Imagine yourself in a boat on a great ocean, the water stretching to the distant horizon, with the faintest hints of land just beyond that. It’s morning, just before dawn, and a dense fog has settled along the coast. As the chill grips you on your early watch, you catch out of the corner of your eye a lighthouse, feebly flickering through the fog.
We need to talk about the dark ages. No, not those dark ages after the fall of the western Roman Empire. The cosmological dark ages. The time in our universe, billions of years ago, before the formation of the first stars. And we need to talk about the cosmic dawn: the birth of those first stars, a tumultuous epoch that completely reshaped the face the cosmos into its modern form.
Those first stars may have been completely unlike anything we see in the present universe. And we may, if we’re lucky, be on the cusp of seeing them for the first time.
In the 1970s, astronomers discovered that a particularly large black hole (Sagittarius A*) existed at the center of our galaxy. In time, they came to understand that similar Supermassive Black Holes (SMBHs) existed in the center of most massive galaxies. The presence of these black holes was also what differentiated galaxies that had particularly luminous cores – aka. Active Galactic Nuclei (AGN) – from those that didn’t.
Since that time, astronomers and cosmologists have pondered what role SMBHs have on galactic evolution, with some venturing that they have a profound impact on star formation. And thanks to a recent study by an international team of astronomers, there is now direct evidence for a correlation between and SMBH and a galaxy’s star formation. In fact, the team demonstrated that a black hole’s mass could determine when star formation in a galaxy will end.
For the sake of their study, the team relied on data gathered the Hobby-Eberle Telescope Massive Galaxy Survey in 2015. This systematic survey used the 10m Hobby-Eberly Telescope (HET) at the McDonald Observatory to conduct an optical long-slit spectroscopic survey of over 1000 galaxies. This survey not only provided spectra for these galaxies, but also produced direct mass measurements of the central black holes for 74 of these galaxies.
Using this data, Martín-Navarro and his colleagues found the first observational evidence for a direct correlation between the mass of a galaxy’s central black hole and its history of star formation. While astrophysicists have been operating under this assumption for decades, the proof was missing until now. As Jean Brodie, professor of astronomy and astrophysics at UC Santa Cruz and a coauthor of the paper, said in a UCSC press release:
“We’ve been dialing in the feedback to make the simulations work out, without really knowing how it happens. This is the first direct observational evidence where we can see the effect of the black hole on the star formation history of the galaxy.”
Roughly 15 years ago, the correlation between a SMBHs mass and the total mass of a galaxy’s stars was discovered, which led to a major unresolved question in astrophysical circles. While this correlation appeared to be a central feature of galaxies, it was unclear as to what could have caused it. How could the mass of a comparatively small and central black hole be related to the mass of billions of stars distributed throughout a galaxy?
One possible explanation was that more massive galaxies collected larger amounts of gas, thus resulting in more stars and a more massive central black hole. However, astrophysicists also believed their was a feedback mechanism at work, where growing black holes inhibited the formation of stars in their vicinity. In short, when matter accretes on a central black hole, it sends out a tremendous amount of energy in the form of radiation and particle jets.
If this energy is transferred to gas and dust surrounding the core of the galaxy, stars will be less likely to form in this region since gas and dust need to be cold in order to undergo areas of collapse. For years, feedback of this kind has been included in cosmological simulations to explain the observed star-formation rates in galaxies. According to these same simulations, minus this mechanism, galaxies would form far more stars than have been observed.
However, no direct evidence of this phenomena had previously been available. The first step to obtaining some was to reproduce the stellar formation histories of the 74 target galaxies used for the study. Martín-Navarro and his colleagues did this by subjecting spectra obtained from each of these galaxies to computational techniques that looked for the best combination of stellar populations to fit the data.
In so doing, the team was able to reconstruct the history of star formation within the target galaxies for the past 12.5 billion years. After examining these histories, they noticed some predictable results, but also some rather significant differences. For starters, as predicted, the regions of around the galaxies’ central black holes demonstrated a clear dampening influence on the rate of star formation.
