assorted colors and compositions. Some are dark and dull; others are shiny and bright. The Spitzer observations of 100 known near-Earth asteroids demonstrate that the objects’ diversity is greater than previously thought.

The findings are helping astronomers better understand near-Earth objects as a whole — a population whose physical properties are not well known.

“These rocks are teaching us about the places they come from,” said David Trilling of Northern Arizona University, Flagstaff, lead author of a new paper on the research appearing in the September issue of Astronomical Journal. “It’s like studying pebbles in a streambed to learn about the mountains they tumbled down.”

After nearly six years of operation, in May 2009, Spitzer used up the liquid coolant needed to chill its infrared detectors. It is now operating in a so-called “warm” mode (the actual temperature is still quite cold at 30 Kelvin, or minus 406 degrees Fahrenheit). Two of Spitzer’s infrared channels, the shortest-wavelength detectors on the observatory, are working perfectly.

One of the mission’s new “warm” programs is to survey about 700 near-Earth objects, cataloging their individual traits. By observing in infrared, Spitzer is helping to gather more accurate estimates of asteroids’ compositions and sizes than what is possible with visible light alone. Visible-light observations of an asteroid won’t differentiate between an asteroid that is big and dark, or small and light. Both rocks would reflect the same amount of visible sunlight. Infrared data provide a read on the object’s temperature, which then tells an astronomer more about the actual size and composition. A big, dark rock has a higher temperature than a small, light one because it absorbs more sunlight.

Trilling and his team have analyzed preliminary data on 100 near-Earth asteroids so far. They plan to observe 600 more over the next year. There are roughly 7,000 known near-Earth objects out of a population expected to number in the tens to hundreds of thousands.

“Very little is known about the physical characteristics of the near-Earth population,” said Trilling. “Our data will tell us more about the population, and how it changes from one object to the next. This information could be used to help plan possible future space missions to study a near-Earth object.”

The data show that some of the smaller objects have surprisingly high albedos (an albedo is a measurement of how much sunlight an object reflects). Since asteroid surfaces become darker with time due to exposure to solar radiation, the presence of lighter, brighter surfaces for some asteroids may indicate that they are relatively young. This is evidence for the continuing evolution of the near-Earth object population.

In addition, the fact that the asteroids observed so far have a greater degree of diversity than expected indicates that they might have different origins. Some might come from the main belt between Mars and Jupiter, and others could come from farther out in the solar system. This diversity also suggests that the materials that went into making the asteroids — the same materials that make up our planets — were probably mixed together like a big solar-system soup very early in its history.

The research complements that of NASA’s Wide-field Infrared Survey Explorer, or WISE, an all-sky infrared survey mission also up in space now. WISE has already observed more than 430 near-Earth objects — of these, more than 110 are newly discovered.

In the future, both Spitzer and WISE will tell us even more about the “flavors” of near-Earth objects. This could reveal new clues about how the cosmic objects might have dotted our young planet with water and organics — ingredients needed to kick-start life.

Tight Binaries are ‘Death Stars’ for Planets

This plot of data from NASA's Spitzer Space Telescope tells astronomers that a dusty planetary smashup probably occurred around a pair of tight twin, or binary, stars. Image credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA

[/caption]

Astronomers studying double star systems where the two stars are extremely close have found a pattern of destruction. While there probably isn’t a Star Wars-like Death Star roaming the Universe, tight binary systems might provide the equivalent of Darth Vader’s favorite weapon. “This is real-life science fiction,” said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. “Our data tell us that planets in these systems might not be so lucky — collisions could be common. It’s theoretically possible that habitable planets could exist around these types of stars, so if there happened to be any life there, it could be doomed.”

Using the Spitzer Space Telescope, Drake and his team spotted a surprisingly large amount of dust around three mature, close-orbiting star pairs, that might be the aftermath of tremendous planetary collisions.

Drake is the principal investigator of the research, published in the Aug.19 issue of the Astrophysical Journal Letters.

The particular class of binary stars in the study are extremely close together. Named RS Canum Venaticorums, or RS CVns for short, they are separated by only about 3.2-million kilometers (two-million miles ), or two percent of the distance between Earth and our sun. The binaries orbit around each other every few days, with one face on each star perpetually locked and pointed toward the other.

