A Binary Star Found Surprisingly Close to the Milky Way's Supermassive Black Hole

The newly discovered binary star D9, which is orbiting Sagittarius A*, the supermassive black hole at the centre of our galaxy. Credit: ESO/F. Peißker et al., S. Guisard

Binary stars are common throughout the galaxy. Roughly half the stars in the Milky Way are part of a binary or multiple system, so we would expect to find them almost everywhere. However, one place we wouldn’t expect to find a binary is at the center of the galaxy, close to the supermassive black hole Sagittarius A*. And yet, that is precisely where astronomers have recently found one.

Continue reading “A Binary Star Found Surprisingly Close to the Milky Way's Supermassive Black Hole”

The Hubble and FU Orionis: a New Look at an Old Mystery

This is an artist's concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. A team of astronomers has used the Hubble Space Telescope's ultraviolet capabilities to learn more about the interaction between FU Ori's stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. NASA-JPL, Caltech

In 1936 astronomers watched as FU Orionis, a dim star in the Orion constellation, brightened dramatically. The star’s brightness increased by a factor of 100 in a matter of months. When it peaked, it was 100 times more luminous than our Sun.

Astronomers had never observed a young star brightening like this.

Continue reading “The Hubble and FU Orionis: a New Look at an Old Mystery”

An Explanation for Rogue Planets. They Were Eroded Down by Hot Stars

Illustration of a Jupiter-mass binary object. Credit: Gemini Observatory/Jon Lomberg

The dividing line between stars and planets is that stars have enough mass to fuse hydrogen into helium to produce their own light, while planets aren’t massive enough to produce core fusion. It’s generally a good way to divide them, except for brown dwarfs. These are bodies with a mass of about 15–80 Jupiters, so they are large enough to fuse deuterium but can’t generate helium. Another way to distinguish planets and stars is how they form. Stars form by the gravitational collapse of gas and dust within a molecular cloud, which allows them to gather mass on a short cosmic timescale. Planets, on the other hand, form by the gradual accumulation of gas and dust within the accretion disk of a young star. But again, that line becomes fuzzy for brown dwarfs.

Continue reading “An Explanation for Rogue Planets. They Were Eroded Down by Hot Stars”

The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way

Near the outskirts of the Small Magellanic Cloud, a satellite galaxy roughly 200 000 light-years from Earth, lies the young star cluster NGC 602, which is featured in this new image from the NASA/ESA/CSA James Webb Space Telescope. This image includes data from Webb’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). Image Credit: ESA/Webb, NASA & CSA, P. Zeidler, E. Sabbi, A. Nota, M. Zamani (ESA/Webb)

This stunning image of a star cluster in the Small Magellanic Cloud (SMC) is more than just a pretty picture. It’s part of a scientific effort to understand star formation in an environment different from ours. The young star cluster is called NGC 602, and it’s very young, only about 2 or 3 million years old.

Continue reading “The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way”

A Black Hole has Almost Halted Star Formation in its Galaxy

This is a quiescent galaxy in the early Universe named GS-10578 but nicknamed ‘Pablo’s Galaxy’. It has an SMBH in its center, and astronomers have used the NASA/ESA James Webb Space Telescope to confirm that supermassive black holes can starve their host galaxies of the fuel they need to form new stars. Image Credit: JADES Collaboration

When the James Webb Space Telescope was launched on Christmas Day in 2021, it faced a whole host of intriguing questions. By the time it finally launched, astronomers had a big list of targets begging for the type of detailed observations that only the powerful infrared space telescope could perform. One of the targets was an ancient, massive galaxy that’s basically dead and forms no new stars.

The results are in, and an international team of astronomers know what happened to the quiescent galaxy.

Continue reading “A Black Hole has Almost Halted Star Formation in its Galaxy”

The Outer Reaches of the Milky Way are Full of Stars, and the JWST is Observing Them

This JWST image shows a region of rapid star formation in the Extreme Outer Galaxy. It's part of what's called Digel Cloud 2, one of two clouds that each hold multiple regions of rapid star formation. This area is called Digel Cloud 2S and contains a luminous main cluster full of bright young stars. Image Credit: NASA, ESA, CSA, STScI, M. Ressler (NASA-JPL)

The Milky Way’s outer reaches are coming into view thanks to the JWST. Astronomers pointed the powerful space telescope to a region over 58,000 light-years away called the Extreme Outer Galaxy (EOG). They found star clusters exhibiting extremely high rates of star formation.

Continue reading “The Outer Reaches of the Milky Way are Full of Stars, and the JWST is Observing Them”

JWST Reveals Star Formation at Cosmic Noon

A massive galaxy cluster named MACS-J0417.5-1154 is warping and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here. Two distant, interacting galaxies — a face-on spiral and a dusty red galaxy seen from the side — appear multiple times, tracing a familiar shape across the sky. NASA, ESA, CSA, STScI, V. Estrada-Carpenter (Saint Mary's University).

Understanding the star formation rate (SFR) in a galaxy is critical to understanding the galaxy itself. Some galaxies are starburst galaxies with extremely high SFRs, some are quenched or quiescent galaxies with very low SFRs, and some are in the middle. Researchers used the JWST to observe a pair of galaxies at Cosmic Noon that are just beginning to merge to see how SFRs vary in different regions of both galaxies.

Continue reading “JWST Reveals Star Formation at Cosmic Noon”

No Merger Needed: A Rotating Ring of Gas Creates A Hyperluminous Galaxy

This is a distant Hyper Luminous Infrared Galaxy named PJ0116-24. These galaxies experience rapid star formation that astronomers think is triggered by mergers. But this one suggests otherwise. Warm gas is shown in red and cold gas is shown in blue. Image Credit: PJ0116-24

Some galaxies experience rapid star formation hundreds or even thousands of times greater than the Milky Way. Astronomers think that mergers are behind these special galaxies, which were more abundant in the earlier Universe. But new results suggest no mergers are needed.

Continue reading “No Merger Needed: A Rotating Ring of Gas Creates A Hyperluminous Galaxy”

Galaxies Regulate their Own Growth so they Don’t Run Out of Star Forming Gas

A simulation of a galaxy’s ‘heart and lungs’ at work is pictured inset on an artist's impression of bi-polar jets of gas originating from a supermassive black hole at the centre of a galaxy. Credit ESA/Hubble, L. Calçada (ESO) / C Richards/MD Smith/University of Kent Licence type Attribution (CC BY 4.0)

Look at most spiral or barred spiral galaxies and you will see multiple regions where stars are forming. These star forming regions are comprised of mostly hydrogen gas with a few other elements for good measure. The first galaxies in the Universe had huge supplies of this star forming gas. Left unchecked they could have burned through the gas quickly, generating enormous amounts of star formation. Life fast though and die young for such an energetic burst of star formation would soon fizzle out leaving behind dead and dying stars. In some way it seems, galaxies seem to regulate their star formation thanks to supermassive black holes at their centre. 

Continue reading “Galaxies Regulate their Own Growth so they Don’t Run Out of Star Forming Gas”

Webb Sees a Star in the Midst of Formation

In this JWST image, a young protostar is growing larger and emitting jets of material from inside its molecular cloud. Image Credit: NASA, ESA, CSA, STScI

Wherever the JWST looks in space, matter and energy are interacting in spectacular displays. The Webb reveals more detail in these interactions than any other telescope because it can see through dense gas and dust that cloak many objects.

In a new image, the JWST spots a young protostar only 100,000 years old.

Continue reading “Webb Sees a Star in the Midst of Formation”