As predicted, there was also a clear correlation between the mass of the central black holes and stellar mass in these galaxies. However, the team also noted that in cases where stellar mass was slightly smaller than expected (relative to the mass of their central black holes), star formation rates were lower. In some other cases, galaxies had larger-than-expected stellar masses (again, relative to their black holes) and their star formation rates were higher.
This correlation was not only more consistent than that observed between black hole mass and stellar mass, it occurred independently of other factors (such as shape or density). As Martín-Navaro explained:
“For galaxies with the same mass of stars but different black hole mass in the center, those galaxies with bigger black holes were quenched earlier and faster than those with smaller black holes. So star formation lasted longer in those galaxies with smaller central black holes.”
They also noted that this correlation extends into the deep past, where the galaxies with supermassive central black holes have been consistently producing a comparatively low rate of stars for the past 12.5 billion years. This constitutes the first strong evidence for a direct, long-term connection between star formation and the existence of a central black hole in a galaxy.
Another interesting takeaway from the study was the way it addressed possible correlations between AGN luminosity and star formation. In the past, other researchers have sought to find evidence of a link between the two, but without success. According to Martín-Navarro and his team, this may be because the time scales are incredibly different. Whereas star formation occurs over the course of eons, outbursts from AGNs occur over shorter intervals.
What’s more, AGNs are highly variable and their properties are dependent on a number of factors relating to their black holes – i.e. size, mass, rate of accretion, etc. “We used black hole mass as a proxy for the energy put into the galaxy by the AGN, because accretion onto more massive black holes leads to more energetic feedback from active galactic nuclei, which would quench star formation faster,” said Martin-Navarro.
Looking ahead, the team hopes to conduct further research and determine exactly how central black holes arrest star formation. At present, the possibility that it could be due to radiation or jets of gas heating up surrounding matter are not definitive. As Aaron Romanowsky, an astronomer at San Jose State University and UC Observatories, indicated:
“There are different ways a black hole can put energy out into the galaxy, and theorists have all kinds of ideas about how quenching happens, but there’s more work to be done to fit these new observations into the models.”
Part of determining how the Universe came to be is knowing what mechanisms were at play and the extent of their roles. With this latest study, astrophysicists and cosmologists can take comfort in the knowledge that they’ve been getting it right – at least in this case!
I didn’t notice it with the naked eye, but as soon as the time exposure ended and I looked at the camera’s back display, there it was — Saturn riding barebacked on the Galactic Dark Horse! The horse, more of a prancing pony, is a collection of dark nebulae in the southern sky beautifully placed for viewing on late June evenings. The Dark Horse is part of the Great Rift, a dark gap that splits the band of the Milky Way in half, starting at the Northern Cross and extending all the way down to the “Teapot” of Sagittarius in the south.
While appearing to be little more than empty, starless space, in reality the Rift consists of enormous clouds of cosmic dust and gas in the plane of the galaxy called dark nebulae that blot out the light of more distant stars. If you could suck it all up with a monster vacuum cleaner and expose the billions of stars otherwise hidden, the Milky Way would cast obvious shadows — even suburban skywatchers would routinely see it.
Tiny dust particles spewed by older, evolved stars and exploding supernovas have been settling in the plane of the galaxy since its birth 13.2 billion years ago. While the dust is sparse, it adds up over the light years to form a thick, dark band silhouetted against the more distant stars. Gravity has been at work on the dust since the earliest days, compressing the denser clumps into new stars and star clusters. But much raw material remains. Within the curdles of dark nebulae, astronomers use dust-penetrating infrared and radio telescopes to watch new stars in the process of incubation.
There are more obvious parts of the Rift to the naked eye but few conjure up as striking an image as the Dark Horse, located about one outstretched fist to the left of the Scorpius’ brightest star, Antares. Saturn sits astride the horse’s back or eastern side. While it’s fun to see the horse as a single figure, astronomers catalog the various body parts as individual dark nebulae with separate numbers and even names. The largest part of the horse, the hind leg, is nicknamed the Pipe Nebula and lies 600-700 light years away. The Pipe is further subdivided into B59, B72, B77 and B78, from a survey of dark nebulae by early 20th century American astronomer E.E. Barnard.