These stars are familiarly like our own Sun – about the same size and probably about a billion to a few billion years old — roughly the age of our sun when life first evolved on Earth. But these stars spin much faster, and, as a result, have powerful magnetic fields, and giant, dark spots. The magnetic activity drives strong stellar winds — gale-force versions of the solar wind — that slow the stars down, pulling the twirling duos closer over time.

This is not a good scenario for planetary survival.

As the stars cozy up to each other, their gravitational influences change, and this could cause disturbances to planetary bodies orbiting around both stars. Comets and any planets that may exist in the systems would start jostling about and banging into each other, sometimes in powerful collisions. This includes planets that could theoretically be circling in the double stars’ habitable zone, a region where temperatures would allow liquid water to exist. Though no habitable planets have been discovered around any stars beyond our sun at this point in time, tight double-star systems are known to host planets; for example, one system not in the study, called HW Vir, has two gas-giant planets.

“These kinds of systems paint a picture of the late stages in the lives of planetary systems,” said Marc Kuchner, a co-author from NASA Goddard Space Flight Center. “And it’s a future that’s messy and violent.”

The temperatures around these systems measured by Spitzer are about the same as molten lava. The astronomers says that dust normally would have dissipated and blown away from the stars by this mature stage in their lives. They conclude that something — most likely planetary collisions — must therefore be kicking up the fresh dust. In addition, because dusty disks have now been found around four, older binary systems, the scientists know that the observations are not a fluke. Something chaotic is very likely going on.

If any life forms did exist in these star systems, and they could look up at the sky, they would have quite a view. Marco Matranga, lead author of the paper, also from Harvard-Smithsonian said, “The skies there would have two huge suns, like the ones above the planet Tatooine in ‘Star Wars.'”

The research was published in the Aug.19 issue of the Astrophysical Journal Letters.

Source: JPL

Space Telescopes Team Up to Capture Spectacular Galactic Collision

A new image of two tangled galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The Antennae galaxies take their name from the long antenna-like arms seen in wide-angle views of the system. These features were produced in the collision. Image credit: Chandra: NASA/CXC/SAO, Spitzer: NASA/JPL-Caltech, Hubble: NASA/STScI

[/caption]

From JPL:

A new image of two tangled galaxies has been released by NASA’s Great Observatories. The Antennae galaxies, located about 62 million light-years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold and brown), and the Spitzer Space Telescope (red). The Antennae galaxies take their name from the long, antenna-like arms seen in wide-angle views of the system. These features were produced in the collision.

The collision, which began more than 100 million years ago and is still occurring, has triggered the formation of millions of stars in clouds of dusts and gas in the galaxies. The most massive of these young stars have already sped through their evolution in a few million years and exploded as supernovas.

The X-ray image from Chandra shows huge clouds of hot, interstellar gas, which have been injected with rich deposits of elements from supernova explosions. This enriched gas, which includes elements such as oxygen, iron, magnesium and silicon, will be incorporated into new generations of stars and planets. The bright, point-like sources in the image are produced by material falling onto black holes and neutron stars that are remnants of the massive stars. Some of these black holes may have masses that are almost one hundred times that of the sun.

The Spitzer data show infrared light from warm dust clouds that have been heated by newborn stars, with the brightest clouds lying in the overlap region between the two galaxies. The Hubble data reveal old stars and star-forming regions in gold and white, while filaments of dust appear in brown. Many of the fainter objects in the optical image are clusters containing thousands of stars.

Astronomers Witness Star Birth

Astronomers caught a glimpse of a future star just as it is being born out of the surrounding gas and dust, in a star-forming region similar to the one pictured above. (Spitzer Space Telescope image of DR21 in Infrared) Credit: A. Marston (ESTEC/ESA) et al., JPL, Caltech, NASA

[/caption]

Astronomers have glimpsed into the birth of a star, and have seen what could be the youngest known star at the very moment it is being born. “It’s very difficult to detect objects in this phase of star formation, because they are very short-lived and they emit very little light,” said Xuepeng Chen, from Yale University and lead author of a new paper. Not yet fully developed into a true star, the object is in the earliest stages of star formation and has just begun pulling in matter from a surrounding envelope of gas and dust. The team detected the faint light emitted by the nearby dust.