While the dark horse shows up well in time-exposure photos, you’ll need dark, rural skies to view it with the naked eye. It’s only a couple fists high for those of us living in the northern U.S. and southern Canada, but considerably higher up from the southern states and points south. The figure is large but faint, about 10° long by 7° wide, and stands due south and highest in the sky around 12:30 a.m. in late June. Allow your eyes time to fully dark adapt beforehand. Try for the dark rump and hind leg first then work from there to fill in the rest of the horse.
Once I knew what to look for, I could fleetingly see the entire horse with its various protrusions as a subtle darkness against the brighter Milky Way. Averted vision, the technique of playing your eye around the subject rather than staring directly at it, helped make it happen. Wide-field binoculars will show it easily and in greater detail against a fabulously rich star field.
The best time to horse around under the Milky Way happens from now till the end of the month, when the bright Moon sends the critter into hiding.
For us Earthlings, life under a single Sun is just the way it is. But with the development of modern astronomy, we’ve become aware of the fact that the Universe is filled with binary and even triple star systems. Hence, if life does exist on planets beyond our Solar System, much of it could be accustomed to growing up under two or even three suns. For centuries, astronomers have wondered why this difference exists and how star systems came to be.
Whereas some astronomers argue that individual stars formed and acquired companions over time, others have suggested that systems began with multiple stars and lost their companions over time. According to a new study by a team from UC Berkeley and the Harvard-Smithsonian Center for Astrophysics (CfA), it appears that the Solar System (and other Sun-like stars) may have started out as binary system billions of years ago.
This study, titled “Embedded Binaries and Their Dense Cores“, was recently accepted for publication in the Monthly Notices of the Royal Astronomical Society. In it, Sarah I. Sadavoy – a radio astronomer from the Max Planck Institute for Astronomy and the CfA – and Steven W. Stahler (a theoretical physicist from UC Berkeley) explain how a radio surveys of a star nursery led them to conclude that most Sun-like stars began as binaries.
For several decades, astronomers have known that stars are born inside “stellar nurseries”, which are the dense cores that exist within immense clouds of dust and cold, molecular hydrogen. These clouds look like holes in the star field when viewed through an optical telescope, thanks to all the dust grains that obscure light coming from the stars forming within them and from background stars.
Radio surveys are the only way to probe these star-forming regions, since the dust grains emit radio transmissions and also do not block them. For years, Stahler has been attempting to get radio astronomers to examine molecular clouds in the hope of gathering information on the formation of young stars inside them. To this end, he approached Sarah Sadavoy – a member of the VANDAM team – and proposed a collaboration.
The two began their work together by conducting new observations of both single and binary stars within the dense core regions of the Perseus cloud. As Sadavoy explained in a Berkeley News press release, the duo were looking for clues as to whether young stars formed as individuals or in pairs:
“The idea that many stars form with a companion has been suggested before, but the question is: how many? Based on our simple model, we say that nearly all stars form with a companion. The Perseus cloud is generally considered a typical low-mass star-forming region, but our model needs to be checked in other clouds.”
Their observations of the Perseus cloud revealed a series of Class 0 and Class I stars – those that are <500,000 old and 500,000 to 1 million years old, respectively – that were surrounded by egg-shaped cocoons. These observations were then combined with the results from VANDAM and other surveys of star forming regions – including the Gould Belt Survey and data gathered by SCUBA-2 instrument on the James Clerk Maxwell Telescope in Hawaii.
From this, they created a census of stars within the Perseus cloud, which included 55 young stars in 24 multiple-star systems (all but five of them binary) and 45 single-star systems. What they observed was that all of the widely separated binary systems – separated by more than 500 AU – were very young systems containing two Class 0 stars that tended to be aligned with the long axis of their egg-shaped dense cores.
Meanwhile, the slightly older Class I binary stars were closer together (separated by about 200 AU) and did not have the same tendency as far as their alignment was concerned. From this, the study’s authors began mathematically modelling multiple scenarios to explain this distribution, and concluded that all stars with masses comparable to our Sun start off as wide Class 0 binaries. They further concluded that 60% of these split up over time while the rest shrink to form tight binaries.
“As the egg contracts, the densest part of the egg will be toward the middle, and that forms two concentrations of density along the middle axis,” said Stahler. “These centers of higher density at some point collapse in on themselves because of their self-gravity to form Class 0 stars. “Within our picture, single low-mass, sunlike stars are not primordial. They are the result of the breakup of binaries. ”
Findings of this nature have never before been seen or tested. They also imply that each dense core within a stellar nursery (i.e. the egg-shaped cocoons, which typically comprise a few solar masses) converts twice as much material into stars as was previously thought. As Stahler remarked:
“The key here is that no one looked before in a systematic way at the relation of real young stars to the clouds that spawn them. Our work is a step forward in understanding both how binaries form and also the role that binaries play in early stellar evolution. We now believe that most stars, which are quite similar to our own sun, form as binaries. I think we have the strongest evidence to date for such an assertion.”
This new data could also be the start of a new trend, where astronomers rely on radio telescopes to examine dense star-forming regions with the hopes of witnessing more in the way of stellar formations. With the recent upgrades to the VLA and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the ongoing data provided by the SCUBA-2 survey in Hawaii, these studies may be coming sooner other than later.
Another interesting implication of the study has to do with something known as the “Nemesis hypothesis”. In the past, astronomers have conjectured that a companion star named “Nemesis” existed within our Solar System. This star was so-named because the theory held that it was responsible for kicking the asteroid which caused the extinction of the dinosaurs into Earth’s orbit. Alas, all attempts to find Nemesis ended in failure.
As Steven Stahler indicated, these findings could be interpreted as a new take on the Nemesis theory:
“We are saying, yes, there probably was a Nemesis, a long time ago. We ran a series of statistical models to see if we could account for the relative populations of young single stars and binaries of all separations in the Perseus molecular cloud, and the only model that could reproduce the data was one in which all stars form initially as wide binaries. These systems then either shrink or break apart within a million years.”
So while their results do not point towards a star being around for the extinction of the dinosaurs, it is possible (and even highly plausible) that billions of years ago, the Solar planets orbited around two stars. One can only imagine what implications this could have for the early history of the Solar System and how it might have affected planetary formation. But that will be the subject of future studies, no doubt!
In order to make sense of our Universe, astronomers have to work hard, and they have to push observing technology to the limit. Some of that hard work revolves around what are called sub-millimeter galaxies (SMGs.) SMGs are galaxies that can only be observed in the submillimeter range of the electromagnetic spectrum.
The sub-millimeter range is the waveband between the far-infrared and microwave wavebands. (It’s also called Terahertz radiation.) We’ve only had the capability to observe in the sub-millimeter range for a couple decades. We’ve also increased the angular resolution of telescopes, which helps us discern separate objects.
SMGs themselves are dim in other wavelengths, because they’re obscured by dust. The optical light is blocked by the dust, and absorbed and re-emitted in the sub-millimeter range. In the sub-millimeter, SMGs are highly luminous; trillions of times more luminous than the Sun, in fact.
This is because they are extremely active star-forming regions. SMGs are forming stars at a rate hundreds of times greater than the Milky Way. They are also generally older, more distant galaxies, so they’re red-shifted. Studying them helps us understand galaxy and star formation in the early universe.
A new study, led by James Simpson of the University of Edinburgh and Durham University, has examined 52 of these galaxies. In the past, it was difficult to know the exact location of SMGs. In this study, the team relied on the power of the Atacama Large Millimeter/submillimeter array (ALMA) to get a much more precise measurement of their location. These 52 galaxies were first identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey.
There are four major results of the study:
48 of the SMGs are non-lensed, meaning that there is no object of sufficient mass between us and them to distort their light. Of these, the team was able to constrain the red-shift (z) for 35 of them to a median range of z-2.65. When it comes to extra-galactic observations like this, the higher the red-shift, the further away the object is. (For comparison, the highest red-shift object we know of is a galaxy called GN-z11, at z=11.1, which corresponds to about 400 million years after the Big Bang.
Another type of galaxy, the Ultra-Luminous Infrared Galaxy (ULIRG) were thought to be evolved versions of SMGs. But this study showed that SMGs are larger and cooler than ULIRGs, which means that any evolutionary link between the two is unlikely.