Using the Submillimeter Array in Hawaii and the Spitzer Space Telescope, the astronomers studied L1448-IRS2E, located in the Perseus star-forming region, about 800 light years away within our Milky Way galaxy.

Stars form out of large, cold, dense regions of gas and dust called molecular clouds, which exist throughout the galaxy. Astronomers think L1448-IRS2E is in between the prestellar phase, when a particularly dense region of a molecular cloud first begins to clump together, and the protostar phase, when gravity has pulled enough material together to form a dense, hot core out of the surrounding envelope.

Most protostars are between one to 10 times as luminous as the Sun, with large dust envelopes that glow at infrared wavelengths. Because L1448-IRS2E is less than one tenth as luminous as the Sun, the team believes the object is too dim to be considered a true protostar. Yet they also discovered that the object is ejecting streams of high-velocity gas from its center, confirming that some sort of preliminary mass has already formed and the object has developed beyond the prestellar phase. This kind of outflow is seen in protostars (as a result of the magnetic field surrounding the forming star), but has not been seen at such an early stage until now.

The team hopes to use the new Herchel space telescope, launched last May, to look for more of these objects caught between the earliest stages of star formation so they can better understand how stars grow and evolve. “Stars are defined by their mass, but we still don’t know at what stage of the formation process a star acquires most of its mass,” said Héctor Arce, also from Yale. “This is one of the big questions driving our work.”

Other authors of the paper include Qizhou Zhang and Tyler Bourke of the Harvard-Smithsonian Center for Astrophysics; and Ralf Launhardt, Markus Schmalzl and Thomas Henning of the Max Planck Institute for Astronomy.

The new study appears in the current issue of the Astrophysical Journal.

Read the team’s paper here.

Source: Yale University

GOODS, Under Astronomers’ AEGIS, Produce GEMS

No, not really (but I got all three key words into the title in a way that sorta makes sense).

Astronomers, like most scientists, just love acronyms; unfortunately, like most acronyms, on their own the ones astronomers use make no sense to non-astronomers.

And sometimes not even when written in full:
GOODS = Great Observatories Origins Deep Survey; OK that’s vaguely comprehensible (but what ‘origins’ is it about?)
AEGIS = All-wavelength Extended Groth strip International Survey; hmm, what’s a ‘Groth’?
GEMS = Galaxy Evolution from Morphology and SEDs; is Morphology the study of Morpheus’ behavior? And did you guess that the ‘S’ stood for ‘SEDs’ (not ‘Survey’)?

But, given that these all involve a ginormous amount of the ‘telescope time’ of the world’s truly great observatories, to produce such visually stunning images as the one below (NOT!), why do astronomers do it?

GEMS tile#58 (MPIfA)


Astronomy has made tremendous progress in the last century, when it comes to understanding the nature of the universe in which we live.

As late as the 1920s there was still debate about the (mostly faint) fuzzy patches that seemed to be everywhere in the sky; were the spiral-shaped ones separate ‘island universes’, or just funny blobs of gas and dust like the Orion nebula (‘galaxy’ hadn’t been invented then)?

Today we have a powerful, coherent account of everything we see in the night sky, no matter whether we use x-ray eyes, night vision (infrared), or radio telescopes, an account that incorporates the two fundamental theories of modern physics, general relativity and quantum theory. We say that all the stars, emission and absorption nebulae, planets, galaxies, supermassive black holes (SMBHs), gas and plasma clouds, etc formed, directly or indirectly, from a nearly uniform, tenuous sea of hydrogen and helium gas about 13.4 billion years ago (well, maybe the SMBHs didn’t). This is the ‘concordance LCDM cosmological model’, known popularly as ‘the Big Bang Theory’.

But how? How did the first stars form? How did they come together to form galaxies? Why did some galaxies’ nuclei ‘light up’ to form quasars (and others didn’t)? How did the galaxies come to have the shapes we see? … and a thousand other questions, questions which astronomers hope to answer, with projects like GOODS, AEGIS, and GEMS.

The basic idea is simple: pick a random, representative patch of sky and stare at it, for a very, very long time. And do so with every kind of eye you have (but most especially the very sharp ones).

By staring across as much of the electromagnetic spectrum as possible, you can make a chart (or graph) of the amount of energy is coming to us from each part of that spectrum, for each of the separate objects you see; this is called the spectral energy distribution, or SED for short.

By breaking the light of each object into its rainbow of colors – taking a spectrum, using a spectrograph – you can find the tell-tale lines of various elements (and from this work out a great deal about the physical conditions of the material which emitted, or absorbed, the light); “light” here is shorthand for electromagnetic radiation, though mostly ultraviolet, visible light (which astronomers call ‘optical’), and infrared (near, mid, and far).

By taking really, really sharp images of the objects you can classify, categorize, and count them by their shape, morphology in astronomer-speak.

And because the Hubble relationship gives you an object’s distance once you know its redshift, and as distance = time, sorting everything by redshift gives you a picture of how things have changed over time, ‘evolution’ as astronomers say (not to be confused with the evolution Darwin made famous, which is a very different thing).

GOODS

The great observatories are Chandra, XMM-Newton, Hubble, Spitzer, and Herschel (space-based), ESO-VLT (European Southern Observatory Very Large Telescope), Keck, Gemini, Subaru, APEX (Atacama Pathfinder Experiment), JCMT (James Clerk Maxwell Telescope), and the VLA. Some of the observing commitments are impressive, for example over 2 million seconds using the ISAAC instrument (doubly impressive considering that ground-based facilities, unlike space-based ones, can only observe the sky at night, and only when there is no Moon).

There are two GOODS fields, called GOODS-North and GOODS-South. Each is a mere 150 square arcminutes in size, which is tiny, tiny, tiny (you need five fields this size to completely cover the Moon)! Of course, some of the observations extend beyond the two core 150 square arcminutes fields, but every observatory covered every square arcsecond of either field (or, for space-based observatories, both).

GOODS-N ACS fields (GOODS/STScI)

GOODS-N is centered on the Hubble Deep Field (North is understood; this is the first HDF), at 12h 36m 49.4000s +62d 12′ 58.000″ J2000.
GOODS-S ACS fields (GOODS/STScI)

GOODS-S is centered on the Chandra Deep Field-South (CDFS), at 3h 32m 28.0s -27d 48′ 30″ J2000.

The Hubble observations were taken using the ACS (Advanced Camera for Surveys), in four wavebands (bandpasses, filters), which are approximately the astronomers’ B, V, i, and z.

Extended Groth Strip fields (AEGIS)

AEGIS

The ‘Groth’ refers to Edward J. Groth who is currently at the Physics Department of Princeton University. In 1995 he presented a ‘poster paper’ at the 185th meeting of the American Astronomical Society entitled “A Survey with the HST“. The Groth strip is the 28 pointings of the Hubble’s WFPC2 camera in 1994, centered on 14h 17m +52d 30′. The Extended Groth Strip (EGS) is considerably bigger than the GOODS fields, combined. The observatories which have covered the EGS include Chandra, GALEX, the Hubble (both NICMOS and ACS, in addition to WFPC2), CFHT, MMT, Subaru, Palomar, Spitzer, JCMT, and the VLA. The total area covered is 0.5 to 1 square degree, though the Hubble observations cover only ~0.2 square degrees (and only 0.0128 for the NICMOS ones). Only two filters were used for the ACS observations (approximately V and I).

I guess you, dear reader, can work out why this is called an ‘All wavelength’ and ‘International Survey’, can’t you?

GEMS' ACS fields (MPIfA)

GEMS

GEMS is centered on the CDFS (Chandra Deep Field-South, remember?), but covers a much bigger area than GOODS-S, 900 square arcminutes (the largest contiguous field so far imaged by the Hubble at the time, circa 2004; the COSMOS field is certainly larger, but most of it is monochromatic – I band only – so the GEMS field is the largest contiguous color one, to date). It is a mosaic of 81 ACS pointings, using two filters (approximately V and z).

Its SEDs component comes largely from the results of a previous large project covering the same area, called COMBO-17 (Classifying Objects by Medium-Band Observations – a spectrophotometric 17-band survey).