The team calculated estimates of dust mass in these galaxies. Their estimates suggest that effectively all of the optical-to-near-infrared light from co-located stars is obscured by dust. They conclude that a common method in astronomy used to characterize astronomical light sources, called Spectral Energy Distribution (SED), may not be reliable when it comes to SMGs.
The fourth result is related to the evolution of galaxies. According to their analysis, it seems unlikely that SMGs can evolve into spiral or lenticular galaxies (a lenticular galaxy is midway between a spiral and an elliptical galaxy.) Rather, it appears that SMGs are the progenitors of elliptical galaxies.
This study was a pilot study that the team hopes to extend to many other SMGs in the future.
Not many people have heard of the globular star cluster Terzan 5. It’s a big ball of stars resembling spilled sugar like so many other globular clusters. A very few globulars are bright enough to see with the naked eye; Terzan 5 is faint because it lies far away in the direction of the center of Milky Way galaxy inside its central bulge. Here, the stars that formed at the galaxy’s birth are packed together in great numbers. They are the “old ones” of the Milky Way.
Today, a team of astronomers revealed that Terzan 5 is unlike any globular cluster known. Most Milky Way globulars contain stars of just one age, about 11-12 billion years. They formed around the same time as the Milky Way itself, used up all their available gas early to build stars and then spent the remaining billions of years aging. Most orbit the galaxy’s center in a vast halo like moths whirring around a bright light. Oddball Terzan 5 has two populations aged 12 billion and 4.5 billion years old and it’s located inside the galactic bulge.
The team used the cameras on the Hubble Space Telescope as well as a host of ground-based telescopes to find compelling evidence for the two distinct kinds of stars. Not only do they show a large gap in age, but the differ in the elements they contain. Terzan 5’s dual populations point to a star formation process that wasn’t continuous but dominated by two distinct bursts of star formation.
“This requires the Terzan 5 ancestor to have large amounts of gas for a second generation of stars and to be quite massive. At least 100 million times the mass of the Sun,” explains Davide Massari, co-author of the study.
Its unusual properties make Terzan 5 the ideal candidate for the title of “living fossil” from the early days of the Milky Way. Current theories on galaxy formation assume that vast clumps of gas and stars interacted to form the primordial bulge of the Milky Way, merging and dissolving in the process.
While the properties of Terzan 5 are uncommon for a globular cluster, they’re very similar to the stars found in the galactic bulge. Remnants of those gaseous clumps appear to have stuck around intact since the days of our galaxy’s birth, one of them evolving into the present day Terzan 5. That makes it a relic from the Milky Way’s infant days and one of the earliest galactic building blocks. Later, the cluster, which held onto some of its remaining gas, experienced a second burst of star formation.
“Some characteristics of Terzan 5 resemble those detected in the giant clumps we see in star-forming galaxies at high-redshift (galaxies just beginning to form in the remote universe in the far distant past), suggesting that similar assembling processes occurred in the local and in the distant universe at the epoch of galaxy formation,” said Dr. Francesco Ferraro from the University of Bologna, Italy, who headed up the team.
Terzan 5’s chandelier-like presence is helping astronomers understand how our galaxy was assembled. Reconstructing the past is one of the key occupations of astronomy. The present is continually departing with every passing moment. Soon enough, every piece of information slips into the past tense. In the near-past, which records humanity’s comings and goings, details are often forgotten or lost. The deep past is even worse. With no one around and only scattered clues, astronomers continually look for fragmental remains that when woven into the fabric of a theory, reveal patterns and processes before we came to be.
Astronomers might be running out of words when it comes to describing the brightness of objects in the Universe.
Luminous, Super-Luminous, Ultra-Luminous, Hyper-Luminous. Those words have been used to describe the brightest objects we’ve found in the cosmos. But now astronomers at the University of Massachusetts Amherst have found galaxies so bright that new adjectives are needed. Kevin Harrington, student and lead author of the study describing these galaxies, says, “We’ve taken to calling them ‘outrageously luminous’ among ourselves, because there is no scientific term to apply.”