Sources: GOODS (STScI), GOODS (ESO), AEGIS, GEMS, ADS
Special thanks to reader nedwright for catching the error re GEMS (and thanks to to readers who have emailed me with your comments and suggestions; much appreciated)

Spitzer Spies Earliest Black Holes

This artist's conception illustrates one of the most primitive supermassive black holes known (central black dot) at the core of a young, star-rich galaxy. Image credit: NASA/JPL-Caltech

[/caption]
The Spitzer Space Telescope has found what appear to be two of the earliest and most primitive supermassive black holes known. “We have found what are likely first-generation quasars, born in a dust-free medium and at the earliest stages of evolution,” said Linhua Jiang of the University of Arizona, Tucson, lead author of a paper published this week in Nature.

A quasar is a compact region in the center of a massive galaxy surrounding the central supermassive black hole.

As shown by the image we posted earlier today from the Planck mission, our galaxy – and the Universe – is littered with dust. But scientists believe the very early universe didn’t have any dust — which tells them that the most primitive quasars should also be dust-free. But nobody had seen any “clean” quasars — until now.

Spitzer has identified two — the smallest on record — about 13 billion light-years away from Earth. The quasars, called J0005-0006 and J0303-0019, were first unveiled in visible light using data from the Sloan Digital Sky Survey. That discovery team, which included Jiang, was led by Xiaohui Fan, a coauthor of the recent paper. NASA’s Chandra X-ray Observatory had also observed X-rays from one of the objects. X-rays, ultraviolet and optical light stream out from quasars as the gas surrounding them is swallowed.

“Quasars emit an enormous amount of light, making them detectable literally at the edge of the observable universe,” said Fan.

These two data plots from NASA's Spitzer Space Telescope show a primitive supermassive black hole (top) compared to a typical one. Image credit: NASA/JPL-Caltech

When Jiang and his colleagues set out to observe J0005-0006 and J0303-0019 with Spitzer between 2006 and 2009, their targets didn’t stand out much from the usual quasar bunch. Spitzer measured infrared light from the objects along with 19 others, all belonging to a class of the most distant quasars known. Each quasar is anchored by a supermassive black hole weighing more than 100 million suns.

Of the 21 quasars, J0005-0006 and J0303-0019 lacked characteristic signatures of hot dust, the Spitzer data showed. Spitzer’s infrared sight makes the space telescope ideally suited to detect the warm glow of dust that has been heated by feeding black holes.

“We think these early black holes are forming around the time when the dust was first forming in the universe, less than one billion years after the Big Bang,” said Fan. “The primordial universe did not contain any molecules that could coagulate to form dust. The elements necessary for this process were produced and pumped into the universe later by stars.”

The astronomers also observed that the amount of hot dust in a quasar goes up with the mass of its black hole. As a black hole grows, dust has more time to materialize around it. The black holes at the cores of J0005-0006 and J0303-0019 have the smallest measured masses known in the early universe, indicating they are particularly young, and at a stage when dust has not yet formed around them.

The Spitzer observations were made before the telescope ran out of its liquid coolant in May 2009, beginning its “warm” mission.

Source: JPL

MN112 – A New Luminous Blue Variable Found From Its Nebula?

Eta Carinae. One of the most massive stars known. Image credit: Hubble
Eta Carinae. One of the most massive stars known. Image credit: Hubble

[/caption]

Luminous Blue Variables (LBVs) are a rare class of extremely massive stars that teeter on the very edge of being stable. The most famous of this class of stars is the well studied Eta Carinae. Like many other LBVs, Eta Carinae is shrouded in a nebula of its own making. The instability of the star causes it to throw off large amounts of mass even during its brief main sequence lifetime. What makes these stars so unstable is an open question which has been difficult to answer do the the paucity of known LBVs. Given that the initial mass function predicts that such massive stars should be rare, this is not surprising, but identifying these stars is often made even more difficult due to the reddening caused by their nebulae.

However, an international team working from Russia and South Africa proposes that the nebula itself may be able to help identify potential candidates of LBVs. To test out their hypothesis, they scanned the Spitzer image archives for nebulae with features similar to those of known LBVs. The feature that distinguished potential LBV nebulae from other nebulae was emission only in the 24 ?m images (likely due to the fact that nebulae do not operate as model blackbodies at such wavelengths, but instead emit most strongly at specific wavelengths due to fluorescence).