The terms “ultra-luminous” and “hyper-luminous” have specific meanings in astronomy. An infrared galaxy is called “ultra-luminous” when it has a rating of about 1 trillion solar luminosities. At 10 trillion solar luminosities, the term “hyper-luminous” is used. For objects greater than that, at around 100 trillion solar luminosities, “we don’t even have a name,” says Harrington.
The size and brightness of these 8 galaxies is astonishing, and their existence comes as a surprise. Professor Min Yun, who leads the team, says, “The galaxies we found were not predicted by theory to exist; they’re too big and too bright, so no one really looked for them before.” These newly discovered galaxies are thought to be about 10 billion years old, meaning they were formed about 4 billion years after the Big Bang. Their discovery will help astronomers understand the early Universe better.
“Knowing that they really do exist and how much they have grown in the first 4 billion years since the Big Bang helps us estimate how much material was there for them to work with. Their existence teaches us about the process of collecting matter and of galaxy formation. They suggest that this process is more complex than many people thought,” said Yun.
Gravitational lensing plays a role in all this though. The galaxies are not as large as they appear from Earth. As their light passes by massive objects on its way to Earth, their light is magnified. This makes them look 10 times brighter than they really are. But event taking gravitational lensing into account, these are still impressive objects.
But it’s not just the brightness of these objects that are significant. Gravitational lensing of a galaxy by another galaxy is rare. Finding 8 of them is unheard of, and could be “another potentially important discovery,” says Yun. The paper highlights these galaxies as being among the most interesting objects for further study “because the magnifying property of lensing allows us to probe physical details of the intense star formation activities at sub-kpc scale…”
The team’s analysis also shows that the extreme brightness of these galaxies is caused solely by star formation.“The Milky Way produces a few solar masses of stars per year, and these objects look like they forming one star every hour,” Yun says. Harrington adds, “We still don’t know how many tens to hundreds of solar masses of gas can be converted into stars so efficiently in these objects, and studying these objects might help us to find out.”
It took a tag team of telescopes to discover and confirm these outrageously luminous galaxies. The team of astronomers, led by Professor Min Yun, used the 50 meter diameter Large Millimeter Telescope for this work. It sits atop an extinct volcano in Mexico, the 15,000 foot Sierra Negra. They also relied on the Herschel Observatory, and the Planck Surveyor.
This article is a guest post by Anna Ho, who is currently doing research on stars in the Milky Way through a one-year Fulbright Scholarship at the Max Planck Institute for Astronomy (MPIA) in Heidelberg, Germany.
In the Milky Way, an average of seven new stars are born every year. In the distant galaxy GN20, an astonishing average of 1,850 new stars are born every year. “How,” you might ask, indignant on behalf of our galactic home, “does GN20 manage 1,850 new stars in the time it takes the Milky Way to pull off one?”
To answer this, we would ideally take a detailed look at the stellar nurseries in GN20, and a detailed look at the stellar nurseries in the Milky Way, and see what makes the former so much more productive than the latter.
But GN20 is simply too far away for a detailed look.
This galaxy is so distant that its light took twelve billion years to reach our telescopes. For reference, Earth itself is only 4.5 billion years old and the universe itself is thought to be about 14 billion years old. Since light takes time to travel, looking out across space means looking back across time, so GN20 is not only a distant, but also a very ancient, galaxy. And, until recently, astronomers’ vision of these distant, ancient galaxies has been blurry.
Consider what happens when you try to load a video with a slow Internet connection, or when you download a low-resolution picture and then stretch it. The image is pixelated. What was once a person’s face becomes a few squares: a couple of brown squares for hair, a couple of pink squares for the face. The low-definition picture makes it impossible to see details: the eyes, the nose, the facial expression.
A face has many details and a galaxy has many varied stellar nurseries. But poor resolution, a result simply of the fact that ancient galaxies like GN20 are separated from our telescopes by vast cosmic distances, has forced astronomers to blur together all of this rich information into a single point.
The situation is completely different here at home in the Milky Way. Astronomers have been able to peer deep into stellar nurseries and witness stellar birth in stunning detail. In 2006, the Hubble Space Telescope took this unprecedentedly detailed action shot of stellar birth at the heart of the Orion Nebula, one of the Milky Way’s most famous stellar nurseries:
There are over 3,000 stars in this image: The glowing dots are newborn stars that have recently emerged from their cocoons. Stellar cocoons are made of gas: thousands of these gas cocoons sit nestled in immense cosmic nurseries, which are rich with gas and dust. The central region of that Hubble image, encased by what looks like a bubble, is so clear and bright because the massive stars within have blown away the dust and gas they were forged from. Majestic stellar nurseries are scattered all over the Milky Way, and astronomers have been very successful at uncloaking them in order to understand how stars are made.
Observing nurseries both here at home and in relatively nearby galaxies has enabled astronomers to make great leaps in understanding stellar birth in general: and, in particular, what makes one nursery, or one star formation region, “better” at building stars than another. The answer seems to be: how much gas there is in a particular region. More gas, faster rate of star birth. This relationship between the density of gas and the rate of stellar birth is called the Kennicutt-Schmidt Law. In 1959, the Dutch astronomer Maarten Schmidt raised the question of how exactly increasing gas density influences star birth, and forty years later, in an illustration of how scientific dialogues can span decades, his American colleague Robert Kennicutt used data from 97 galaxies to answer him.
Understanding the Kennicutt-Schmidt Law is crucial for determining how stars form and even how galaxies evolve. One fundamental question is whether there is one rule that governs all galaxies, or whether one rule governs our galactic neighborhood, but a different rule governs distant galaxies. In particular, a family of distant galaxies known as “starburst galaxies” seems to contain particularly productive nurseries. Dissecting these distant, highly efficient stellar factories would mean probing galaxies as they used to be, back near the beginning of the universe.
Enter GN20. GN20 is one of the brightest, most productive of these starburst galaxies. Previously a pixelated dot in astronomers’ images, GN20 has become an example of a transformation in technological capability.
In December 2014, an international team of astronomers led by Dr. Jacqueline Hodge of the National Radio Astronomy Observatory in the USA, and comprising astronomers from Germany, the United Kingdom, France, and Austria, were able to construct an unprecedentedly detailed picture of the stellar nurseries in GN20. Their results were published earlier this year.
The key is a technique called interferometry: observing one object with many telescopes, and combining the information from all the telescopes to construct one detailed image. Dr. Hodge’s team used some of the most sophisticated interferometers in the world: the Karl G. Jansky Very Large Array (VLA) in the New Mexico desert, and the Plateau de Bure Interferometer (PdBI) at 2550 meters (8370 feet) above sea level in the French Alps.
With data from these interferometers as well as the Hubble Space Telescope, they turned what used to be one dot into the following composite image:
This is a false color image, and each color stands for a different component of the galaxy. Blue is ultraviolet light, captured by the Hubble Space Telescope. Green is cold molecular gas, imaged by the VLA. And red is warm dust, heated by the star formation it is shrouding, detected by the PdBI.
Unbundling one pixel into many enabled the team to determine that the nurseries in a starburst galaxy like GN20 are fundamentally different from those in a “normal” galaxy like the Milky Way. Given the same amount of gas, GN20 can churn out orders of magnitude more stars than the Milky Way can. It doesn’t simply have more raw material: it is more efficient at fashioning stars out of it.
This kind of study is currently unique to the extreme case of GN20. However, it will be more common with the new generation of interferometers, such as the Atacama Large Millimeter/submillimeter Array (ALMA).
Located 5000 meters (16000 feet) high up in the Chilean Andes, ALMA is poised to transform astronomers’ understanding of stellar birth. State-of-the-art telescopes are enabling astronomers to do the kind of detailed science with distant galaxies – ancient galaxies from the early universe – that was once thought to be possible only for our local neighborhood. This is crucial in the scientific quest for universal physical laws, as astronomers are able to test their theories beyond our neighborhood, out across space and back through time.
It is a 17th century astronomical enigma that has persisted right up until modern times.
On June 20, 1670, a new star appeared in the evening sky that gave 17th century astronomers pause. Eventually peaking out at +3rd magnitude, the ruddy new star in the modern day constellation of Vulpecula the Fox was visible for almost two years before vanishing from sight.