In their review of potential nebulae, they identified a one known as MN112. To further explore the possibility, the team took high resolution spectra of the central star. They determined the central star had strong similarities to the known LBV P Cygni. Most notably, the candidate LBV showed very strong emission lines for hydrogen and He I right next to absorption lines for the same elements. This is caused by high pressure regions, either in the atmosphere of the star, or as the faster wind from the star interacts with a slower moving nebula around it. The high pressure region becomes more dense and gives emission lines. Since it moves outwards, it is slightly blueshifted and thus, does not appear directly on top of the absorption line caused by the relatively less dense atmosphere. This time of feature is known as a P Cygni profile.

Another identifying feature of Luminous Blue Variables is that they are variable (Surprise!) up to as much as 1-2 magnitudes. The team had records of the star from photographic plates dating back as far as 1965 as well as more recent CCD measurements and found that the star had not been seen to vary significantly from an apparent blue magnitude (mB) of 17. However, in the infrared region, they determined (using their own photometric observations) that the star had brightened by 0.4 magnitudes over the past 19 years. Although this falls short of the expected variability for a LBV, they suggest “it is quite possible that a significant fraction of LBVs (if not all of them) goes through the long quiescent periods (lasting centuries or more; e.g. Lamers 1986) so that the fast variability (on time
scales from years to decades) observed in the vast majority of classical LBVs could be merely due to the selection effect.”

The authors state their intention to continue observation of this candidate LBV “in the hope that the ”duck” will ”quack” in the foreseeable future.”

Get the Big Picture of the Milky Way at the Adler Planetarium

Spitzer infrared image on display at the Adler Planetarium. Credit: Adler

[/caption]
Astronomy is all about getting the big picture of our place in the cosmos, but some pictures are bigger than others. This one is really big. The world’s largest image of our Milky Way galaxy went on display today at the Adler Planetarium in Chicago. The image spans an area of 37 meters (120 feet) long by 1 meter (3 feet) wide at its sides, bulging to 2 meters (6 feet) to show the center of our humongous galaxy. The panorama represents 800,000 separate images taken by the Spitzer Space Telescope over a five-year period.


“This is the highest-resolution, largest, most sensitive infrared picture ever taken of our Milky Way,” said Sean Carey of NASA’s Spitzer Science Center, speaking when the image was unveiled in 2008 at the American Astronomical Society meeting in St. Louis (see our article and image of the unveiling). “Where previous surveys saw a single source of light, we now see a cluster of stars. With this data, we can learn how massive stars form, map galactic spiral arms and make a better estimate of our galaxy’s star-formation rate.”

Spitzer Survey image compiled.  Credit: NASA/JPL
Spitzer Survey image compiled. Credit: NASA/JPL

Data from Spitzer’s Infrared Array Camera (IRAC) and the Multiband Imaging Photometer were used to create the image.

If you want to download a very large version of this image (2400 x 3000) click here — warning: very big file.

From our vantage point on Earth, we see the Milky Way as a blurry, narrow band of light that stretches across the sky. In the visible, we only see about 5% of what’s actually out there. But with Spitzer’s dust-piercing infrared eyes, astronomers have peered 60,000 light-years away into this fuzzy band, called the galactic plane, and saw all the way to the other side of the galaxy.

The panorama reveals star formation as never seen before on both the large and small scale. Most of the star forming regions had not been seen before this project was undertaken.

I had the good fortune of seeing the image in St. Louis, and I highly recommend taking the opportunity to go see it at the Adler Planetarium if you are in Chicago. Here’s a video that explains how astronomers took the images and put them all together to form this gigantic panorama.

*Serendipitously, I am currently at the dotAstronomy conference where Eli Bressert from the Chandra X-Ray Center talked about the GLIMPSE Viewer. Here’s the link to see the Spitzer image with GLIMPSE (Galactic Legacy Infrared Midplane Extraordinaire).

Adler Planetarium is located at 1300 South Lake Shore Drive, Chicago, Ill., 60605. Phone: 312-922-7827. Adler Planetarium website. .