The exact nature of Nova Vulpeculae 1670 has always remained a mystery. The event has often been described as a classic nova… but if it was indeed a garden variety recurrent nova in our own Milky Way galaxy, then why haven’t we seen further outbursts? And why did it stay so bright, for so long?
Now, recent findings from the European Southern Observatory announced in the journal Nature this past March reveal something even more profound: the Nova of 1670 may have actually been the result of a rare stellar collision.
“For many years, this object was thought to be a nova,” said ESO researcher Tomasz Kaminski of the Max Planck Institute for Radio Astronomy in Bonn Germany in a recent press release. “But the more it was studied, the less it looked like an ordinary nova—or indeed any other kind of exploding star.”
A typical nova occurs when material being siphoned off a companion star onto a white dwarf star during a process known as accretion builds up to a point where a runaway fusion reaction occurs.
ESO researchers used an instrument known as the Atacama Pathfinder EXperiment telescope (APEX) based on the high Chajnantor plateau in Chile to probe the remnant nebula from the 1670 event at submillimeter wavelengths. They found that the mass and isotopic composition of the resulting nebula was very uncharacteristic of a standard nova event.
So what was it?
A best fit model for the 1670 event is a rare stellar merger, with two main sequence stars smashing together and exploding in a grand head on collision, leaving the resulting nebula we see today. This event also resulted in a newly recognized category of star known as a “red transient” or luminous red nova.
Universe Today caught up with Mr. Kaminski recently on the subject of red transients and the amazing find:
“In our galaxy we are quite confident that four other objects were observed in outburst owing to a stellar merger: V838 Mon (famous for its spectacular light echo, eruption 2002), V4332 Sgr (eruption 1994), V1309 Sco (observed as an eclipsing binary before its outburst in 2008), OGLE-2002-BLG-360 (recent, but most similar to CK Vul eruption, 2002).Red transients are bright enough to be observed in nearby galaxies. Among them are M31 RV (first recognized “red variable”, eruption 1989), M85 OT2006 (eruption 2006), NGC300 OT2008, etc. Very recently, a few months ago, another one went off in the Andromeda Galaxy. With the increasing number of sky surveys we surely will discover many more.”
Though astronomers such as Voituret Anthelme, Johannes Hevelius and Giovanni Cassini all noted the 1670 nova, the nebula and suspected progenitor star wasn’t successfully recovered until 1981. Often cited as the oldest and faintest observation of a nova, Hevelius referred to the 1670 apparition as ‘nova sub capite Cygni,’ or a new star located below the head of the Swan near the star Albireo the constellation of Cygnus. Astronomers of the day also noted the crimson color of the new star, also fitting with the modern red transient hypothesis of two main sequence stars merging.
“We observed CK Vul with the hope to find some submillimeter emission, but were completely surprised by how intense the emission was and how abundant in molecules the gas surrounding CK Vul is,” Kaminski told Universe Today. “Also, we have ongoing observational programs to search for objects similar to CK Vul.”
Follow up observations of the region were also carried out by the Submillimeter Array (SMA) and the Effelsberg radio telescope in Germany. The Nova of 1670 occurred about 1,800 light years distant along the galactic plane in the Orion-Cygnus arm of our Milky Way galaxy, of which the Sun and our solar system is a member. We actually had a naked eye classical nova just last year in roughly the same direction, which was visible in the adjacent constellation of Delphinus the Dolphin.
Of course, these garden variety novae are in a distinctly different class of events from supernovae, the likes of which have not been seen in our galaxy with the unaided eye in modern times since Kepler’s supernova in 1604.
How often do stars collide? While rogue collisions of passing stars are extremely rare—remember, space is mostly nothing—the odds go up for closely orbiting binary pairs. What would really be amazing is to witness a modern day nearby red transient in the act of formation, though for now, we’ll have to console ourselves with studying the aftermath of the 1670 event as the next best thing.
“Recent estimates give one (merger) event per 2 years in the Milky Way galaxy,” Kaminski told Universe Today. “But we currently know so little about violent merger events that this number is very uncertain.”
Previously cited as a recurrent nova, the story of the 1670 event is a wonderful example of how new methods, combined with old observations, can be utilized to solve some of the lingering mysteries of modern astronomy.