Baby Brown Dwarfs Provide Clues to Solve Mystery

Why – and how — do brown dwarfs form? Since these cosmic misfits fall somewhere between planets and stars in terms of their temperature and mass, astronomers haven’t yet been able to determine how they form: are their beginnings like planets or stars? Now, the Spitzer Space Telescope has found what could be two of the youngest brown dwarfs. While astronomers are still looking to confirm the finding of these so-called “proto brown dwarfs” it has provided a preliminary answer of how these unusual stars form.

The baby brown dwarfs were found in Spitzer data collected in 2005. Astronomers had focused their search in the dark cloud Barnard 213, a region of the Taurus-Auriga complex well known to astronomers as a hunting ground for young objects.

“We decided to go several steps back in the process when (brown dwarfs) are really hidden,” said David Barrado of the Centro de Astrobiología in Madrid, Spain, lead author of the paper, published in the Astronomy & Astrophysics journal. “During this step they would have an (opaque) envelope, a cocoon, and they would be easier to identify due to their strong infrared excesses. We have used this property to identify them. This is where Spitzer plays an important role because Spitzer can have a look inside these clouds. Without it this wouldn’t have been possible.”

Barrado said the findings potentially solve the mystery about whether brown dwarfs form more like stars or planets. The team’s findings? Brown dwarfs form like low-mass stars.

Brown dwarfs are cooler and more lightweight than stars and more massive (and normally warmer) than planets. They are born of the same dense, dusty clouds that spawn stars and planets. But while they may share the same galactic nursery, brown dwarfs are often called “failed” stars because they lack the mass of their hotter, brighter stellar siblings. Without that mass, the gas at their core does not get hot enough to trigger the nuclear fusion that burns hydrogen — the main component of these molecular clouds — into helium. Unable to ignite as stars, brown dwarfs end up as cooler, less luminous objects that are more difficult to detect — a challenge that was overcome in this case by Spitzer’s heat-sensitive infrared vision.

This artist's rendering gives us a glimpse into a cosmic nursery as a star is born from the dark, swirling dust and gas of this cloud. Image credit: NASA/JPL-Caltech
This artist's rendering gives us a glimpse into a cosmic nursery as a star is born from the dark, swirling dust and gas of this cloud. Image credit: NASA/JPL-Caltech

Young brown dwarfs also evolve rapidly, making it difficult to catch them when they are first born. The first brown dwarf was discovered in 1995 and, while hundreds have been found since, astronomers had not been able to unambiguously find them in their earliest stages of formation until now.

Spitzer’s longer-wavelength infrared camera penetrated the dusty natal cloud to observe STB213 J041757. The data, confirmed with near-infrared imaging from Calar Alto Observatory in Spain, revealed not one but two of what would potentially prove to be the faintest and coolest brown dwarfs ever observed.

The twins were observed from around the globe, and their properties were measured and analyzed using a host of powerful astronomical tools. One of the astronomers’ stops was the Caltech Submillimeter Observatory in Hawaii, which captured the presence of the envelope around the young objects. That information, coupled with what they had from Spitzer, enabled the astronomers to build a spectral energy distribution — a diagram that shows the amount of energy that is emitted by the objects in each wavelength.

From Hawaii, the astronomers made additional stops at observatories in Spain (Calar Alto Observatory), Chile (Very Large Telescopes) and New Mexico (Very Large Array). They also pulled decade-old data from the Canadian Astronomy Data Centre archives that allowed them to comparatively measure how the two objects were moving in the sky. After more than a year of observations, they drew their conclusions.

“We were able to estimate that these two objects are the faintest and coolest discovered so far,” Barrado said. This theory is bolstered because the change in brightness of the objects at various wavelengths matches that of other very young, low-mass stars.

While further study will confirm whether these two celestial objects are in fact proto brown dwarfs, they are the best candidates so far, Barrado said. He said the journey to their discovery, while difficult, was fun. “It is a story that has been unfolding piece by piece. Sometimes nature takes its time to give up its secrets.”

Lead image caption: This image shows two young brown dwarfs, objects that fall somewhere between planets and stars in terms of their temperature and mass. Image credit: NASA/JPL-Caltech/Calar Alto Obsv./Caltech Sub. Obsv.

Source: JPL